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Abstract

Our goal is to learn semantically structured audio representations without relying
on categorically labeled data. We consider several class-agnostic semantic con-
straints that are inherent to non-speech audio: (i) sound categories are invariant to
additive noise and translations in time, (ii) mixtures of two sound events inherit the
categories of the constituents, and (iii) the categories of events in close temporal
proximity in a single recording are likely to be the same or related. We apply these
constraints to sample training data for triplet-loss embedding models using a large
unlabeled dataset of YouTube soundtracks. The resulting low-dimensional repre-
sentations provide both greatly improved query-by-example retrieval performance
and reduced labeled data and model complexity requirements for supervised sound
classification.

1 Introduction

The last few years have seen great advances in nonspeech audio processing as popular deep learning
architectures developed in the speech and image processing communities have been ported to this
relatively understudied domain [17, (8 14, 21]. However, these data-hungry neural architectures are
not always matched to the available training resources in the audio domain; while unlabeled audio is
easy to collect, manually labeling data for each new sound application remains notoriously costly and
time consuming. We address this mismatch by exploiting semantic properties of sound using massive
amounts of unannotated audio.

Recent efforts in the computer vision community have identified several class-independent constraints
on natural images and videos that can be used to learn semantic representations [25]. For example,
object categories are invariant to camera angle, and tracking unknown objects in videos can provide
novel examples for the same unknown category [20]]. For audio, we can identify several analogous
constraints, which are not tied to any particular inventory of sound categories. First, we can apply
category-preserving transformations to individual events of unknown type, such as adding Gaussian
noise, translation in time within the analysis window, and small perturbations in frequency. Second,
pairs of unknown sounds can be mixed to provide new, often natural sounding examples of both.
Finally, sounds from within the same vicinity of a recording are likely to contain multiple examples
of the same (or related) unknown categories.

Triplet loss-based deep metric learning [22|[19, 9] estimates nonlinear maps into a low-dimensional
space where simple Euclidean distance can express any desired relationship between examples of
the form X is more like Y than like Z. This is a natural framework to express the above semantic
constraints because the inter-example relationship need not be anchored to a categorical judgment. To
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validate this approach, we train embedding models using state-of-the-art convolutional architectures
on millions of triplets sampled from the AudioSet dataset 6], both with and without the use of
the provided labels. We evaluate the learned embeddings as features for query-by-example sound
retrieval and supervised sound event classification. Our results demonstrate that complex models can
be trained from unlabeled triplets to produce representations that recover much of the performance
gap between the raw log mel spectrogram inputs and fully supervised semantic embeddings.

2 Related Work

Lee et al. [13] applied convolutional deep belief networks to extract a representation for speech and
music, but not general purpose nonspeech audio. More recently, a denoising autoencoder variant was
used to extract features for environmental sound classification [23]], but there was no explicit training
mechanism to elicit semantic structure in their learned embeddings. Recent zero-resource efforts in
the speech processing community have explicitly aimed to learn meaningful linguistic units from
untranscribed speech [[18]. Moreover, various forms of deep metric learning [[16} 10} 24} [12] have been
applied using these speech-specific constraints. Finally, so-called self-supervised approaches in the
computer vision community are analogous to what we propose in this paper for audio [1,[14}I5} 20} 25].
Recent efforts have extended this principle of self-supervision to joint audio-visual models that
learn speech and audio embeddings using semantic constraints imposed by the companion visual
signal [2 3L 7, [11]].

3 Learning Algorithm

Our training procedure consists of two stages: (i) sampling training triplets from a collection of
unlabeled audio recordings, and (ii) learning a map from input context windows extracted from
spectrograms (matrices with F' frequency channels and 7" frames) to a lower d-dimensional vector
space using triplet loss optimization of convolutional neural networks.

