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ABSTRACT

We explore content-based representation learning strategies tailored
for large-scale, uncurated music collections that afford only weak
supervision through unstructured natural language metadata and co-
listen statistics. At the core is a hybrid training scheme that uses
classification and metric learning losses to incorporate both metadata-
derived text labels and aggregate co-listen supervisory signals into a
single convolutional model. The resulting joint text and audio content
embedding defines a similarity metric and supports prediction of
semantic text labels using a vocabulary of unprecedented granularity,
which we refine using a novel word-sense disambiguation procedure.
As input to simple classifier architectures, our representation achieves
state-of-the-art performance on two music tagging benchmarks.

Index Terms— Music information retrieval, music content em-
bedding, word sense disambiguation, joint audio and text models

1. INTRODUCTION

Transfer learning using large-scale pretrained embedding models has
had great success in multiple domains, including natural language
processing, computer vision, and audio processing. Our goal is to
extend this trend to cross-domain music modeling by constructing a
joint embedding model of the audio and natural language terms that
captures fine-grained semantic similarity and supports downstream
music understanding and retrieval tasks. Our training dataset is a
large, uncurated collection of over 10 million music videos from the
internet, including content ranging from produced recordings to live
amateur performances. Each recording is accompanied by a rich set
of unnormalized metadata, including titles and descriptions, from
which we derive a large vocabulary of over 100,000 text labels, some
explicitly music-related and some not. Compared to the previous
research, which involves only small vocabularies of hundreds of
tags [1], our dataset includes a preponderance of natural language
labels that enables associating finer-grain meanings to the content.

As in other uncurated data settings, our main objective is to
exploit any available supervisory signals to elicit a useful content
representation. We have to overcome multiple challenges in achieving
this objective. First, the text labels are highly noisy since they are
generated from free-form natural language titles and descriptions.
Secondly, the natural language terms can be highly ambiguous and
require contextual information to resolve their meanings.

To safeguard against noise in the text labels, we use the collec-
tion’s accompanying co-listen statistics, which are known to be highly
indicative of musical similarity [2] and thus provide a useful addi-
tional learning signal. We consider triplet loss network training as
a content-based co-listen graph embedding technique that implies a
music similarity metric reflecting underlying listener preferences. Un-
like representations learned with collaborative filtering (CF), which

embed the graph structure directly, our audio-based parametric meth-
ods inherently extend to new content. The co-listen statistics can also
be used to disambiguate natural language terms. We apply CF tech-
niques to embed and cluster the recordings, and then contextualize
the text labels by associating them with different clusters. We demon-
strate that splitting the vocabulary into different senses is effective in
associating more precise meaning to the audio content.

We evaluate the proposed method for a range of network archi-
tectures. First, we show that our learned content embeddings define a
similarity metric that can be directly used to predict co-listen graph
edges on a heldout set. Second, we demonstrate that our models define
a feature representation that propel simple fully-connected classifiers
to state-of-the-art performance on two music tagging benchmarks:
MagnaTagATune [3] and AudioSet [4].

2. RELATED WORK

Transfer learning in the music domain has seen substantial attention
over the past several years, with various efforts to learn general-
purpose music representations [5, 6, 7, 8, 9]. The most closely related
to ours is Dieleman et al. [5], who perform unsupervised training of a
convolutional deep belief network using the Million Song Database
(MSD) [10], and subsequently fine-tune it for artist/genre recognition
and key detection tasks. In a follow-up work, van den Oord et al. [6]
trained a convolutional embedding network by regression of CF em-
beddings derived from co-listen data. Finally, van den Oord et al. [8]
consider the more typical supervised pre-training of a representation
using tags from MSD, and demonstrate utility on downstream tasks
like MagnaTagATune. This provides a strongly supervised learning
baseline in our experiments. More recently, music tagging models
that use more advanced techniques have been evaluated in the litera-
ture. These include raw waveform CNN [11], AlexNet CNNs [12],
persistent-topology CNNs [13], Convolutional Recurrent Neural Net-
works (CRNN) [14], sample-level CNNs [15], ResNets [16], and
Squeeze-and-Excitation Networks [16].

