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ABSTRACT
Attribute value extraction refers to the task of identifying values
of an attribute of interest from product information. It is an impor-
tant research topic which has been widely studied in e-Commerce
and relation learning. There are two main limitations in existing
attribute value extraction methods: scalability and generalizabil-
ity. Most existing methods treat each attribute independently and
build separate models for each of them, which are not suitable for
large scale attribute systems in real-world applications. Moreover,
very limited research has focused on generalizing extraction to new
attributes.

In this work, we propose a novel approach for Attribute Value
Extraction via Question Answering (AVEQA) using a multi-task
framework. In particular, we build a question answering model
which treats each attribute as a question and identifies the answer
span corresponding to the attribute value in the product context.
A unique BERT contextual encoder is adopted and shared across
all attributes to encode both the context and the question, which
makes the model scalable. A distilled masked language model with
knowledge distillation loss is introduced to improve the model
generalization ability. In addition, we employ a no-answer classi-
fier to explicitly handle the cases where there are no values for
a given attribute in the product context. The question answering,
distilled masked language model and the no answer classification
are then combined into a unified multi-task framework. We conduct
extensive experiments on a public dataset. The results demonstrate
that the proposed approach outperforms several state-of-the-art
methods with large margin.
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Figure 1: Examples of product attributes with their corre-
sponding values. Note that there is no value in the second
product for the attribute ’model number’.
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1 INTRODUCTION
Product attributes form an essential component of e-commerce
platforms today. They are used to power faceted search interfaces,
backend retrieval, product ranking and recommendation systems.
Further, customers use attributes to compare products and make
purchase decisions. However, for most retailers, product attributes
are often noisy and incomplete with a lot of missing values. There-
fore, it is an important research problem to supplement the product
with missing values for attributes of interest, especially with at-
tributes and values that we have never seen before. In this work,
we focus on extracting product attribute values from unstructured
product information, such as titles and descriptions. The problem
of attribute value extraction is illustrated in Figure 1. For example,
in the first product, given the title and the attribute ‘brand’, our
goal is to extract the value ‘PGM’. In the second product, there is
no value in the context for attribute ‘model number’. In this case,
we need to predict no value.

There has been a lot of interest in this topic, and a plethora of
research [2, 3, 8, 35, 53] in this area both in academia and industry.
Early works to this problem are rule based approaches [4, 9, 43],
which utilize domain-specific regular expressions. These methods
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are not able to scale to large set of attributes since they need to de-
velop rules for every possible value corresponding to all attributes.
For example, the attribute value ‘waterproof’ may be specified as
‘water-proof’, ‘water proof’ or ‘rainproof’ or in many other ways.
Obtaining the list of such synonym phrases for all the attributes
is expensive. In addition, one needs to build regular expressions
to identify the absence of a value. For example, ‘not available in
red’ corresponds to ‘color’ not being ‘red’. Several other approaches
such as [29, 35] formulate the attribute value extraction as an in-
stance of named entity recognition (NER) problem [30], and build
extraction models to identify the entities/values from the input
text. With the recent advance in natural language understanding,
sequence tagging [50, 54] based approaches have been proposed,
which achieve promising results. However, these techniques suffer
from two major limitations:

• Scalability – they do not scale to millions of attributes that
are necessary for real world applications. For instance, the
AliExpress taxonomy contains thousands of product cate-
gories, and a single category, Sports & Entertainment, has
over 8.9k unique attributes [50]. Existing methods treat each
attribute independently and build one separate model for
each of them, which are not suitable for large scale attribute
systems.

• Generalizability – they do not work well with new attributes
and values. With the rapid expansion of e-commerce, new
products with new capabilities are being released constantly
which means the model needs to gracefully adapt to new
attributes.

In this paper, we formulate the attribute value extraction task as
an instance of the question answering (QA) task. In recent years,
there have been great advances in question answering and reading
comprehension [1] with several new datasets: SQUAD [37] and
NaturalQuestions [20]. Specifically, given a context (text sequence)
and a question, the question answering task is to identify a best span
in the context that corresponds to the answer. To extract an attribute
value from a product, we treat the product information as context,
and turn the attribute into a question. We employ the contextual
encoder from BERT [7] to jointly encode both the question and the
context with attention mechanism. The same encoder is used for all
attributes, which addresses the scalability problem. To generalize
to new attributes, we introduce a distilled masked language model
(MLM). Unlike standard MLM, our formulation uses knowledge
distillation loss to force the model to continue to remember relevant
knowledge from the pretrained BERT model. One key property we
require for the model is that it should predict no value when the
attribute value is not actually present in the specified context. To
account for this, we introduce a no-answer classifier to explicitly
model such cases. We then develop a multi-tasking approach to
integrate all three tasks, i.e., the QA, the distilled MLM and the no-
answer classifier, into a unified learning framework. We conduct
an extensive set of experiments on a public dataset, which shows
superior performance of the proposed approach over several state-
of-the-art methods. The experimental results also demonstrate the
robustness of our approach. We summarize the main contributions
of this work as follows:

• We present a formulation of attribute value extraction as an
instance of question answering, which essentially allows us
to infinitely scale the number of attributes.

