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Abstract—With tons of efforts spent on its mitigation, Cross-
site scripting (XSS) remains one of the most prevalent security
threats on the internet. Decades of exploitation and remediation
demonstrated that code inspection and testing alone does not
eliminate XSS vulnerabilities in complex web applications with
a high degree of confidence.

This paper introduces Google’s secure-by-design engineering
paradigm that effectively prevents DOM-based XSS vulnera-
bilities in large-scale web development. Qur approach, named
API hardening, enforces a series of company-wide secure coding
practices. We provide a set of secure APIs to replace native
DOM APIs that are prone to XSS vulnerabilities. Through a
combination of type contracts and appropriate validation and
escaping, the secure APIs ensure that applications based thereon
are free of XSS vulnerabilities. We deploy a simple yet capable
compile-time checker to guarantee that developers exclusively
use our hardened APIs to interact with the DOM. We make
various of efforts to scale this approach to tens of thousands
of engineers without significant productivity impact. By offering
rigorous tooling and consultant support, we help developers adopt
the secure coding practices as seamlessly as possible. We present
empirical results showing how API hardening has helped reduce
the occurrences of XSS vulnerabilities in Google’s enormous code
base over the course of two-year deployment.

Index Terms—Web security, cross-site scripting, language-
based security, empirical software engineering

I. INTRODUCTION

The history of cross-site scripting (XSS) can be dated back
to the last few years of the 90s. Ever since, it continues to be
one of the major sources of web security threats, identified as
a top-10 vulnerability by the Open Web Application Security
Project (OWASP) [1]. Fresh industry reports disclose that, to
date, XSS is still among the most prevalent and exploitable
security vulnerabilities in web applications [2], [3]. According
to HackerOne, one of the most popular security bounty award
platforms, XSS tops the chart of reported vulnerabilities by
volume through 2018, with the average severity being “criti-
cal” [4]. The vulnerability reward program hosted by Google
has awarded external experts millions of dollars for reporting
XSS bugs in Google’s products [5].

In general, XSS vulnerabilities stem from the lack of or
inappropriate validation and sanitization of inputs to web
applications from untrusted sources which later flow into a
sink where the inputs are interpreted as executable code. One
of the most commonly exploited sinks is the Document Object

Model (DOM) APIs in client-side JavaScript code. With the
boom of single-page applications (SPA), more and more of
the dynamics in web applications are now being handled
by browsers, making the threat of DOM-based XSS more
ominous than ever before.

XSS vulnerabilities are often severe because they can bypass
the same-origin policy, one of the foundations of the web
application security model. The reason why XSS has been
an undying security nightmare runs deep into the complexity
and subtlety of the web technology stack. Mitigating measures
such as the content security policy (CSP) [6], [7] have been
developed, which make vulnerabilities harder to exploit but
cannot eliminate them. Some mitigations, such as XSS fil-
ters [8] and web application firewalls (WAF), only passively
block known categories of attacks and have subtle security
issues themselves [9]. On the other hand, active mitigations
like HTML sanitizing and URL escaping impose considerable
cognitive load on developers, requiring them to develop a deep
understanding about how to properly handle untrustworthy
inputs in different scenarios. Some organizations can install
security training programs in an attempt to help engineers
grasp that knowledge, but oftentimes this is insufficient to pre-
vent them from wirting XSS-prone code even for moderately
complex applications [10].

In this paper, we introduce API hardening, a novel soft-
ware engineering paradigm that proactively rids large web
applications of DOM-based XSS vulnerabilities. Instead of
trying to mitigate or remedy security threats after the code
is shipped, our method focuses on security assurance in the
early stages of software development. By deploying a series
of technical enforcement controls, we firmly guide developers
towards writing code that can be shown to be free of XSS by
a simple and fast analyzer blended into the compiler.

The technical aspects of API hardening are two fold. First,
we extend the JavaScript and TypeScript compilers to forbid
the use of DOM APIs that are susceptible to code injection.
These checks utilize type information but are otherwise flow
insensitive, therefore can be made extremely scalable. Second,
we offer a set of safe APIs to allow developers to utilize XSS-
prone APIs in a secure way. We introduce special types to
designate values that are safe to use in the context of injection-
prone DOM sinks. In this way, all potentially dangerous DOM



manipulation and code execution are highly regulated.

Indeed, with API hardening, developers are restricted to a
strict subset of the DOM APIs. In some cases, this subset
may not be sufficiently expressive. To accommodate such
use cases, we establish a communication channel through
which developers can request exemptions from some extended
compiler checks for certain pieces of code. An easy-to-follow
protocol is designed to ensure those requests are appropriately
reviewed by security experts. Approved exemptions are added
into a centrally managed list that is automatically respected
by compilers. The practicality of our approach depends on an
API design that is versatile enough to cover the vast majority
of use cases encountered in practice, so that the overhead of
this exemption process is rarely encountered. Our study shows
that the need for exemptions can be made very rare, relative
to the size of a humongous code base and a notably large
developer community.

The adoption of API hardening requires a software develop-
ment paradigm shift, which can be extremely challenging in a
large organization. To render the adoption of API hardening as
seamless as possible, we carefully design multiple supportive
mechanisms to help developers adapt themselves to the new
APIs and coding practices.

We have applied API hardening to real software production
at Google, covering tens of thousands of engineers who
develop some of the most complex web applications in the
world. The adoption of API hardening is at the scale of
the entire company’s JavaScript and TypeScript code base
for over two years. Empirical data show that our approach
has a significant contribution to reducing the occurrences
of XSS vulnerabilities in Google’s humongous code base.
Analyses on communication logs between web developers
and security experts demonstrate that the exemption review
protocol associated with the API hardening adoption process
is effective and scalable.