The idea of using co-listen statistics to learn an objective mea-
sure of musical similarity has been circulating for quite some time
[2]. However, only recently has it been connected to deep learning
approaches in the CF embedding regression approach [6], which can
be done more computationally efficiently compared to our approach.
However, its accuracy is limited by the quality of CF embeddings, es-
pecially in under-sampled regions of the graph where CF embeddings
lose the fine granularity. Past work has also considered triplet loss
for music similarity metric learning supervised on relative human
judgments [17]. Recently, Siamese networks were used for music
representation learning [18], using same/different-artist song pairs as
supervision. Our method is the first attempt to use co-listen statistics
to train an embedding network directly from acoustic inputs deep
metric learning.



3. PROPOSED APPROACH

Our training framework assumes a large collection of music audio
accompanied by heterogeneous supervision types: noisy text labels
and a co-listen graph. We optimize the single embedding network
according to a hybrid objective, consisting of both classification and
distance metric learning losses. We also introduce a novel technique
to address the high level of word-sense ambiguity.

3.1. Dataset

We perform our experiments using a collection of 10.5 million sound-
tracks of public internet videos, each containing a majority of music
content as determined by an automatic music detector. We use three
types of data from the collection: (i) the audio recording; (ii) tex-
tual metadata, including its title and description; and (iii) aggregate
co-listen statistics between recording pairs. Each audio recording is
downsampled to 16 kHz and clipped to a maximum of 10 minutes,
resulting in a total of over 800,000 hours of audio. In terms of num-
ber of audio recordings, the music collection is 10 times bigger than
MSD. The scale of our data provides an opportunity for learning a
rich semantic music representation, but it comes at the cost of reduced
supervision quality that requires tailored techniques to accommodate.

We apply standard tokenization to the text data to obtain a set
of n-grams and create the label vocabulary by choosing the most
frequent 100K terms spanning multiple languages. We do not apply
any filtering to the terms since it is difficult a priori to know which
terms are important. For example, if we apply frequent word filtering
(even with TF-IDF re-weighting), we may lose popular yet useful
music related terms such as "happy", "fast". To address privacy
concern, we sanitize co-listen statistics as follows: removing users
with too few views before computing co-listen counts and dropping
counts below certain threshold in the co-listen statistics. In addition,
we keep at most 250 neighbors for each recording to form the co-
listen graph. Such sparsification also helps improve model quality
as it prevents from being biased by higher degree vertices or by
accidental co-listen.

3.2. Hybrid optimization scheme

Our datasetX consists of a set ofN music recordings. Each recording
Xi ∈ X is comprised of a sequence Xi = x1x2 . . . xTi of spectro-
temporal context windows of the form xt ∈ RF×T , where T is the
window length in frames and F is the number of frequency channels.
Weak supervision is provided in the following forms:

• A set of label data L = {L1, . . . , LN}, where each Li ∈
{0, 1}|V| is the binary-valued target vector over the label vo-
cabulary V for each recording Xi ∈ X .

• A sparse, unweighted, undirected co-listen graph G = (V,E),
where there is exactly one vertex v(Xi) ∈ V for each recording
Xi ∈ X , and an edge e(v(Xi), v(Xj)) ∈ E iff the recording
pair (Xi, Xj) were both listened to by at least τ visitors.

Our goal is to learn a map f : RF×T → Rd that embeds spectro-
temporal context windows from recordings into a d-dimensional
vector space. While distance metric learning losses apply directly to
the output of such an embedding network, incorporating the weak text
label information requires an additional classification layer g : Rd →
[0, 1]|V| that maps the output of f to a set of posterior estimates for
the tags in V . Finally, at test time, we construct an embedding S ∈ Rd

for the whole recording X = x1 . . . xT by the mean embedding of
the constituent context windows, given by S = (1/T )

∑T
t=1 f(xt).