• We introduce a novel distilledmasked languagemodel, which
improves the generalization of our approach on completely
unseen attributes and values. Moreover, we employ a no-
answer classifier to enhance the model ability of predicting
no-answers.

• We develop a multi-task approach, which incorporates all
three tasks together into a unified learning framework.

• We empirically demonstrate significant improvements over
several state-of-the-art baselines on a public benchmark for
attribute value extraction.

2 PRELIMINARIES
In this section, we briefly review the BERT model [7], which is
closely related to our approach.

2.1 BERT
BERT [7] is a language representation model, which stands for
Bidirectional Encoder Representations from Transformers. It is
designed to train deep bidirectional representations from unlabeled
text through a contextual layer, which is composed of stacked
attention layers and feed forward networks as shown in Figure 2.

𝐻1 = 𝐹𝐹𝑁 (𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝐸))
𝐻𝑘 = 𝐹𝐹𝑁 (𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝐻𝑘−1))

(1)

where 𝐸 = (𝑒1, . . . , 𝑒𝑙 ) are the input embeddings of the sequence.
𝐻𝑘 is the output embeddings of the 𝑘-𝑡ℎ layer. The multi-head
attention [44] is designed to model the contextual relations among
the input sequence. The feed forward network is applied to each
position separately and identically, which consists of two linear
transformations with a ReLU activation in between.

𝐹𝐹𝑁 (𝑥) =𝑚𝑎𝑥 (0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (2)

where𝑊1 and𝑊2 are two parameter matrices in the feed forward
network. 𝑏1 and 𝑏2 are bias terms.

The mask language model (MLM) is introduced in BERT as one
of its pretraining tasks. It randomly masks some of the tokens,
usually 10% to 15%, from the input sequence, and the objective is to
predict the original vocabulary id of the masked word based only
on its context. Specifically, the MLM adds a classification layer on
top of the BERT output. It first multiplies the output vectors by
the embedding matrix and transforms them into the vocabulary
dimension. The probability of each word in the vocabulary is then
calculated with a softmax function. The MLM objective enables the
representation to fuse the left and the right context, which allows
BERT to pretrain a deep bidirectional contextual encoder. In this
way, the rich language knowledge is effectively captured in the
pretrained BERT model.

2.2 Question Answering using BERT
The BERT model is pretrained on the BooksCorpus [55] and Eng-
lish Wikipedia, using next sentence prediction and masked word
prediction tasks. The pretrained BERT can be applied to various
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Figure 2: Our AVEQA model architecture.

downstream tasks, such as question answering, document classifi-
cation and language inference. These tasks use the output of the
BERT top layer as the contextual embeddings of the input sequence,
and add one additional output layer to conduct the fine-tuning.
The pretrained BERT has been successfully applied to the natural
question answering task, which achieves state-of-the-art results
on the SQuAD benchmark [37]. Due to its superior performance,
we adopt the same BERT contextual layer in building our question
answering model.

3 AVEQA: ATTRIBUTE VALUE EXTRACTION
VIA QUESTION ANSWERING

3.1 Problem Definition
In this section, we formally define the problem of attribute value
extraction. Given product context and the attribute, our goal is to
extract corresponding attribute value from the context. For instance,
the context for the first product in Figure 1 is ‘PGM Golf Tower
Outdoor Sports Travel Mountaineer Running Comfortable Cotton
Golf Towels 5 colors Sports Entertainment for unisex’. We want to
extract ‘unisex’ from the context for attribute ‘gender’1. Formally,
we denote the context as 𝐶 = (𝑤𝑐

1, . . . ,𝑤
𝑐
𝑛). Denote the attribute

as 𝐴 = (𝑤𝑎
1 , . . . ,𝑤

𝑎
𝑚). Our model seeks the best value 𝑉 from the

context, with its begin and end indices 𝑏 and 𝑒:
𝑉 = arg max

𝑉

𝑃𝑟 ( 𝑉 | 𝐶, 𝐴)

= arg max
𝑏,𝑒

𝑃𝑟 (𝑤𝑐
𝑏
,𝑤𝑐

𝑒 | 𝐶, 𝐴) (3)

1For the sake of simplicity, we focus on single-valued attribute, i.e., there is at most
one attribute value in the context. Our work can be easily extend to multi-valued case.