Our contributions can be summarized as the following,

o We propose API hardening, a new software development
paradigm that employs compile-time security checks and
safe API designs to effectively prevent XSS vulnera-
bilities in monolithic code repositories owned by large
software development teams.

o We extend JavaScript and TypeScript compilers to capture
known dangerous DOM operations and offer developers a
specially designed DOM-manipulating library. The major
part of these extensions has been open sourced. See
Appendix A for availability details.

« We developed a set of software engineering protocols to
help tens of thousands of engineers in the same orga-
nization adopt the hardened APIs without significantly
degrading their productivity.

e We collected and analyzed a rich amount of data dur-
ing over two years of API hardening effort in real-
world software development at Google. Empirical results
demonstrate that our approach is effective and scales to
tens of millions of lines of code.

1 <html>

2 <title>Search Results</title>

3 <body>

4 <p>You are searching: <span id="kw"></span></p>
5 <script>

6 const untrustedInput = new URLSearchParams (

7 location.search) .get ('kw'");

8 const keyword = document.getElementById('kw');
9 keyword.innerHtml = untrustedInput; // XSS!

10 </script>

11 </body>

12 </html>

Fig. 1: Example Web Application with a DOM-Based XSS
Vulnerability

II. CROSS-SITE SCRIPTING

This section explains, with a tiny yet representative example,
the concept of cross-site scripting and what consequences
a XSS vulnerability can cause when exploited by malicious
parties.

Consider the code in Fig. 1 which illustrates a web search
application. It contains a client-side XSS vulnerability at line
9, where the JavaScript code consumes untrusted user input
and render it as HTML markup through the innerHTML
property of a DOM element. In this example, there is no
dynamic server-side page rendering. It is a typical client-side
XSS vulnerability, aka. DOM-based XSS.

Suppose this vulnerable application is served on app . com.
A malicious website evil.com can exploit the vulnerability
by posting a URL pointing to app.com on its own page.
It then tricks the users of app.com to click on it. When a
victim follows this URL and gets navigated to app . com, the
search keyword encoded in the URL is injected into the search
page as HTML markup. Since app.com does not sanitize
the query parameter, evil.com can insert any content,
including malicious JavaScript code that can be executed in
the context of app.com.! When that happens, the capability
of the malicious code is no longer restricted by the same-
origin security policy and can therefore abuse users’ trust on
app . com. What happens next is entirely at the discrepancy of
the attacker. They can read information private to app.com
like cookies and send the information back to evil.com.
They can also choose to exploit a vulnerability in the browser
to further launch more advanced attacks [11]-[15].

For readability, the example in Fig. | is artificially simple,
which may convey a false impression that XSS vulnerabilities
are not difficult to detect or mitigate. In reality, the information
flow from XSS sources to sinks can be extremely complex
and often goes through servers and databases [10]. Traditional
static analyzers have very limited capabilities to reason about
this kind of software behavior.

'An example malicious URL is http://app.com?kw=(img%20src="x"%
20onerror="alert(%27XSS%?27)"). In this case, the attacker utilizes the “on-
error” event handler of an <img> tag to execute JavaScript code.



III. DESIGN

Most previous work on thwarting the threat of XSS tackles
the problem in the later phases of the software life cycle, e.g.,
whole-application static analysis [16]—[18], sophisticated au-
tomatic testing [19], [20], and run-time protections in produc-
tion [7], [8]. As the functionality and complexity of software
systems grow, the loss caused by critical security flaws and the
cost of remedying them after they manifest has skyrocketed. In
response to this trend, our approach confronts the challenge in
the very early stage of web application development and nips
XSS vulnerabilities in the bud.

A. Overview

API hardening operates by combining two technical compo-
nents, i.e., 1) a fairly simple and fast static security analyzer
embedded in the compiler, forbidding the use of the XSS-
prone APIs and 2) a collection of specially designed types
and APIs that reduce the task of demonstrating the absence of
XSS vulnerabilities to a type checking problem.

Most XSS-prone APIs relate to certain combinations of
DOM elements and properties. For example, in Fig. 1, the
innerHTML property of HTML elements is an XSS sink.
To prevent these APIs from being used, our compile-time
security analyzer walks the abstract syntax tree of a program
and emits errors on all occurrences of such APIs. In that sense,
the analysis is flow-insensitive, since it does not consider any
contextual information about these API uses and plainly asks
the compiler to reject all of them. However, we do make use
of type information to improve the precision of the analyzer.
For example, the src property of an HTML element is by
default an XSS sink. However, src on <img> is an exception
since no modern browsers will invoke the JavaScript execution
engine when loading <img> tags, even if the URL provided
by the src property has the javascript: scheme.” With
type information, the analyzer can distinguish different kinds
of HTML elements and reduce false positives.

Indeed, JavaScript is not a typed language. However, many
JavaScript compilers can infer or allow developers to annotate
their code with type information to capture programming
errors and seize more optimization opportunities during pre-
deployment transformations [21], [22]. Annotating JavaScript
with types has become a common practice in web devel-
opment. There are now language variants of JavaScript that
have native type systems, e.g., CoffeeScript and TypeScript.
Therefore, requiring type information for our API hardening
analyzer does not incur additional cost in practice.

At Google, we support API hardening in both JavaScript and
TypeScript. Almost all Google’s JavaScript code is annotated
with static type information and developers are required to run
a compiler on their code for optimization before deploying the
code in production. Our JavaScript analyzer implementation is
based on the Closure compiler [21], an open source JavaScript
compiler capable of advanced type inference. Our TypeScript

2Internet Explorer 6 is the last widely used browser known to be vulnerable
to XSS through the src attribute on <img> tags.

analyzer is implemented by extending the official TypeScript
compiler.’

