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ABSTRACT

Existing work on search result diversification typically falls into
the “next document” paradigm, that is, selecting the next document
based on the ones already chosen. A sequential process of select-
ing documents one-by-one is naturally modeled in learning-based
approaches. However, such a process makes the learning difficult
because there are an exponential number of ranking lists to consider.
Sampling is usually used to reduce the computational complexity
but this makes the learning less effective. In this paper, we pro-
pose a soft version of the “next document” paradigm in which we
associate each document with an approximate rank, and thus the
subtopics covered prior to a document can also be estimated. We
show that we can derive differentiable diversification-aware losses,
which are smooth approximation of diversity metrics like -NDCG,
based on these estimates. We further propose to optimize the losses
in the learning-to-rank setting using neural distributed representa-
tions of queries and documents. Experiments are conducted on the
public benchmark TREC datasets. By comparing with an extensive
list of baseline methods, we show that our Diversification-Aware
LEarning-TO-Rank (DALETOR) approaches outperform them by
a large margin, while being much simpler during learning and
inference.
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1 INTRODUCTION

Search result diversification is critical for the utility of search en-
gines due to the diverse information needs of users and the ambi-
guity of short queries. For example, a query about “Eiffel Tower”
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may seek for its history information or its visiting address. A list
of results covering different subtopics is more desired in this case.
Indeed, diversification has been a long-standing research topic in
the Information Retrieval community, with the seminal work of
Maximal Marginal Relevance (MMR) dating back to year 1998 [10].

Since users often do not examine all the returned results thor-
oughly but only look at a few top ones, the goal of search result
diversification is to present relevant but diverse results at the top
of a ranked list. These notions are taken into account by commonly
used diversity evaluation metrics, including a-NDCG [13], ERR-
1A [11] (Intent-Aware metrics [1]), and S-recall [45]. All of them
consider both the ranks of relevant documents and how well the
subtopics of a given query are covered by the top ranked docu-
ments. The contribution of a subtopic in a lower-ranked document
is down-weighted if it has been covered well by top-ranked ones.

While traditional methods for diversification are mainly manu-
ally crafted [10, 14, 34], recent research in this area shifts to super-
vised learning methods [18, 26, 35, 40, 42, 44, 46] and shows superior
performance with respect to the diversity evaluation metrics. How-
ever, different from the standard learning-to-rank setting [27], the
design of learning approaches for diversification is non-trivial due
to the inter-dependency among documents. Almost all of them fall
into the so-called “next document” paradigm, that is, selecting the
next document among the remaining ones to maximize an objective
with respect to the ones already chosen. Such a paradigm is intu-
itively appealing and fits the diversification task naturally. However,
the main challenge is that learning is inherently less effective be-
cause there is an exponentially large number of ranking lists to
consider. Different methods are proposed to alleviate this problem.
For example, R-LTR [46] and SVM-DIV [44] mainly focus on the
ideal diversified ranking lists. Reinforcement learning (RL) based
approaches [18, 42] try to maximize the expected rewards over sam-
pled lists from a distribution. Recently proposed PAMM [40] and
DVGAN [26] maximize the margin between sampled positive and
negative lists for training and show better performance. However,
the huge number of candidates poses challenges for high-quality
sampling [26].

The main difficulty of the existing learning-based approaches
lies in the hard setting in the “next document” paradigm - the
next document is evaluated based on the materialized previously
selected documents. The key idea of this paper is to use a soft version
where we do not need to materialize ranking lists. Specifically, we
compute a differentiable approximate rank and associate it with
each document. Given such approximate ranks, we can estimate the
subtopic coverage of the documents prior to each document, and
then use these estimates for diversification. In particular, we show
that we can translate a diversity evaluation metric (e.g., a-NDCG)
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Table 1: An example illustrating how distributed represen-
tation helps optimize diversification-aware ranking losses.
dq dz and d3 are relevant to subtopic #1 in fi. dy is relevant to
subtopic #2 in f;. The third dimension f3 is a diversity-useful
dimension and the last, f;, is an independent dimension.
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into a differentiable loss function based on these estimates. Such a
loss function can be trained effectively by gradient descent in an
end-to-end fashion.

With such a diversification-aware loss function, we formulate
our problem in a learning-to-rank setting where a ranking func-
tion is learned to score and sort documents. To make the learning
more effective, instead of using aggregated score features like BM25
or TF-IDF (commonly used in the traditional learning-to-rank set-
ting [27]), we resort to the distributed representations of queries
and documents, where subtopic-relevant dimensions and diversity-
useful dimensions can be learned.

A simple example in Table 1 illustrates this. Suppose there are
2 subtopics encoded in a 4-dimension latent space. Without loss
of generality, we define the coordinate with the first two axes fi
and f, aligning with the 2 subtopic vectors. It is then easy to pick
out the query and subtopic-relevant documents by looking at the
alignments in these dimensions. Suppose we find 4 relevant docu-
ments: dq, da, and d3 match subtopic #1; d4 matches subtopic #2. An
ideal diversified ranking must have d4 ranked at either the first or
the second position, which can be achieved by assigning different
scores to di, d, and d3 in the “score-and-sort” setting. However, it
is not feasible to distinguish di, da, and d3 by just looking at the
alignments with the subtopics. In such case, the remaining dimen-
sions of distributed representations become useful in generating the
diversified ranking. In this example, suppose the four documents
distributed non-trivially along axis f3, a diversification-aware loss
function can facilitate learning such distributed representations
and output a list [d1, dy, d2, d3] by favoring a ranking function such
as fi + 1.5f2 + f3, while a standard loss function may not be able to
pick up f3, as it has no effect on document relevance.