Using the above notation, we define two loss function: the triplet
loss Ltriplet(X , G, f) for estimating how the model fits the co-listen
graph; and the cross entropy loss LCE(X , f, g) for estimating how
the model fits the text labels.

3.2.1. Co-listen prediction objective

While our co-listen graph is defined at the recording level, we ex-
tend the relations to all constituent spectro-temporal windows they
contain. Thus, to construct each training triplet, we sample (i)
an “anchor” recording Xa ∈ X ; (ii) a “positive” recording Xp

from {X|(v(Xa), v(X)) ∈ E}, i.e. the set of co-listen neighbor
recordings of Xa; (iii) a difficult “negative” recording Xn from
{X|(v(Xp), v(X)) ∈ E and (v(Xa), v(X)) /∈ E}, i.e. the set of
co-listen neighbors of Xp that are not connected to Xa; and finally
(iv) a triplet (xa, xp, xn) by randomly sampling context windows xa,
xp, and xn from Xa, Xp, and Xn, respectively. Given the dataset
X and accompanying co-listen graph G, we can generate a virtually
limitless triplet stream, which we partition into batches of size B
of the form B = {(ai, pi, ni)}Bi=1, where each ai, pi, ni ∈ RF×T .
The triplet loss for each batch is then defined by

Ltriplet(B, f) =
B∑

i=1

[
‖f(ai)−f(pi)‖22 − ‖f(ai)−f(ni)‖22 + δ

]
+
,

(1)

where ‖·‖ denotes `2-norm, [·]+ denotes hinge loss, and δ is a nonneg-
ative margin hyperparameter. Despite having purposefully selected
negatives according to the co-listen graph, it remains critical to per-
form the within-batch semi-hard negative mining procedure [19].
This involves the reassignment of triplet negatives to anchor-positive
pairs to make more difficult triplets, choosing the closest negative to
each anchor that is still further away than the positive.

3.2.2. Text label prediction objective

Despite the fact that our data is highly multi-labeled, our experimen-
tation clearly showed that using a softmax classification layer signifi-
cantly outperforms a layer of independent logistics when predicting
the noisy text labels. Data inspection indicated a correlation between
number of labels and the label noise. Using a softmax loss implies an
`1 normalization to target vectors, which usefully downweights such
label noise. We again extend the weak text label information from the
recording level to all spectro-temporal context windows contained in
each recording. We transform the dataset X and accompanying text
label set L into a large set of multi-labeled context frames that we
again partition into batches of size B of the form B = {(xi, λi)}Bi=1,
where xi ∈ RF×T is a context window from some recordingXj ∈ X
and λi = Lj/‖Lj‖1 is the `1-normalized target vector computed
from the original target vector Lj ∈ L corresponding to Xj . The
softmax cross-entropy loss for a batch is defined as

LCE(B, f, g) = −
B∑

i=1

λi · log g(f(xi)). (2)

Here, log is applied element-wise and g(u) = exp(u · hj +

bj)/
∑|V|

k=1 exp(u · hk + bk), where hj ∈ Rd and bj ∈ R are
the embeddings and bias of the label j ∈ V , respectively. We observe
that it is necessary to include an `2 normalization in the embedding
function f directly so that its outputs are guaranteed to have unit
length. If not, the embedding norm may blow up dramatically as
training proceeds, reducing ultimate classifier layer performance.



Such an `2 normalization is also traditionally included in the triplet
loss distance function. Finally, the `2-normalized rows of the final
classifier layer g define embeddings for each tag in V .