3.1 Metric Learning with Triplet Loss

The goal of triplet loss-based metric learning is to estimate a map g : R 7T — R¢ such that simple
(e.g.) Euclidean distance in the target space correspond to highly complex geometric relationships
in the input space. Training data is provided as a set 7 = {t;}, of example triplets of the form
t;= (x,g),mz(j),a:%)), where xgl),xéz),mgf) € RFXT
and negative, respectively. The loss is given by

are commonly referred to as the anchor, positive,
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where ||-||2 is Lo norm, [-] is standard hinge loss, and ¢ is a nonnegative margin hyperparameter.
Intuitively, the optimization is attempting to learn an embedding of the input data such that positive
examples end up closer to their anchors than the corresponding negatives do by some margin. The map
g can be defined by a d-unit output layer of any modern deep learning architecture. The optimization
is performed with stochastic gradient descent, though training time is greatly decreased with the use
of within-batch semi-hard negative mining [[15]. Here, all examples in the batch are transformed
under the current state of g, and the available negatives are reassigned to the anchors-positives to
make more difficult triplets.

3.2 Triplet Sampling Methods

To set our performance topline, we consider the traditional fully-supervised triplet sampling strategy:
for each class, we randomly sample anchor-positive pairs with the same class, and attach a negative
with a different class. We can express our proposed unsupervised semantic constraints using the
following triplet sampling strategies:

o Gaussian Noise: For each ; € R”*7 contained in the provided set of unlabeled examples,
we sample one (or more) anchor-positive pairs of the form (z;, x,), where we define



element z, ¢ = z;17(1 + |erf]) for e,¢ ~ N(0,0?), a Gaussian distribution with mean
0 and standard deviation o (a model hyperparameter). Finally, we attach a third random
example to each pair to be the triplet’s negative.

e Time and Frequency Translation: For each z; € R¥*7 in the provided set of unlabeled
examples, we sample one or more anchor-positive pairs of the form(z;, z,) where z,, =
Truncg(Cirer(x;)). Here,Circy is a circular shift in time by an integer number of frames
sampled uniformly from [0, 7 — 1]. Truncg is a truncated shift in frequency by an integer
number of bins sampled uniformly from [—.S, S](missing values after shift are set to zero).
We again attach a random example as the negative.

o Example Mixing: Given a random anchor x, and random negative x,,, both containing
energies in each time-frequency cell, we construct positive z, = z, +a- [E(zq)/E(xp)]Tn,
where F(z) is the total energy of example x, and « is a hyperparameter.

¢ Temporal Proximity: We sample triplets of the form (z,, xp, x,,) Where =, and z, are
from the same recording, x,, is from a different recording. We can further impose the
constraint that |time(z,) — time(z,)| < At, where time(z) is the start time of example
and At is a hyperparameter.

All triplet sets produced using the sampling methods outlined in this section can be simply mixed
together for training a joint embedding that reflects them all to whatever degree possible.

4 Experiments

We evaluate the triplet sampling methods presented in Section [3.2]by using the resulting embeddings
in two downstream tasks: (i) query-by-example retrieval of sound segments that contain the same
event categories, and (ii) training shallow fully-connected sound event classifiers. We also perform a
lightly supervised experiment using only a small fraction of the labeled data.

4.1 Dataset and Model Architecture

We use an internal version of Google’s recently released AudioSet database of manually annotated
sound events [[6]] for both training and evaluation. AudioSet consists of 10 second audio clips from
YouTube videos, each labeled using a comprehensive ontology of 527 sound event categories. We
use a total of 3 million clips for training, with at least 120 examples for every class. We compute
64-channel mel-scale, logarithmically-compressed spectrograms using an FFT window size of 25
ms with 10 ms step. We then process these per-recording spectrograms into nonoverlapping 0.96
second context windows, such that each training example is a F'=64 by T'= 96 matrix. Following
Hershey et al. [8]], we use the ResNet-50 convolutional neural network architecture. Instead of the
classification output layer, all of our triplet models use a 128-unit fully-connected linear output layer.
This produces a vector of dimension d =128, which represents a factor of 48 reduction from the
original input dimensionality of 64 x 96. We also employ the standard practice of length normalizing
the network output before input to the loss function, making the squared Euclidean distance of the
loss function equivalent to cosine distance.