B. Benefits

1) Effectiveness: Both the compiler and library-augmented
APIs start to take effects from the very beginning of software
development. In contrast, heavy-weight program inspection
tools require developers to allocate dedicated time to run the
analysis over a mostly completed project and the feedback will
likely not be available in real time. Various research [23]-[25]
suggests that code smells reported by an automatic analyzer
after code has already been submitted are less likely to be
addressed, mostly because the developer has already moved
on to another task. Our approach relies on a combination
of standard type checks and custom security checks during
regular compilation, thus providing almost instant feedback to
developers.

2) Availability: Being an interpreted language, JavaScript
does not need to be compiled to run in browsers. However,
it is now a common practice for web application vendors
and publishers to perform a series of analyses and source-to-
source transformations using a compiler before deploying the
applications, such as obfuscation and minification [26]. Google
has a monolithic code repository [27] and our engineers
work within a unified compilation environment. Code with
compilation errors is not allowed to be committed into the
repository. By embedding the analyzer into compilers, it is
automatically available to all developers and we can save
massive delivery and education cost.

3) Efficiency: Google engineers maintain over two billion
lines of code, a significant portion of which is JavaScript.
The JavaScript compiler is invoked an exceedingly large
number of times on a daily basis for development and contin-
uous integration. Engineers build their code using centrally-
maintained, distributed build infrastructure. Even tiny perfor-
mance degradation of the compiler can cost a huge amount
of extra CPU hours. JavaScript is known to be unfriendly to
static analysis [28]. Employing advanced static XSS detection
algorithms in a code base of the size we consider is unlikely
to be cost-effective.

IV. XSS SINKS

A surprisingly large number of DOM APIs can cause XSS if
they are used with partly user controlled inputs [29], [30]. The
first step towards API hardening is to identify the originally
dangerous DOM APIs, aka. XSS sinks.

A. Enumerate XSS Sinks

Essentially, a DOM API is prone to XSS if and only if the
JavaScript engine will be invoked to interpret the input of the
API as executable code. We collect such APIs by examining
the HTML and DOM specifications, which, formalized as
Web IDL [31], document all canonical APIs that can trigger

3For the sake of convenience, in the rest of the paper, TypeScript is regarded
as a dialect of JavaScript. All discussions related to JavaScript apply to
TypeScript unless otherwise noted.



JavaScript code execution. Previous work relies on the same
source to identify possibly misused web APIs [32]. Our
analysis on the specifications are purely manual, which is
manageable since collecting XSS sinks is mostly one-time
effort. Appendix B lists the XSS sinks we inferred from the
HTMLS5 and DOM specifications.

The specifications can cover most of the XSS sinks found
in practice. However, browser vendors may not fully follow
specifications and can implement non-standard features that
are prone to XSS. An example of such features is content
sniffing, with which browsers may ignore the metadata of a
data blob and interpret the type of the blob by heuristically
analyzing its content. Skilled attackers can exploit this feature
to manipulate browsers and carry out code executions not
expected by web developers and users [33].

It is unrealistic to cover all browser-specific XSS sinks
because many browsers have undocumented behaviors. As our
best effort, we work with the developers of some mainstream
browsers to stay informed about new browser features that
may have security implications. Most of the time, we do
not consider ancient browsers which tend to carry more XSS
attack vectors. This is not a problem since our web applications
do not support those browsers, either.

We would like to mention that many other XSS counter-
measures, such as data-flow analyses, also need to identify a
reasonably comprehensive set of XSS sinks to be effective.
Therefore, enumerating the sinks are somewhat orthogonal to
API hardening.

B. XSS Sink Classification

In total, we have identified five kinds of XSS sinks. The
classification is based on the mechanism bound to the sink
that directs the JavaScript engine to execute untrusted code.
The rest of the section elaborates on the nature of each of
these categories.

Code Execution Sinks: JavaScript and DOM have several
APIs that accept string values and evaluate them as JavaScript
code. The interpreted code will run in the same context
as these sinks. If outsiders can control the values fed to
these APISs, it will lead to the most straightforward cross-site
scripting exploits. Typical sinks of this kind include eval and
the innerHTML property of <script>.

URL Navigation Sinks: Many DOM APIs interpret
strings as interactive URLs that navigate users to other
web resources. In modern web applications, URLs can have
schemes with rich semantics attached and can direct browsers
to perform complicated actions, including executing arbitrary
code. For example, following URLs of the ”javascript:”
scheme causes immediate code execution. Therefore, DOM
APIs accepting navigational URLs are in general prone to XSS
vulnerabilities.

Loadable URL Sinks: In some cases, DOM URLs are
not for users to interact with. Instead, they are used to instruct
browsers to request and load additional resources needed
to render web pages, including executable JavaScript code.
Typical examples include the src property of <script> and

<link> elements. Attackers can perform cross-site scripting
by injecting URLs pointing to contents they control. The
Content-Security Policy (CSP) is a countermeasure against
XSS attacks through loadable URL injection, but there are
many cases where CSP is ineffective or can be sophisticatedly
bypassed [34].

HTML Sinks: Some DOM sinks interpret string values
as arbitrary HTML markup. The most straightforward way to
exploit those sinks is to inject JavaScript code marked by the
<script>. In some complicated attacks, HTML sinks can
be used to spawn other kinds of sinks.

CSS Sinks: There are DOM APIs in JavaScript for
developers to dynamically control how browsers render HTML
elements by changing their associated Cascading Style Sheets
(CSS). In ancient browsers like IE 6 and IE 7, JavaScript code
can be embedded into CSS and will be executed when the
style sheets are loaded. Although this is not longer the case in
modern browsers with enhanced security, academic research
has revealed that CSS sinks can cause more subtle attacks.
For example, one of the attack methods is to inject CSS
configurations that make browsers perform time-consuming Ul
rendering [35]. By monitoring how much time is spent in re-
drawing the UI, attackers can infer the content of a web page at
the character granularity. Strictly speaking, this kind of attacks
are not cross-site scripting since they do not involve JavaScript
code execution. Nevertheless, they are similar enough for API
hardening to keep CSS sinks on the list of banned DOM APIs
with little additional cost.