3.2.3. Curriculum training

We apply a curriculum training procedure that first optimizes the the
triplet loss objective, followed by the the cross-entropy loss. We
choose this order because our primary interest is in creating music
content embeddings that capture fine-grained semantic concepts, and
text labels provide this connection in a human-interpretable fash-
ion. However, pretraining with co-listen graph triplets encourages
embedding space structure that reflects a generic notion of musical
similarity and user preference. The alternative of training against a
weighted sum of both losses requires a more complicated adjustment
of the adaptive optimizer (Adam) for different parts of the network
independently, since otherwise a single learning rate will govern
the embedding network (which is affected by both losses) and the
classifier layer (which is affected by only cross-entropy). With our
curriculum training schedule, we simply wait for the triplet loss to
level off and switch to cross-entropy optimization. At our data scale,
overfitting is not a concern.

3.3. Text label disambiguation

Natural language terms can be highly ambiguous, which can have
completely distinct meanings in different contexts. If we train our
model directly on these labels, it would cause the ambiguous label to
move to the “centroid” of the multiple recordings which contain that
label. This would make the embedding of such terms represent the
mixture of distinct meanings, or heavily biased by the most popular
meaning, and cause confusion to the audio model to try to fit to it.
Empirically, we would observe lower prediction performance for
such terms. To solve this problem, we need to identify the context of
the text labels, which can be inferred from the listening pattern on
the “host” video. Hence we apply the weighted matrix factorization
method to the co-listen graph and cluster the recordings using the K-
Means algorithm. The clusters then serve as the context information
for disambiguating text labels.

For each recording, we attach its cluster id to all of its text labels.
In this way, each term may is split into multiple “atomic” terms, cor-
responding to its meaning in different clusters. We need to carefully
choose the number of clusters: if too large, we may have too few
recordings associated with a particular label; if too small, we may
still have too much ambiguity in the text labels. A good heuristic
is to select the number of clusters such that high AUC is achieved
with respect to the split labels. Using this, we indeed observe that our
disambiguation does associate finer meanings to the text labels while
not adversely affecting the meanings of non-ambiguous terms.

4. EXPERIMENTS

We process each recording into log mel spectrograms of F = 64
mel bins using standard short-time Fourier analysis (0.025 s Hanning
window, 0.010 s step size). The input to each one of our embedding
models is a 3-second context window, producing T = 300 byF = 64
spectrogram patch inputs to each 2D convolutional neural network.
We specify three convolutional embedding network architectures that
provide a range of options for the complexity/quality tradeoff.

The first model specializes the relatively heavyweight ResNet-18
architecture [20] (11.2M parameters, 686M multiplies) to take our
modified 2D spectrogram input, increasing the layer 1 kernel/stride to

Table 1. Text label prediction performance in AUC-ROC.
Label-only Hybrid

Model Small CNN MobileNet ResNet18 ResNet18
AUC 0.788 0.835 0.855 0.859

Table 2. Link prediction performance, measured in average precision
(AP) and AUC-ROC. WMF trains on evaluation data by necessity.

Model AP AUC
Random 0.0008 0.500
ResNet-18 CF Regression [6] 0.055 0.916
SmallCNN triplet-only 0.035 0.888
MobileNet triplet-only 0.057 0.925
ResNet-18 triplet-only 0.079 0.946
ResNet-18 hybrid 0.107 0.956
WMF (upper bound) 0.428 0.974

7x5/2x1, and the subsequent max-pool kernel/stride to 5x3/4x2. Sec-
ond, we modify the more efficient MobileNet architecture [21] (670k
parameters, 26.1M multiplies) to also accept 300x64 inputs, changing
the first conv layer’s strides to 2x1 and adding an additional max-pool
after the third conv layer with 4x2 kernel and 2x1 stride. The third
network is a simple 3-layer 2D convolutional network with inter-
spersed max-pooling operations, which we label SmallCNN (537k
parameters and 22M multiplies). The architecture is specified by
the chain [conv(7x5,2x1), max(4x2, 2x1), conv(7x5,2x1), max(4x2,
2x1), conv(7x5,2x1), max(4x2, 2x1)], where the two arguments are
kernel and stride, respectively. After the final time-frequency pooling
operation, we append a 128-unit fully connected layer, followed by
`2-normaliztion to define the output embedding. This output is opti-
mized directly by triplet loss (Eq. 1. To compute the cross-entropy
(Eq. 2) we append a softmax classifier layer of size |V| ≈100K,
which corresponds to the non-disambiguated text labels. We then
freeze the trained ResNet-18 network and retrain a softmax classifier
of size 1M corresponding to the cluster id prefixed labels.