4.2 Query-by-Example Retrieval

Our first evaluation task is segment-level query-by-example (QbE) retrieval. We begin by mapping
each 0.96 second context window in the evaluation set to its corresponding 128-dimensional embed-
ding vector and average these across each AudioSet segment to arrive at a segment-level embedding.
For each sound event category, we sample 100 segments where it is present and 100 segments where
it is not. We report the mean average precision (mAP) of separating within-class and across-class
pairs using cosine distance in the embedding space (chance baseline is 0.331). Table[I|shows the
retrieval performance for each of the evaluated representations (hyperparameters optimized on the
development set). The fully-supervised topline uses explicitly labeled data to sample the triplets. The
raw log mel spectrogram features are the baseline, and provide a measure of the inherent semantic
structure exhibited by the input representation when no unsupervised mapping is learned. The
recovery listed is the percentage of the baseline-to-topline performance gap recovered using each
given unsupervised triplet embedding. We find that each unsupervised triplet method significantly



Table 1: Mean average precision for segment retrieval and shallow model classification using original
log mel spectrogram and triplet embeddings as features.

Classification Classification
QbE Retrieval (1 layer, 512 units) | (2 layer, 512 units)
Representation mAP [ recovery | mAP [ recovery | mAP | recovery

Supervised Triplets (topline) 0.790 100% 0.288 100% 0.289 100%
Log Mel Spectrogram (baseline) | 0.423 0% 0.065 0% 0.102 0%
Gaussian Noise (0 =0.5) 0.478 15% 0.096 14% 0.114 6%
T/F Translation (S'=10) 0.508 23% 0.108 19% 0.125 12%
Mixed Example (o =0.25) 0.489 18% 0.103 17% 0.122 11%
Temporal Proximity (At=o00) | 0.562 38% 0.226 72% 0.241 74%
Joint Unsupervised 0.575 41% 0.244 80% 0.259 84%

Table 2: Lightly supervised classifier performance averaged over three trials, each trained with a
different random draw of 20 segments/class (totaling 0.5% of labeled data).

Representation | Model Architecture | mAP

Log Mel Spectrogram Fully Connected (4x512) | 0.032
Log Mel Spectrogram ResNet-50 0.072
Joint Unsupervised Triplet | Fully Connected (1x512) | 0.143

improves retrieval performance over the input features, with the joint unsupervised model improving
mAP by 15% absolute over the input features.

4.3 Sound Classification

We use our various embeddings as features for training a shallow fully-connected neural networks (1 or
2 layers of 512 units each) using labeled AudioSet segments. The output layer consists of independent
logistic regression models for each class. Following Gemmeke et al. [6], we compute segment-level
scores (average of the frame-level predictions) for the evaluation set, and we again report the mean
average precision for each feature type. Table[I]shows the classification performance for each feature,
including the topline and baseline representations. We again find substantial improvement over the
baseline in all cases, with temporal proximity the clear standout. Combining triplet sets provides
additional gains, indicating the model’s ability to encode multiple types of semantic constraints for
downstream tasks. Notice that our fully-unsupervised training of a ResNet-50 triplet embedding
model achieves 85% (0.244/0.288) the mAP of a fully-supervised ResNet-50 triplet embedding
model, when both are coupled to a single hidden layer downstream classifier.

Finally, Table 2] shows performance of lightly supervised classifiers trained on just 20 examples per
class (we report average performance over 3 training samples), which amounts to only 0.5% of the
train set. We evaluate three models: (i) a ResNet-50 classifier model, (ii) a fully-connected (4 layers
of 512 units each, which was optimal) model trained from log mel spectrograms, and (iii) a single
layer (512) fully-connected model trained on the joint unsupervised triplet embedding (last line of
Table[T). Since our unsupervised triplet embeddings are derived from the full AudioSet train set (as
unlabeled data), a single layer classifier trained on top doubles the mAP of a full ResNet-50 classifier
trained from raw inputs.

5 Conclusions

We have presented a new approach to unsupervised audio representation learning that explicitly
designed to elicit semantic structure in the absence of labeled data. By sampling triplets based
on a variety of audio-specific semantic constraints that do not require labeled data, we arrive at a
representation that greatly outperforms the raw inputs on both near neighbor retrieval and classification
of sound events. We found that the various semantic invariants are complementary, producing
downstream classification improvements when combined to train a joint triplet loss embedding model.
Finally, we demonstrated that our best unsupervised embedding provides a great advantage when
training sound event classifiers in limited supervision scenarios.
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