In addition to the standard JavaScript and DOM APIs, we
also consider XSS-prone sinks in third-party libraries that
are commonly used inside our company. For example, the
createDom function in the Closure JavaScript library [36]
can create DOM elements with some user-provided values as
attributes. This is one of the most dangerous sinks that can
lead to XSS and therefore is included into our list of prohibited
APIs. Expanding the compiler checks to library functions fits
well into our approach.

V. SAFE APIs

With the XSS-prone APIs identified and forbidden in de-
velopment, we need to provide developers with a set of
“hardened” APIs as alternatives. These safe APIs put limits on
the manners in which developers can interact with the DOM
and JavaScript engine, making it almost impossible for them
to accidentally write vulnerable code, without requiring every
developer to have a deep understanding about the security
nature of every component in the web development stack.

There are three components in the design of Safe APIs,

o Safe types. These types designate values that are safe to
flow to security sensitive sinks.

« Safe builders. These are the factory APIs that can produce
values of safe types. Safe type values can only be
constructed through these APIs.

o Safe sinks. These are the safe alternatives of the XSS-
prone JavaScript and DOM sinks. Unlike the original



DOM sinks that accept strings, safe sinks only accept
values of safe types.

Among these three components, safe types are the connec-
tions between safe builders and safe sinks. Essentially, the
type checking process performed by the compiler proves that
any values flowing into XSS-prone sinks are produced by an
appropriate kind of safe builders.

A. Safe Types

We designed six safe types to cover the major attack
vectors in the JavaScript language and DOM. Each safe type
corresponds to a type of sinks as described in Section IV.
CSS sinks are covered by two safe types. The correspondence
is displayed in Table 1.

Values of safe types (denoted by “safe values”) are im-
mutable once created. Beneath the surface, safe types are
wrappers of primitive strings. The internals of safe types are
hidden from application developers through the implemen-
tation language’s visibility and type encapsulation features.
In TypeScript, we mark the internals as private properties
of the type. In JavaScript, we implement additional compile-
time checks that forbid any code from accessing the internal
properties. These private properties also prevent safe types
from being confused with other user-created types, which is
otherwise a problem due to JavaScript and TypeScript being
structurally typed. In structural typing, the partial order of
types is determined by the actual structures of the types
instead of type names or places of declaration, in contrast to
nominal typing. However, safe types are essentially markers
stating values are constructed by following certain contracts
and therefore have to be nominal. Defining private properties
is a common way to simulate nominal types in JavaScript and
TypeScript.

Our type encapsulation is not expected to be fully resistant
to code that intentionally attempts to circumvent the intent of
our hardened APIs (see Section VIII-A); rather, we designed
the types and corresponding static checks such that code trying
to access the internals of safe types appears clearly non-
idiomatic and stands out in code reviews.

B. Safe Builders

Builders of safe values are the crux of the security of API
hardening. In general, safe values are secure for sensitive
DOM sinks because our static checks and APIs ensure that
they can only be constructed in manners known to be secure.
There are four ways of constructing safe values.

Build from literal values: Recall that the nature of XSS
vulnerabilities is that defective code allows attackers to control
what values can flow to security-sensitive JavaScript and DOM
sinks. Literal values, as they are hard-coded by application
developers, cannot be manipulated by attackers. Therefore,
they can be safely converted to safe types. It should be
noted literal values are not inherently secure. For example,
an engineer could hard-code a loadable URL that points
to a third-party domain from which arbitrary, untrustworthy
content could be loaded. We treat this concern as out of the

scope of API hardening, and to which necessary additional
mitigations apply. Since the values are part of the program
text as literals, they are clearly apparent to code reviewers
and amenable to analysis by linters and presubmit checks.

Build by sanitizing: We have built sanitizers to auto-
matically transform untrustworthy strings into safe-to-render
HTML markup or safe-to-follow URLs by removing parts that
may lead to XSS. For instance, the HTML sanitizer prunes
sensitive tags and possibly vulnerable combinations of tags
and attributes. The URL sanitizer prunes potentially insecure
URL schemes and parameters. Safe value builders based on
sanitizing and escaping are convenient to use, but they cannot
fulfill the needs of many development tasks because sanitizers
need to be conservative. For example, sanitizers strip all in-
line JavaScript code in HTML tags since they lack the context
to decide whether the code is secure.

Build from template: Template systems are commonly
used in web development, mostly for rendering large volumes
of structural contents [37]. Building safe values from templates
can be regarded as a combination of building from constants
and building by sanitizing. The bulk of a template is static
while some small parts of it can be configured by run-
time values. When rendering contents from a template, the
rendering framework ensures that the dynamically constructed
contents are properly validated and escaped with respect to
their context [38]. Furthermore, to qualify as a safe builder in
API hardening, the template has to be strict in its application of
contextual escaping [10], i.e., it should not allow developers to
suppress or alter the inferred context-specific escaping in any
way. To facilitate composition, the template system accepts
values of our safe types for substitution, in which case context-
inferred validation and escaping can be temporarily suppressed
in a type-safe manner.

Build from manually reviewed sources: Sometimes, the
previously mentioned builders are not expressive enough to
support the needs of complicated applications. We introduce
a special type of builder to resolve this problem. They are
basically “backdoors” in the safe API design in the sense that
they can cast any value to a safe value. Uses of these builders
are subject to mandatory code review by a security expert. We
enforce the review requirement by classifying these builders
themselves as prohibited XSS sinks. Security reviewers allow
uses of these builders by adding the code into the exemption
list of the static security analyzer.

C. Safe Sinks

Safe sinks are hardened versions of XSS-prone JavaScript
and DOM APIs. Typically, safe sinks are type-safe wrappers
of the original APIs. In other words, we built a natural
transformation from the original sinks accepting plain string
values to hardened sinks accepting safe values. Figure 2
shows some examples of these trivially transformed sinks in
TypeScript.