The dataset is split 90/10 into a train and test recording set. A
small portion of the test set is used for validation, and a disjoint
subset is used to construct evaluation examples for co-listen link
prediction and text label prediction. The networks are trained with
Adam optimizer using 132-example batches for both losses. We
include batch norm on all convolutional layers and use a learning
rate of 1e-4. The first triplet loss training stage is run until the loss
begins to level off (approximately 10M steps) followed by cross-
entropy minimization for another 10M steps. The triplet margin gap
parameter was δ = 0.1 in all cases.

4.1. Text label prediction

First we consider the task of predicting our noisy text labels on a
held out set, directly evaluating the model output after cross-entropy
training. We use a sample of 10,000 recordings drawn from the test
portion of our dataset for evaluation, restricting eval to text labels
with at least 10 occurrences in this set (approximately 2,000 labels
of the 100,000 label vocabulary). We average per-context window
scores across each recording and compute recording-level predic-
tion performance relative to the ground truth labels. Table 1 shows
performance for several models in terms of unweighted AUC-ROC.
We find that with label-only training, the largest ResNet architecture
outperforms the smaller models. However, despite having a compara-
ble size and computation cost to SmallCNN, the MobileNet comes
significantly closer to ResNet performance, making it a natural choice
for resource-constrained settings. Finally, we find that hybrid training
provides an additional improvement over label training alone.



Table 3. Comparison of top tags to cluster id prefixed seed tags. Tags
are ranked by cosine similarity on embeddings defined by softmax
layer weights.

46_bebop 5_bebop 24_devotional 38_devotional
hard bop cowboy bebop ganesha wilder
jimmy garrison cowboy radha devotional tour
hank jones for sale mahadeva fletcher
coltrane ost anime music monks violator

Table 4. AUC-ROC of MagnaTagATune top-50 tag prediction.
Train Classifier

Embedding Set linear FC-1x512
SmallCNN hybrid fixed full 0.903 0.911
MobileNet hybrid fixed full 0.912 0.916
ResNet-18 hybrid fixed full 0.910 0.919
ResNet-18 label-only fixed full 0.911 0.916
ResNet-18 triplet-only fixed full 0.888 0.902
ResNet-18 hybrid warm-start full 0.906 0.920
SmallCNN hybrid fixed 10% 0.888 0.894
MobileNet hybrid fixed 10% 0.900 0.902
ResNet-18 hybrid fixed 10% 0.896 0.900

Baselines (all full-train)
ResNet-18 cold-start 0.889 Transfer Learning [8] 0.880
Waveform CNN [11] 0.882 AlexNet [12] 0.901
SampleCNN [15] 0.906 SqueezeNet [16] 0.911

4.2. Co-listen link prediction

Next we consider the utility of the similarity measure defined by
our embedding models to characterize listener preference. To mea-
sure this, we randomly sampled two disjoint sets of 1,250 co-listen
recording pairs not used in training. For each set, we computed the
cosine similarities between recording-level average embeddings for
all 2500-choose-2 pairs. We rank pairs by this cosine similarity, and
measure the retrieval performance of the 1,250 co-listen pairs in terms
of average precision and AUC-ROC. In Table 2, we again see that
our largest ResNet-18 architecture significantly outperforms smaller
networks, but MobileNet again bends the cost-performance curve to
come in as a clear second place. Interestingly, even though the triplet
training objective is closely linked to this evaluation methodology,
fine-tuning with text labels still provides substantial gain. Note that
weighted matrix factorization (WMF) [22] directly embeds the co-
listen graph including the evaluation set, so it provides a performance
upper bound; however, the performance gap for our proposed models
are much smaller than would be expected from past studies. Specifi-
cally, the WMF performance recovery of our audio models—25% for
AP and 98% for AUC-ROC—dwarfs that of a similar past evaluation,
which recovered 2.5% and 80% of the WMF AP and AUC-ROC,
respectively (see Table 3 of [6]). On our evaluation, our methods
nearly double the AP of our own ResNet-18 implementation of the
CF regression baseline in [6].