In this work, we formulate the attribute value extraction task as
a question answering problem, where each attribute is treated as
a question and we seek the best answer span in the context that
corresponds to the value.

3.2 Our Multi-task Approach
As aforementioned, existing work has two main limitations - scal-
ability and generalizability. To tackle these two challenges, we
propose a novel attribute value extraction approach via question
answering using a multi-task framework. The overall model ar-
chitecture is shown in Figure 2. Essentially, our multi-task model
consists of three main components, the question answering (QA),
the distilled masked language model (DMLM) and the no-answer
(NA) classification. The question answering component aims at
finding the best answer span from the context, which answers the
question. The distilled masked language model is designed to en-
hance the model generalization ability, such that it is able to extract
values for new attributes. The no-answer classification focuses on
identifying those no-answer examples, which further improves the
model. The overall objective of our multi-task formulation is as
follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑄𝐴 + 𝛼L𝐷𝑀𝐿𝑀 + 𝛽L𝑁𝐴 (4)
where 𝛼 and 𝛽 are trade-off parameters to balance the losses among
the tasks. In the following sub-sections, we present each component
separately in detail.

3.3 Question Answering
The question answering model is composed of three layers: an
embedding layer which encodes the input tokens, a contextual layer
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that models the complex relationships among the input sequence
and an output layer that generates the final results.

3.3.1 Embedding Layer. In the embedding layer, every word in the
context and question is converted into a 𝑑-dimensional embedding
vector. This embedding is obtained by concatenating a word’s em-
bedding, a character based embedding, a positional embedding and
a segment embedding. Note that we add an additional token, i.e.,
classification (CLS) token, at the beginning of the input sequence
to represent the embedding of the whole sequence. We will provide
more details about this special token in the classification model
section. The word’s embedding and character embedding are well
studied in the literature [28]. The positional embedding is employed
to inject the order information of the sequence. In this work, we
use the absolute position of the words in the sequence [44]. The
segment embedding is used to indicate which segment the word is
from, i.e., CLS, context or question [7]. In the subsequent sections,
we will refer to embedding of a word 𝑤𝑖 as 𝑒𝑖=𝑒 (𝑤𝑖 ). Note that
different from previous models, all the embeddings are trainable in
our approach. In other words, we only initialize these embeddings
from the pretrained BERT model, and allow them to be learned
during training instead of fixing them.

3.3.2 Contextual Layer. The contextual layer computes a contextu-
alized representation for every word in the input sequence. In the
question answering task, the input sequence to the contextual layer
is the concatenation of the context and the question, as well as the
CLS token. The output contains a CLS embedding, which repre-
sent the whole sequence, and a sequence of contextual embeddings
representing the encoded context and question.

The most recent attribute value extraction model [50] employs
two separate LSTM-based contextual layers for the context and the
question respectively, followed by a cross-attention layer to join the
outputs of the two layers. Different from them,we utilize one unique
contextual encoder with self-attention mechanism developed in
BERT [7]. This contextual encoder structure allows the question
and the context to attend each other from the bottom layer to the
top layer, and has been widely adopted in recent language models.

3.3.3 Output Layer. The output layer of the question answering
model computes the probabilities for the start and end indices
of the answer span. A softmax function is applied to the output
embeddings to generate the start index. Inspired by the XLNet work
[51], we make the end index prediction depend on the start index.
Specifically, we concatenate the token embedding of the begin
index with every token embedding after it. The new concatenated
embedding is then used for finding the best end index. This begin-
end dependency modeling is similar to the usage of CRF layer in
the open tagging models [50, 54].

𝑏 = arg max
𝑖

(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑏𝐻
𝑖
𝐿))

𝑒 = arg max
𝑖≥𝑏

(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑒 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻 𝑖
𝐿, 𝐻

𝑏
𝐿 ))))

(5)

where 𝑏 and 𝑒 are the begin and end indices. 𝐻𝐿 is the embedding
from the contextual layer, and 𝐿 is the total number of sub-layers.
𝐻 𝑖
𝐿
is the contextual embedding of the 𝑖-𝑡ℎ word in the context.𝑊𝑏

and𝑊𝑒 are two output matrices that map the embeddings to the
output logits for the begin and end respectively.

3.4 Distilled Masked Language Model
One important factor of a good extractionmodel is its ability of mak-
ing accurate prediction on unseen data, which is known as model
generalization or zero-shot learning [48]. There are two types of
zero-shot problems in attribute value extraction: 1) attributes are
not seen in the training set. 2) attribute values are not seen in the
training set. The former problem usually implies the latter one.
Because if an attribute is not seen during training, its correspond-
ing values are most likely not presented either. Therefore in our
following discussion, we focus on addressing the zero-shot problem
of new attributes.