However, not all safe sinks are trivial transformations of the
original unsafe versions. Some of APIs are made non-trivial
purely for convenience, e.g., they also support security efforts



TABLE I: Safe Types in API Hardening

Safe Type Corresponding XSS Sink  Security Invariant

SafeScript Code Execution Sinks JavaScript code that is safe for browsers to execute.

SafeUrl URL Navigation Sinks URLs that are safe for browsers to follow.

TrustedResourceUrl  Loadable URL sinks URLSs pointing to resources that contain trusted JavaScript or CSS code.

SafeHtml HTML Sinks HTML that is safe to render in a user’s browser.

SafeStyle CSS Sinks CSS declarations that can be safely used as in-line style values of HTML elements.

SafeStyleSheet CSS Sinks CSS declarations with path selectors that are safe to evaluate as a style sheet in browsers.
// Navigate w W to s new URL It is worth mentioning that the safe sinks is a more dynamic
window.location.href = 'https://example.com'; piece in API hardening compared with other components. The
// Append new HIML markup to the current document. design of the hardened APIs should be constantly revisited as

document .write (html) ;

(a) Original APIs

// "~ SafeUrl’ type.
declare function safeSetLocationHref (
loc: Location, url: SafeUrl):

void;

e of a safe

appended must

declare function safeDocumentWrite (
doc: Document, html: SafeHtml): void;

Signat

// Value

// Na ndow to a safe URL built from literal

vigate w to

safeSetLocationHref (
window.location,
SafeUrl.fromLiteral ('https://example.com'),

HTML markup to the

end sanitized

)i
// current
/

ment .

safeDocumentWrite (document, SafeHtml.sanitize (html));

(b) Hardened APIs

Fig. 2: Examples of Safe Sinks in TypeScript

complementary to API hardening. Others exist because certain
HTML tags have more complicated security contracts. Below
are some examples of each case.

o The hardened APIs for setting the textContent and
src attributes of <script> tags additionally propagate
the CSP nonces [34] so that the trusted JavaScript code
is not blocked by browsers when dynamically inserted.

o Because the type of href is dependent on the value of
rel, the rel and href properties of <link> tags
are merged into a single safe sink in hardened APIs.
For example, if rel is "icon", href should accept
SafeUrl values; if rel is "stylesheet", href
should accept TrustedResourceUrl values. We need
a dependently typed API to cover this case, and it would
be difficult to allow the two properties to be separately
assigned.

e When setting the src property of <iframe> tags, we
make sure the sandbox property is also set to minimize
the risks of loading untrusted pages inside our own
applications.

the engineering environment evolves. We continuously collect
developer feedback to improve the ergonomics of the hardened
APIs. Section VI details our effort from this aspect.

The run-time performance cost of using safe types and safe
sinks is mostly negligible, since the security is enforced at
compile time. Operations like HTML sanitization and CSP
nonce propagation can indeed introduce some overhead, but
they are not an essential part of API hardening. Even without
employing safe types and hardened APIs, web applications
will still need to perform these operations. In certain cases,
API hardening even helps remove redundant dynamic security
checks since safe types can statically propagate the security
properties of the values.

VI. ADOPTION

The technical materialization of API hardening is only the
first step towards its adoption in an organization with tens
of thousands of web developers. We now introduce how we
deploy the new static checks and safe APIs across Google.

A. Deployment Process

API hardening itself is not a static technique but is con-
stantly evolving as new vulnerabilities and attacks emerge. In
large organizations, even a minor change to coding practices
can affect a tremendous volume of code. Asking engineers
to refactor their legacy code with hardened APIs and pause
developing new features would be prohibitively disruptive.
Therefore, it is essential to roll out API hardening checks and
new APIs in an incremental manner.

Whenever we introduce new security enforcement, we au-
tomatically exempt legacy violations so that existing code still
compiles. Technically, this can be achieved by customizing
the compiler or the build system. Our team maintains the
exemption list of legacy source files and approves changes
made to the list through reviews.

There are two ways for an organization to eliminate legacy
API violations. The first choice is to actively refactor the code
if the XSS risks have been historically high. Otherwise, when
the code base is being developed at a rapid pace and the legacy
code is expected to have a short life span, the organization can
choose to passively wait for legacy violations being cleaned
up through product iterations. At Google, we apply both
methods on a per-project basis. For legacy violations sharing



a common pattern, we use large-scale code refactoring tools
like RefasterJS [39] to generate patches at scale.

B. Technical and Operational Support

We have developed accompanying measures to help devel-
opers become familiar with the new coding practice. The key
objective is to allow developers to quickly unblock themselves
when their code contains references to XSS-prone APIs and
gets flagged by compilers. We also want to deepen developer
understanding about XSS and the mitigating strategy of API
hardening after they encounter first few API hardening viola-
tions, which can help avoid similar obstacles in the future.

1) Automatic Fix: When the compiler captures an API
hardening violation in the code, we try to automatically
construct a fix and present it along with the compiler error
message. Previous research shows that code smell checks tend
to be more useful if they provide fixes as it makes developers
less confused and reduces the need for cognitive context
switches [24]. We generate fixes with a relatively simple
strategy that does not consider too much about the context
of the violation, though more sophisticated auto repair or
refactoring techniques [40]-[43] could be applied. In general,
a suggested fix tries to enlighten developers on two points:
1) how to build safe values from the original values fed into
the unsafe sinks, and 2) which safe API is appropriate for
substituting the prohibited sink. If the generated fix can lead
to unexpected program behavior, e.g., values being truncated
due to sanitization, we explicitly highlight these parts in fixes
to prompt developers to carefully review the changes.