4.3. Examples of label disambiguation

We provide examples to demonstrate the effect of using the co-listen
structure for label meaning disambiguation. We pick some terms that
are present in multiple clusters and compute their nearest neighbor
labels to show that different meanings of the same label are indeed
captured. In Table 3, we show the results of two terms “bebop” and
“devotional”, which both can refer to different concepts or entities

Table 5. AudioSet genre performance in AUC-ROC.
Embedding Train Set 7-genre 25-genre
MobileNet hybrid fixed full 0.930 0.915
ResNet-18 hybrid fixed full 0.930 0.916
MobileNet hybrid fixed 10% 0.929 0.912
ResNet-18 hybrid fixed 10% 0.928 0.913
Resnetish-50 [4, 23] full 0.914 0.901

depending on the context. In the table, we prepend the cluster id to
the term, indicating the different discovered senses. For “bebop”, it
sucessfully differentiated the two prevalent contexts of Jazz music
and Anime soundtracks; for “devotional”, it identified the Indian
sub-genre of devotional music, as well as the “Devotional Tour” by
the British band Depeche Mode (in the Pop music cluster). In all the
cases, the global model only captures the most common meaning.

4.4. MagnaTagATune and AudioSet tagging benchmarks

We evaluate our models as general purpose audio feature extractors
for downstream tagging tasks. We begin with MagnaTagATune [3]
and consider the well-exercised top-50 tag set. We use standard
train/validation/test partitions, tuning hyperparameters on validation
and reporting class-balanced AUC-ROC on the test set. We consider
two classifier architectures on top of our 128-dimensional embed-
dings: (i) an independent per-class logistic regression layer, and (ii) a
single-hidden layer perceptron with 512 hidden units and an indepen-
dent logistic output layer. We also consider the effect of using only
10% of the training set to probe how much our embeddings support
the tagging task on their own.

In Table 4, we observe that the fixed ResNet-18 embeddings
trained with hybrid loss achieve the best (and state-of-the-art) per-
formance when coupled to a fine-tuned single hidden layer MLP.
However, the efficient MobileNet architecture is again a close second.
Fine-tuning the embedding network provides little boost, indicating
the pretrained network is already providing a generally useful repre-
sentation for downstream tasks. Our cold-start ResNet-18 baseline
employs the same architecture as our other ResNet-18 fixed embed-
ding networks but achieves far lower performance, indicating that
architecture alone does not account for our high performance relative
to baselines. Finally, we find that even with 10% of the training data,
we still outperform several baseline systems, indicating our pretrained
embeddings are truly carrying most of the weight for this task.

We also consider the genre prediction task on AudioSet
dataset [4], for both a 7-way genre task defined in [24], and a
harder 25-way task including all top-level genre categories. Our
baseline is the Resnetish-50 classifier from [23] trained on the en-
tirety of AudioSet (all 527 classes). Table 5 shows class-balanced
AUC-ROC performance for both tag sets. In all cases, we are using
fixed embeddings and training a set of linear models (independent
logistic regression for each class) on top. We again exceed baseline
performance using our fixed hybrid-optimized embeddings, even
when only using 10% of the AudioSet training data.

5. CONCLUSION

In this work, we explored a collection of weakly-supervised represen-
tation learning strategies for content-based music recommendation
and tagging, and demonstrated that data scale and diversity can over-
come label noise to produce robust content embedding models that
achieve state-of-the-art performance on well-studied benchmarks.
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