Despite the promising results achieved in previous methods,
very limited work has been focused on the zero-shot problem of
generalizing the model to new attributes, which is one of the main
targets in this work. One natural question to ask is: why is the
question answering model not able to generalize well? The reason
is that the question answering model is designed for large scale
attribute value extractions. It is possible for our model to over
memorize the training data, especially when training on very large
scale data with repeated or similar examples. The learned model is
also likely to overfit under large parameter space.

To address this problem, in this work, we introduce a novel
distilled masked language model (MLM) to improve the model gen-
eralization ability. Instead of predicting the masked word itself, our
distilled MLM is aiming at minimizing the cross entropy between
the word probability distributions generated from the learned con-
textual encoder and the pretrained BERT model, using the knowl-
edge distillation loss [23]. Intuitively, the pretrained BERT model
contains rich embedding information, which has demonstrated su-
perior performance and been used in various tasks. The distilled
MLM ensures our encoder to learn effective contextual representa-
tions for new attributes, through masking them out and enforcing
the predicted distribution to be consistent with the distribution
from the pretrained BERT. In this way, the rich contextual knowl-
edge of the new attributes is transferred from the pretrained BERT
to the extraction model, and thus boosts the generalization perfor-
mance. The knowledge distillation loss is a modified cross entropy
loss which is defined as:

L𝐷𝑀𝐿𝑀 (𝑌𝑒𝑛, 𝑌𝑝𝑟𝑒 ) = −
𝑆∑
𝑡=1

𝑦𝑡𝑒𝑛 log𝑦𝑡𝑝𝑟𝑒 (6)

𝑌 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑜 (𝐻𝑀 )) (7)
where 𝑌𝑒𝑛 and 𝑌𝑝𝑟𝑒 are the probability distributions of the masked
word generated by the contextual encoder and the pretrained BERT
respectively (Eqn.7). 𝑆 is the vocabulary size. 𝐻𝑀 is the output
embedding of the masked word.𝑊𝑜 is the output matrix which
projects the output embedding to the logits of vocabulary size. 𝑦𝑡
is the modified probability of the 𝑡-𝑡ℎ word:

𝑦𝑡 =
(𝑦𝑡 )1/𝑇∑
𝑗 (𝑦 𝑗 )1/𝑇 (8)

Hinton et al. [10] suggest setting 𝑇 > 1, which increases the weight
of smaller logit values and encourages the network to better encode
similarities among words. By introducing the distilled MLM loss,
our model essentially enforces the two probability distributions of
the masked words to be as close as possible, and thus learns better
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Attributes Train Test
All 88,479 22,005

Brand Name 9,098 2,329
Material 3,100 844
Color 812 184

Category 812 162
Table 1: Statistics of AE-pub with four selected attributes.

contextual embeddings for the new attributes. We will discuss the
impact of the distilled MLM in the experiments.

3.5 No-Answer Classification
One key property we require for the model is that it should predict
no value when the attribute value is not actually present in the
specified context. To account for this, we employ a no-answer
classifier to explicitly model such cases. As shown in Figure 2, we
first add a special classification (CLS) token to the input sequence.
This CLS token goes through the contextual layer together with all
other tokens in the context and question, and attends with them.
It can be viewed as a global embedding that represents the whole
input sequence. We then apply a binary classifier on top of the
contextual embedding of the CLS token to predict whether there is
an answer in the context for the question:

𝑦 =𝑚𝑎𝑥𝑦∈{0,1} (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑐𝑙𝑠𝐻
𝑐𝑙𝑠
𝐿 )) (9)

here 𝐻𝑐𝑙𝑠
𝐿

is the output contextual embedding of the CLS token.
𝑊𝑐𝑙𝑠 is the binary classifier.

3.6 Discussion
In this section, we provide discussion that connects our approach
with previous methods. Our multi-task formulation is composed
of three terms: the QA loss, the distilled MLM loss and the NA
loss as presented in Eqn.4. If we remove the distilled MLM and
the no-answer classifier by setting both 𝛼 and 𝛽 to 0, our model
degenerates to the standard question answering model with BERT
[7]. If we further replace the BERT contextual layer of the QA
component with the BiLSTM layer, our model is regressed to the
sequence tagging model in [50]. Moreover, if we also remove the
question (attribute) from the QAmodel, our model is degenerates to
the attribute-dependent OpenTag method [54], which is not able to
scale to large attribute set. We provide more detailed comparisons
with these methods in the experiments section.