2) Documentation and Offline Consultation: 1t is critical to
have well maintained static documentation on API hardening
and make it easily accessible by developers. In addition, we
encourage developers to ask questions about safe types and
hardened APIs in the company’s internal discussion platform
by embedding directive instructions and relevant Q&A tags
into the error messages produced by compilers. Our team
schedules a support rotation to provide timely responses to
developer questions.

3) Exemption Review: On rare occasions, the security
constraints imposed by API hardening make it difficult or
infeasible for developers to implement certain functionality
using safe APIs only. The API hardening team offers security
review services for such cases. Similar to the offline consul-
tation service, our team has a support rotation to respond to
exemption requests. The security experts communicate with
the developers through the Google’s standard code review
platform. If the exemption request is approved, the source
file containing references to unsafe APIs will be added to the
exemption list managed by the API hardening team. Before
approving, the reviewer ensures that the use case indeed cannot
be expressed by any hardened API. The reviewer then checks
if the code is structured such that its security can be established
with a high degree of confidence. If necessary, the reviewer
will recommend code changes in the code review process.

C. Developer Feedback

To understand if the hardened APIs are friendly to devel-
opers, we integrate the XSS-prone sink detection into Tri-
corder [24], a scalable program analysis platform that allows
developers to report the usefulness of the analysis results. Our
team collects and analyzes feedback reports quarterly. Based
on the analysis results, we make directed improvements to our
API design and documentation.

VII. RESULTS

We have conducted an empirical, in situ study on the
effectiveness and practicality of API hardening in Google’s
production setting. All data presented in this section were col-
lected from real-world enterprise web development activities.

It should be emphasized that although we support API
hardening for both JavaScript and TypeScript, we lack the data
to showcase the TypeScript aspect, since it is a relatively new
language in the company. Everything presented in this section
reflects the manifest of API hardening in our JavaScript code
base.

A. Adoption Progress

We started deploying mandatory compile-time checks for all
JavaScript code across Google in the first quarter of 2018.*
In the second quarter of 2018, we launched infrastructures
and data pipelines to continuously monitor the company-wide
adoption progress.

Fig. 3 demonstrates the deployment pace of API hardening
by showing the number of checked XSS-prone sinks and the
total count of source files exempted from at least one of the
checks at the beginning of each quarter. Note that our develop-
ers maintain over a million JavaScript files, so less than 1% are
exempted by the end of 2020. Despite that we deprecate more
XSS-prone sinks over time, the number of exempted source
files, most of which are legacy, is decreasing. This shows that
our deployment strategy is effective at reducing the technical
debt across the company.

In addition to the number of exempted legacy files, we also
measure the total number of program locations that violate
API hardening standards, by compiling all JavaScript targets
in Google’s code base every few days. Fig. 4 shows the
total number of legacy JavaScript code locations with security
violations.” It also shows the top 10 XSS-prone sinks ranked
by the number of legacy violations. Based on our internal
statistics, these 10 sinks are also the most commonly attacked
surfaces in XSS exploits known to us. As can be seen, the
total number of legacy violations is constantly decreasing
over the past months. The same trend applies to all popular
subcategories of legacy violations.

As mentioned in Section VI-B2, we encourage developers
to ask questions in the company’s internal Q&A platform,

4We had previously developed our safe types and many of the hardened
builder APIs and applied compile-time checks for select development projects
on an opt-in basis

5The temporary downticks in the figures are artifacts caused by transient
failures in our compilation pipeline.
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Fig. 3: The Numbers of Checked XSS-Prone Sinks and
Exempted Source Files (Among the Total of Millions of Files)

in case they encounter problems when adapting themselves
to API hardening during development. To measure developer
acceptability of API hardening, we count the number of
questions raised in each week for the past two years, as
displayed in Fig. 5. We received an elevated volume of
questions during 2018-10-07 to 2018-10-27, during which we
hosted a company-wide awareness campaign for the adoption
of safe APIs. Engineers across the company participated in the
event to fix legacy violations in their JavaScript projects and
they asked many questions about how to proceed. After that,
we averaged one question a week with a maximum of four
questions. This very low volume of consulting traffic despite
a substantial volume of development activity — our central code
repository receives on the order of 10,000 submissions involv-
ing JavaScript source files per week. The contrast between
development activity density and need for expert consulting
suggests that developers adapt easily and without significant
friction to our hardened and inherently-secure APIs.

B. Effectiveness

API hardening is a preventative countermeasure against XSS
vulnerabilities. Considering the excessive scale of Google’s
web applications and the large number of engineers involved, it
is exceedingly difficult to accurately measure the effectiveness
of our approach with fine-grained controlled experiments.

Therefore, we instead investigate, with observational data,
how API hardening has helped the company reduce the number
of XSS vulnerabilities in shipped code. We have been actively
encouraging external security researchers to report vulnerabili-
ties discovered in our products under a bug bounty” program,
and a significant portion of reports are XSS vulnerabilities.
We use this number as the major metric to measure the
effectiveness of API hardening.

To exclude potential confounding factors as much as possi-
ble, we start with inspecting the vulnerability reduction data
with a small-scale case study. In this case, we inspect the
numbers of reported DOM-based XSS vulnerabilities in a
single product, before, during, and after their adoption of API
hardening, as presented in Table II. The product in the study
was one of the most actively developed web applications at
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Fig. 4: Daily Counts of Legacy Code Locations Violating API
Hardening Checks

Google during the time of inspection. The team developing
this product is one of the pioneer teams that strictly follow our
secure coding practices. The team had a few tens of frontend
engineers during the period listed in Table II. It took these
developers roughly a year to refactor the code base and clean
up most of the legacy violations. As can be seen, the numbers
of DOM-based XSS vulnerabilities dropped drastically after
the code base became in conformance with API hardening.
This case convinced us that it is worthwhile to roll out API
hardening as a universal software development paradigm for
the whole company.
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TABLE II: DOM-Based XSS Vulnerabilities Found in A
Single Product Before and After Adopting API Hardening

Period # of DOM-based XSS
Year Before Adoption 10
Year During Adoption 2
Year After Adoption 1

We now demonstrate the company-wide statistics about the
effectiveness of our approach. The blue curve in Fig. 6 displays
the ratio of DOM-based XSS among all externally reported
vulnerabilities that are considered to be of high remediation
priority. Meanwhile, the red curve in Fig. 6 shows that, among
all externally reported DOM-based XSS vulnerabilities, how
many of them are from legacy code that does not use our
hardened APIs.