4 EXPERIMENTAL RESULTS
4.1 Dataset
We evaluate AVEQA on a public dataset2, which is collected from
AliExpress Sports & Entertainment category [50]. We refer to this
dataset as AE-pub in our experiments. The AE-pub dataset contains
over 110k examples, i.e., product triples of (context, attribute, value),
with more than 2.7k unique attributes and 10k unique values. In
addition, there are 21.6k no-answer examples within this dataset,

2https://raw.githubusercontent.com/lanmanok/ACL19_Scaling_Up_Open_Tagging/
master/publish_data.txt

methods 𝑃 (%) 𝑅(%) 𝐹1 (%)
SUOpenTag [50] 79.85 70.57 74.92

AVEQA 86.11 83.94 85.01

Table 2: Performance comparison of all attributes on AE-
pub dataset.

where the value is not present in the context (it is represented as
‘NULL’ in the dataset). We randomly select 80% of the data, i.e.,
88,479 triples, as our training set. The rest 22,005 triples are used for
testing. In order to compare with previous sequence tagging models
which cannot scale up to huge amounts of attributes, we select a
subset of four frequent attributes (i.e., Brand Name, Material, Color
and Category) and make comparisons on them. Table 1 shows the
statistics and distributions of attributes in AE-pub dataset.

To further examine the generalization ability of our model, we
divide the AE-pub dataset into another train and test split by se-
lecting five attributes with relatively low occurrences: Frame Color,
Lenses Color, Shell Material, Wheel Material and Product Type.
All data triples from these five attributes are put into the test set,
while the remaining triples are used for training. In other words,
none of these attributes are seen during training. We refer to this
data split as AE-zero-shot, as it is designed for evaluating zero-shot
extraction.

4.2 Implementation Details
Our models are implemented with Tensorflow and Keras, and each
one is trained on TPUs in pod configuration.We initialize our model
with 768-dimension pretrained public BERT. The number of layers
for the contextual encoder is set to 12. For the multi-head attention
layer, the number of heads is set to 12, with 128 maximum sequence
length. The number of hidden units in the FFN is set to 3072. The
hyper-parameter 𝑇 in the distilled MLM is set to 2.0.

During training, we use the gradient descent algorithm with
Adam [17] optimizer. The initial learning rate is set to 1𝑒−5. The
dropout probability for the attention layer is set to 0.1. The hyper-
parameters 𝛼 is set to 0.5, with 𝛽 also set to 0.5. We use two different
batch sizes, 2048 and 32, on AE-pub and AE-zero-shot datasets
respectively. The total number of training steps is set to 200k for
all our experiments.

4.3 Evaluation Metrics
We use precision, recall and 𝐹1 score as evaluation metrics denoted
as P, R and 𝐹1. We follow Exact Match [37] criteria to compute the
scores. We repeat each experiment 10 times and report the metrics
based on the average over these runs.

4.4 Baselines
We compare our models with four state-of-the-art baselines on at-
tribute value extraction, BiLSTM [11], BiLSTM-CRF [13], OpenTag
[54] and SUOpenTag [50].

• BiLSTM [11] uses the word embedding from pretrained
BERT to represent each word in the context, then applies
BiLSTM to produce the contextual embedding.
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Brand Name Material Color Category
methods 𝑃 (%) 𝑅(%) 𝐹1 (%) 𝑃 (%) 𝑅(%) 𝐹1 (%) 𝑃 (%) 𝑅(%) 𝐹1 (%) 𝑃 (%) 𝑅(%) 𝐹1 (%)

BiLSTM [11] 90.21 90.67 90.44 72.12 62.56 67.00 52.13 48.65 50.33 60.84 50.02 54.89
BiLSTM-CRF [13] 90.45 90.97 90.71 72.40 63.45 67.63 52.68 48.12 50.30 60.48 50.65 55.13
OpenTag [54] 90.32 91.10 90.71 72.56 64.78 68.45 52.83 48.45 50.54 62.17 50.79 55.91

SUOpenTag [50] 91.19 91.57 91.38 74.07 63.86 68.59 57.58 48.72 52.78 62.03 51.58 56.32
AVEQA 96.41 97.00 96.70 86.34 87.20 86.76 76.47 77.68 77.06 84.43 85.70 85.05

Table 3: Performance comparison of four selected attributes on AE-pub dataset.