Since the inception of API hardening in the first quarter of
2018, the percentage of DOM-based XSS vulnerabilities has
steadily declined. Indeed, this trend alone may not directly
reflect the impact of API hardening, since the company-wide
statistics may be contributed to by other security measures
deployed during the sampled period of time. This concern
is partially mitigated by the fact that, during the same pe-
riod of time, the proportion of XSS vulnerabilities found in
legacy code has been increasing significantly. Recall that in
Section VII-A, we have shown the amount of legacy code
exempted by API hardening checks is decreasing. All these
trends combined together indicate that freshly written code,
which is all covered by API hardening, is less likely to
introduce new vulnerabilities.

With both the small-scale case study and the company-
wide statistics, it is reasonable to conclude that applying API
hardening in large-scale web development is very effective at
reducing DOM-based XSS vulnerabilities.

C. Code Review Workload

One major part of the operational cost of employing API
hardening is the manual effort of reviewing exemption requests
from developers who feel safe types and hardened APIs are
not expressive enough to implement the functionality they
need. To demonstrate that this cost is completely manageable,
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Fig. 6: Proportion of DOM-Based XSS Vulnerabilities in
JavaScript Since the Inception of API Hardening

we analyzed five months of code review activities related to
JavaScript API hardening. The analyzed interval is from 2018-
10-7 to 2019-2-10, which is the early period of large-scale
adoption of API hardening in the company.

By manually analyzing our code review history, we classi-
fied the code reviews into three categories:

1) The request is valid and and can be approved without
developers revising the code.

2) The request is valid but the code needs to be revised
before we can approve it, leading to back-and-forth
interactions between developers and reviewers.

3) The requested exemption is not necessary and therefore
rejected. Developers are advised to use the adequate safe
value builders to solve their problems.

The weekly counts of each kind of review activities are
displayed in Fig. 7. As can be seen, the numbers of requests
that received a revision or reject decision are mostly flat and
stay at a low level. There were a high volume of trivially
approved requests during the first few weeks, but then the
number went down and stayed on the same level as other kinds
of requests. On average, we received less than eight review
requests each week during the analyzed period, which is fairly
modest considering how many developers Google has and how
much code they maintain. Similar to the trend of questions we
received from the internal forum (Fig. 5), we received much
more code review requests in the first few weeks due to the
company-wide campaign for reducing technical debts in legacy
JavaScript code. Most of these cleanup changes were trivially
approved.

It is evident from Fig. 7 that deploying API hardening is
much less laborious than it appears to be, even for an organiza-
tion with tens of thousands of web developers. Although we do
not have the detailed breakdown of code review requests after
February 2019, we notice that the ratio of security reviewed
JavaScript code commits has been constantly below 0.1%
at the time of writing this paper. This also proves that the
methodology of API hardening is very practical.
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VIII. THREATS TO VALIDITY
A. Soundness

Due to the highly dynamic nature of JavaScript, the type
system employed by existing JavaScript compilers® is un-
sound. The TypeScript language has a highly advanced native
type system, but it is also designed to be unsound to reduce the
cost of migrating legacy JavaScript projects to TypeScript. As
a consequence, our type-based API prohibition analysis is also
unsound. The code snippet below demonstrates a simple trick
developers can use to evade compiler checks on assignments to
the href property on Locat ion objects, which is a common
XSS sink.

let bypass
document.location as
bypass.href

as f{href:
'javascript:alert ("XSS!")';

bi

JavaScript typing is still being actively researched [45], [46].
To the best of our knowledge, there is no mature solution
that can help us resolve the unsoundness problem at the scale
of Google’s development force and code base. Nevertheless,
our experience has shown that consistent coding guidelines
and mature code review practices make intentional security
bypasses using non-idiomatic code patterns mostly a negligible
concern.

B. Practicality in Other Organizations

In general, the methodology of API hardening does not
depend on the specifics of the development environment or
policies inside our company; however, these factors shaped
some of the initial implementation. We aim to make DOM
API hardening applicable to different development workflows,
including non-commercial, open-source projects.

With the analyzer and safe API library available, any
individual project can employ API hardening. However, as
previously discussed, it requires additional efforts other than
technical supports to apply API hardening to a large develop-
ment organization. We identified several key factors that help
minimize the adoption cost of API hardening,

%The type system implemented by the Closure compiler is based on the
ECMAScript 4 specification [44].
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A mandatory code review process for submitting code.
A monolithic code repository that has as few access-
control restrictions as possible. This allows a small team
of security experts to review all projects developed in the
same organization.

A code ownership mechanism that requires changes to
certain files to be reviewed by designated personnel, i.e.,
the “owner” of the code.

A unified build environment that makes sure all code is
compiled by the same toolchain.

The more aforementioned traits an organization bears, the less
costly it is for the organization to adopt API hardening, since
they help amortize the deployment cost.

C. Server-Side Vulnerabilities

The approach introduced in this paper is for mitigating
DOM-based XSS vulnerabilities in client code only. How-
ever, there is no fundamental difficulty in extending it to
harden server-side code. The design and technical constructs
discussed in Section III and Section V are not limited to
JavaScript and can be extended to other languages. Our ana-
lyzer only requires typing information and is simple enough
to be ported to common languages used for implementing web
servers, e.g., PHP, Java, and C++.