Attributes Models 𝑃 (%) 𝑅(%) 𝐹1 (%)

Frame Color SUOpenTag 63.16 48.00 54.55
AVEQA 86.54 48.82 62.20

Lenses Color SUOpenTag 64.29 40.91 50.00
AVEQA 88.42 45.91 59.94

Shell Material SUOpenTag 54.05 44.44 48.78
AVEQA 73.96 65.76 69.52

Wheel Material SUOpenTag 70.59 37.50 48.98
AVEQA 70.69 65.56 67.96

Product Type SUOpenTag 64.86 43.29 51.92
AVEQA 91.79 70.69 79.82

Table 4: Zero-shot extraction results: performance compari-
son on five new attributes.

• BiLSTM-CRF [13] uses a CRF layer on top of the BiLSTM
layer to model the association of predicted tags, which is con-
sidered to be the pioneer and the state-of-the-art sequence
tagging model for NER.

• OpenTag [54] adds a self-attention mechanism between the
BiLSTM layer and the CRF layer.

• SUOpenTag (Scaling Up Open Tag) [50] uses one BiLSTM
to produce the contextual word embedding for the context,
and another BiLSTM to produce a single embedding for
the attribute. A cross attention layer is applied between the
context word embedding and the attribute embedding to join
the outputs, followed by a CRF layer.

BiLSTM, BiLSTM-CRF and OpenTag are all attribute-dependent
methods, which build one separate model for each attribute and
thus are not able to scale up. SUOpenTag is designed to extend the
OpenTag to deal with large set of attributes.

4.5 Results and Discussion
We conduct four sets of experiments on both AE-pub and AE-zero-
shot to evaluate the performance of the proposed AVEQA.

4.5.1 Performance Comparison. We first compare our model with
four state-of-the-art attribute value extraction methods as men-
tioned in Section 4.2. Note that the BiLSTM, BiLSTM-CRF and
OpenTag methods are not able to scale up to all attributes on AE-
pub. Therefore, we only conduct comparison with them on the
four frequent attributes. The evaluation results on AE-pub are re-
ported in Table 2 and 3. From these comparison results, we can see
that AVEQA outperforms the other compared methods with large

margins. For example, the 𝐹1 metric of AVEQA increases by 13.5%
compared with SUOpenTag over all attributes. It increases by 26.7%
compared with OpenTag on the Material attribute. There are two
main reasons: first, our model employs the attention mechanism
with stacked layers in contextual encoder, which allows the context
and the question to attend each other from the bottom layer to
the top layer, resulting in better contextual embeddings; second,
our model allows all the embeddings, i.e., the character embedding,
word embedding, position embedding and segment embedding,
to be learned during training, while the baseline methods fix all
the embeddings after initialization. In this way, our model is able
to learn more effective embeddings that are more suitable for the
extraction task.

We further conduct zero-shot extraction experiment to evaluate
the generalization ability of our model. We compare with SUOpen-
Tag method on the AE-zero-shot dataset, as SUOpenTag is the only
baseline that can work on new attributes. The zero-shot extrac-
tion results are reported in Table 4. It can be seen that our model
achieves much better results compared to SUOpenTag on these
five new attributes. The reason is that the distilled MLM effectively
transfers knowledge about the new attributes from the pretrained
model, which benefits the QAmodel on zero-shot extractions. More-
over, the no-answer classifier is also effective in predicting those
no-answer examples which further boost the performance. We pro-
vide more details later on the effect of both distilled MLM and
no-answer classifier.

4.5.2 Impact of Multi-task Learning. To evaluate the effectiveness
of different components in the multi-task approach, we conduct
a set of experiments by removing each component individually
from our model. In particular, there are three components, question
answering, distilled MLM and no-answer classifier, in our formula-
tion Eqn.4. We train a model by setting both 𝛼 and 𝛽 to 0, which
is equivalent to removing both the distilled MLM and no-answer
classification from the model, and only keep the original question
answering part. We name this model QA for later reference. Sim-
ilarly, by setting only one of 𝛼 and 𝛽 to 0, we train another two
models, namely QA+CLS and QA+MLM.

The 𝐹1 results of QA, QA+MLM, QA+CLS and AVEQA on both
AE-pub and AE-zero-shot are shown in Figure 3. It can be observed
from the figure that adding the distilled MLM boosts the perfor-
mance significantly (e.g., by 5.9%) compared to the basic QA model
on zero-shot extractions, while its 𝐹1 score decreases a little bit
from 85.08 to 84.97 on AE-pub dataset. This behavior is consistent
with our expectation, as the distilled MLM is specifically designed
for better model generalization but not for improving the model
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Figure 3: 𝐹1 (%) results of QA, QA+MLM, QA+CLS andAVEQA
on both AE-pub and AE-zero-shot.

Figure 4: Distilled MLM losses of QA+CLS and AVEQA on
AE-zero-shot.

on existing attributes. However, the QA+MLM model is still able
to generate comparable results with the QA model on AE-pub. An-
other observation is that the no-answer classifier also benefits the
model, especially on AE-zero-shot data. Our hypothesis is that no-
answer classifier can work effectively on those no-answer examples.
Finally, it is clear from these experimental results that the AVEQA
model, which incorporates all three components, achieves the best
results on zero-shot learning.

To further examine the behavior of the distilled MLM, we plot
the distilled MLM loss of QA+CLS and AVEQA on AE-zero-shot
in Figure 4. It is clear that the distilled MLM loss for QA+CLS
continuously goes up during training, while the loss for AVEQA
is much lower and relatively stable. This phenomenon illustrates
that the AVEQA model preserves the embedding knowledge in
the pretrained BERT, and thus is able to generalize well on new
attributes. In contrast, without the distilled MLM component, the
QA+CLS model gradually forgets the knowledge in the pretrained
BERT, and overfits to the training data.

4.5.3 Impact of Training Batch Size and Learning Rate. In this sec-
tion, we conduct experiments to evaluate the model performance
with different training batch size and learning rate. We first vary the
training batch size from {32, 256, 2048} by fixing the learning rate to
1𝑒−6. The 𝐹1 scores with different batch sizes on both datasets are
reported in Figure 5. It can be seen from the figure that the batch size
does not affect the model performance on AE-pub. However, the
model converges faster with larger batch size. We also observe that

AE-pub AE-zero-shot

Figure 5: Impact of different training batch size on both AE-
pub and AE-zero-shot.

AE-zero-shotAE-pub

Figure 6: Impact of different learning rate on both AE-pub
and AE-zero-shot.

the model performance decreases with large batch size on AE-zero-
shot. This observation is consistent with previous work on model
generalization [12, 16], which conclude that large batch training
increases the generalization gap. Another interesting observation
is that the zero-shot model performance with 2048 training batch
drops after 20k training steps. Our explanation is that our model is
initialized with pretrained BERT, which is able to generalize to new
attributes. As the large batch training goes on, our model overfits
to the training set which leads to the performance decay.

To explore the effect of different learning rates, we vary the
learning rate from {1𝑒−6, 3𝑒−6, 10𝑒−6} by fixing the training batch
size to 256. We report the 𝐹1 scores with different learning rates
on both datasets in Figure 6. It is clear from the figure that the
performance of our model is relatively stable with different learning
rates on AE-pub, and larger learning rate leads to faster model
convergence. On the zero-shot extraction, we observe that the 𝐹1
score of the model with larger learning rate decays faster than the
smaller ones.

4.5.4 Parameter Sensitivity. To evaluate the robustness of the pro-
posed approach, we conduct parameter sensitivity experiments
with respect to 𝛼 and 𝛽 on AE-zero-shot (𝛼 and 𝛽 are not sensitive
on AE-pub as shown in Figure 3). In each experiment, we tune only
one parameter from {0, 0.1, 0.5, 1, 5, 10}, while fixing the other pa-
rameter to the value as described in our implementation details. We
report the 𝐹1 results in Figure 7. It is clear from these experimental
results that the performance of AVEQA is relatively stable with re-
spect to 𝛼 and 𝛽 . From these experiments we found that our model
achieves the best scores when 𝛼 = 0.5 and 𝛽 = 0.5. We also observe
similar results of the proposed method in terms of precision and
recall. But due to the limit of space, they are not presented here.
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Figure 7: Parameter sensitivity for 𝛼 and 𝛽 on AE-zero-shot.

5 RELATEDWORK
This section reviews the related work in three research areas: at-
tribute value extraction, question answering and relation learning.

5.1 Attribute Value Extraction
Early works on attribute value extraction use rule-based extraction
techniques [9, 30, 43] which use domain-specific seed dictionary or
vocabulary to identify key phrases and attributes. Ghani et al. [8]
predefine a set of product attributes to extract the corresponding
attributes values. Wong et al. [46] extract attribute-value pairs from
the semi-structured text, such as tables and list. Shinzato and Sekine
[40] propose an unsupervised method to extract attribute values
from product description, which filters out sentences with prob-
lematic annotations based on statistical measures and morpheme
patterns. Several rule-based and linguistic approaches [4, 27] lever-
age syntactic structure of sentences to extract dependency relations,
which do not work well on irregular structures like titles. An NER
system was proposed in [35] for extracting product attributes and
values. In this work, supervised NER and bootstrapping technology
are combined to expand the seed dictionary of attribute values. A
similar NER method was built [29] to tag brands in product titles
leveraging existing brand values. However, these rule-base and
domain-specific methods suffer from limited coverage and closed
world assumptions.