IX. RELATED WORK

A. XSS Countermeasures

The IE 8 browser introduced the XSS filter [8] that can de-
tect on-going reflected XSS attacks when the same JavaScript
payload appears in both the HTTP query and the returned web
page. The content security policy [7], following BEEP [47]
and SOMA [48] which are the earlier embodiment of similar
ideas, provides a mechanism to allow websites to explicitly
indicate what kinds of JavaScript code can be executed within
their origins to prevent injection of attacker-controlled scripts.
Both XSS filters and CSP try to mitigate existing XSS vulner-
abilities and they are known to be bypassable by sophisticated
attacks. In contrast, API hardening prevents XSS-infested code
from being introduced into web applications in the first place.

Traditional pre-deployment XSS detection techniques can
be either static or dynamic. Early static analyzers focus on
reasoning about the information flow of server-side code
written in PHP [16], [49] and Java [17]. Later advancement in
this direction led to the capability of formalizing and analyzing
a subset of the highly dynamic JavaScript language [50], [51].
Similarly, there have been proposals to improve the effective-
ness of dynamic testing in detecting XSS vulnerabilities in
the server-side [19] and client-side code [20], [52] of web
applications. The major challenge for these techniques is that
XSS exploits often have complicated information flows across
different components in the network, e.g., servers, databases,
and browsers. It is difficult for a single analysis tool to capture
bugs across all these components.



B. Language and API Hardening

Empirical user studies show that bad API design has a
significant negative effect on software quality [53]. A series
of field studies on the usability of cryptographic libraries
show that robust APIs and security-oriented warnings from
development tools can help developers write more secure
code [54], [55].

Sharing an idea similar to API hardening but applied to a
different problem domain, Ironclad C++ [56] reduces the like-
lihood of developers writing memory-unsafe code by enforcing
them to use a specially designed library for memory manage-
ment. The library augments the type safety of the original
C++ type system by introducing additional static constraints
powered by new types and a new static analyzer. The Rust
programming language infuses memory safety into its type
system and makes sure that code with memory bugs does
not compile [57]-[59]. In Java, the plugable type system [60]
denoted through Java annotations allows software developers
to statically enforce additional security properties in the code.
Some other efforts like FixDroid [61], CogniCrypt [62], and
ASIDE [63] try to help individual developers be more aware
of security when they code with various UI supports, e.g.,
flagging likely insecure code in IDEs. In industry, Mozilla
embeds security checks against a small number of well known
XSS sinks in their browser extension development toolkit [64].

As far as we know, none of the existing work has explored
how to aggressively enforce secure coding directives in a large
organization like we do. Part of our work has evolved into
an emerging web security standard called Trusted Types [65]
which introduces run-time DOM API checks into browsers,
ensuring that these APIs only accept non-spoofable and typed
values rather than raw strings.

X. CONCLUSION

In this paper, we presented API hardening, a mature method-
ology to reduce the likelihood of developers writing code
vulnerable to cross-site scripting. We shared our experience
with applying this methodology to real-world, large-scale web
application development. By deploying extra programming
conformance rules enforced by compilers, we prevent devel-
opers from using the XSS-prone JavaScript and DOM APIs.
We designed and implemented a set of safe APIs that allow
developers to securely interact with the JavaScript engine and
DOM. We have deployed API hardening inside Google, a
large software development organization that builds some of
the most complex web applications in the world. Empirical
data shows that API hardening can effectively prevent XSS
vulnerabilities from being introduced into the products with
only modest cost.
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APPENDIX A
AVAILABILITY

We have open sourced the extended compilers and safe
API libraries described in this paper, whose code locations
are displayed below.

Language  Component GitHub Repository

JavaSerint Checker Part of google/closure-compiler
P Safe API Part of google/closure-library
. Checker google/tsec

TypeScript Safe API google/safevalues

It should be noted that the open source version of these
artifacts are revised to better fit the demands of external
developers. In particular, both the TypeScript checker and the
safe API library are customized to cooperate with Trusted
Types [65], a new web security standard that originated from
API hardening at Google.

APPENDIX B
XSS SINKS INFERRED FROM DOM/HTMLYS
SPECIFICATIONS

A. Code Execution Sinks

eval ().

setTimeout () when the first argument is a string.
setInterval () when the first argument is a string.
Constructor of Function.

innerHTML on <script>.

outerHTML on <script>.

text on <script>.

textContent on <script>.

appendChild () on <script>.

B. URL Navigation Sinks

href on <anchor>.

href on <area>.

action on <form>.

formaction on <button>.
formaction on <input>.
location on the Document interface.
location on the Window interface.
href on the Location interface.
assign () on the Location interface.
replace () on the Location interface.
open () on the Window interface.
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C. Loadable URL Sinks

Dynamic import ().
importScripts ()
interface.

src on <script>.
src on <embed>.
Constructor of Worker.
Constructor of SharedWorker.

on the WorkerGlobalScope

D. HTML Sinks

write () and writeln () onthe Document interface.
srcdoc on <iframe>.

innerHTML on all elements except <script>.
outerHTML on all elements except <script>.
insertAdjacentHTML () on all elements.

E. CSS sinks

cssText on the CSSStyleDeclaration interface.
cssText on the CSSStyleSheet interface.
cssText on the CSSRule interface.

innerText on <style>.

textContent on <style>.

F. Other Banned APIs

href and rel on <link>. href can be either a URL
navigation sink or a loadable URL sink, depending on
the value of rel. See Section V-C.

href on <base>. This attribute is not a sink that
directly causes XSS. It is exceedingly security sensitive
because it affects how browsers interpret other relative
URLs in the page.

setAttribute on all DOM elements. This API by-
passes all other checks on DOM attributes.
URL.createObjectURL. This API may cause XSS
due to content sniffing.
DOMParser.parseFromString. With the other
XSS sinks monitored, we can trust in-memory DOM
objects. This API compromises the trust by creating
DOM objects directly from untrusted strings.
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