With the development of deep neural network, various neural
network methods have been proposed and applied in sequence
tagging successfully. Ling and Weld [24] apply a multi-label multi-
class Perceptron classifier for NER. A linear chain CRF is used
to segment text with BIO tagging. Collobert et al. [6] combine
deep FFNN and word embedding [28] to explore many NLP tasks
including POS tagging, chunking and NER. Huang et al. [13] is
the first to apply BiLSTM-CRF model to sequence tagging task.
But it employs heavy feature engineering to extract character-level
features. Lample et al. [21] utilize BiLSTM to model both word-level
and character-level information rather than hand-crafted features,
thus construct end-to-end BiLSTM-CRFmodel for sequence tagging
task. Chiu and Nichols [5] model character level information using
convolutional neural network (CNN), which achieves competitive
performance for two sequence tagging tasks at that time. Ma and
Hovy [26] propose an end to end LSTM-CNNs-CRF model.

Recently, several approaches employ sequence tagging model for
attribute value extraction. Kozareva et al. [19] adopt BiLSTM-CRF
model to tag several product attributes from search queries with
hand-crafted features. Furthermore, Zheng et al. [54] develop an
end-to-end tagging model utilizing BiLSTM, CRF, and attention
mechanism without any dictionary. Most recently, Xu et al. [50]
adopt only one global set of BIO tags for any attributes to scale up
the model, which explicitly models the semantic representations
for attribute and product title. However, most of these methods
treat each attribute independently and build one separate model
for each of them, which are not suitable for large scale attribute
systems. Moreover, model generalization is not considered, which
is important in zero-shot extraction.

5.2 Question Answering
Our work is inspired by the recent advance in question answer-
ing (QA) [14, 18]. Question answering has been a challenging task
in reading comprehension [1] and natural language understand-
ing. We focus on the QA problem of selecting the span of text
from a given context that answers a question. The initial question
answering systems are based on heuristics [39] and statistical ap-
proaches [15], which are domain-specific and not able to generalize
to new questions and domains. With the recent development of
deep learning, neural network based methods [31, 42, 49] establish
a new paradise for question answering. Rajpurkar et al. [37] cre-
ate a standard question answering dataset, SQuAD, for evaluating
different QA methods. Most recently, Devlin et al. [7] propose a
pre-training BERT approach using bi-directional encoder represen-
tations from transformers, which achieves state-of-the-art results
in natural question answering task. A complete review of question
answering research can be found in [14, 18].

5.3 Relation Learning
Relation learning (or extraction) [33, 38, 41, 45, 52] refers to the task
of extracting relational tuples and putting them in a knowledge
base. The tuple usually corresponds to a subject (usually an entity
such as a person), a predicate (the relation itself such as ‘place of
birth’) and an object (usually another entity such as the location
where the person is born). Attribute value extraction can be thought
of as the problem where the subject is known (the product), and
given the attribute (i.e., the relation) extract the value. However,
relation extraction has traditionally focused on extracting relations
from sentences relying on entity linking systems to identify the
subject/object and building models to learn the predicates in a sen-
tence [3, 22]. Whereas in attribute value extraction [34, 36], usually
the predicates (i.e, the attribute names) rarely occur in the product
title or the description, and entity linking is very hard because the
domain of all entities/values is unknown. Recently, Lockard et al.
[25] propose to generate training labels by aligning an existing
knowledge base with a semi-structured web page. A classifier is
trained based on the labels to predict new relation instances. Wu
et al. [47] design a machine-learning-based knowledge base con-
struction system to extract relations conveyed jointly via textual,
structural, tabular, and visual expressions. For a comprehensive
review on relation extraction, please refer to [32].
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6 CONCLUSION
In this work, we present a novel approach for attribute value ex-
traction via question answering in a multi-task learning framework.
We build a question answering model which treats each attribute
as a question and finds the best answer span corresponding to the
attribute value in the product context. A unique BERT contextual
encoder is adopted and shared across all attributes to encode both
the context and the question, which makes the model scalable. A
distilled masked languagemodel is introduced to improve themodel
generalization ability. In addition, we employ a no-answer classifier
to explicitly handle the missing value cases. The three components
are then integrated into a unified multi-task framework. An exten-
sive set of experiments has been conducted on a public dataset. The
experimental results demonstrate both the effectiveness and the
robustness of the proposed approach, which outperforms several
state-of-the-art methods with large margin. There are several pos-
sibilities to explore in the future research. For example, we plan to
extend our approach to model long text sequence or the whole web
page. We also plan to use active learning to improve the zero-shot
performance even more.
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