Note that once the ranking function has been learned, our method
does not require the subtopics of a query to be given during infer-
ence and thus belongs to the implicit category. This is different from
the explicit approaches (e.g., DVGAN [26] or DSSA [23]), which as-
sume the subtopics to be available at inference time — not a realistic
assumption for most search engines.

One obvious problem of the score-and-sort approach is the dupli-
cate documents where two documents have the exact same feature
representation and thus would always have the same scores. The
benchmark dataset used in our experiments does have many doc-
uments covering the same subtopics but they are not duplicates.
Without any pre-processing, our methods perform very well on this
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dataset, confirming that the diversification-aware loss can effec-
tively leverage the difference among documents that are relevant to
the same subtopics and yield a diversification-aware ranking func-
tion. In reality, this problem can be easily fixed by a pre-processing
step where we make sure that all documents for a query have a
minimum difference (e.g., using a near-deduplication technique [6]).

In summary, we make the following contributions in this paper:

e We propose a novel method that can translate a diversity
evaluation metric to a differentiable diversification-aware
loss.

e We show that such a loss function can be effective in learn-
ing with the distributed representation using deep neural
networks that are efficient and easily extendable.

e We conduct experiments on a public benchmark dataset and
show that our proposed method can significantly outperform
strong recent baselines.

The rest of the paper is organized as follows. We review related
work in Section 2. Our diversification-aware loss is described in
Section 3 and a neural network based learning approach is described
in Section 4. In Section 5, we give a theoretical analysis about
our diversification-aware loss and distributed representation. We
present our experiments in Section 6, our discussion in Section 7
and conclude this paper in Section 8.

2 RELATED WORK
2.1 Search Result Diversification

Diversification approaches can be broadly classified into two ap-
proaches: implicit and explicit. Implicit approaches promote novel
documents compared to other documents based on inter-document
similarity and do not require subtopics given during the evalua-
tion time. Explicit approaches promote documents that improve
coverage over specified subtopics.

Most implicit approaches are inspired by the seminal work of
Maximal Marginal Relevance (MMR) method [10], which iteratively
picks relevant documents that are novel to the document set so
far, based on user defined functions for inter-document similar-
ity. Supervised machine learning methods for implicit diversifica-
tion [40, 41, 44, 46] learn a scoring function that optimize diversifi-
cation using remote proxies of evaluation metrics. SVM-DIV [44]
utilizes structural SVMs for scoring, whereas R-LTR [46] proposes
a relational learning to rank framework, to model document rela-
tions of an ideally diversified ranking. Based on R-LTR, PAMM [40]
improves the scoring function by considering difference between
positive and negative rankings. NTN-DIV [41] uses a neural ten-
sor network to learn document similarity automatically instead
of using handcrafted features or functions. Reinforcement learn-
ing methods have been proposed to improve the greedy nature of
sequential document selection: MDP-DIV [42] uses Markov Deci-
sion Processed (MDP) to optimize expected reward over sampled
lists; M?DIV improves over MDP using Recurrent Neural Networks
(RNNSs) to model the document sequence and Monte Carlo Tree
Search (MCTS). An alternate approach tries to directly optimize
user’s utility instead of any proxies of diversity. Determinantal
Point Processes [39] and Multi-Armed Bandits [36] are used to
generate diverse rankings to optimize click-through rate.
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Explicit diversification approaches, e.g., PM-2 [14] or xQuAD [34]
improve the coverage over subtopics relevant to a query based on
the sub-queries given during evaluation. Most recent methods in
this category employ various neural architectures. Diverse Search
with Subtopic Attention (DSSA) [23] uses RNNs with attention
mechanism for a sequential procedure to greedily select relevant
documents which are diverse to current selected set. As a follow-up
to DSSA, DVGAN [26] uses Generative Adversarial Networks to
frame the diversification problem as a minimax game between a
generator and a discriminator, where the generator models docu-
ment similarity and the discriminator uses subtopic information,
and DESA [32] adds self-attention encoder and decoder to replace
RNNSs to model interactions of all documents in the list.

While our proposed method shares some commonalities with
the above methods in terms of neural architecture (e.g., similarly to
DESA [32] we use self-attention), there are two crucial differences.
First, we estimate latent subtopics from the distributed representa-
tion of the query, rather than requiring providing them explicitly.
Second, our end-to-end learning-to-rank framework directly opti-
mizes a smooth approximation of the diversity metrics.

2.2 Learning To Rank

Learning to rank has traditionally focused [27, 33] on relevance. A
scoring function per query-document pair (referred to as univariate
scoring [3]) is learned to minimize the loss using learning algo-
rithms such as Gradient Boosted Decision Trees (GBDT) [24] and
neural networks [20, 29]. For learning the univariate scoring func-
tion, Deep Structured Semantic Matching models (DSSM) [22] learn
a low dimensional embedding for queries and documents and use a
dot-product as the score. In the domain of neural network scoring
functions, multivariate scoring functions which capture cross docu-
ment interactions as listwise context have been proposed in such as
Deep Listwise Context Model [2], Groupwise Scoring Functions [3],
Document Interaction Network [30], and SetRank [28]. We also
leverage deep listwise context via self-attention, but our goal is
diversify results, but not just on improving relevance as in existing
learning to rank work.

2.3 Approximation of Ranking Metrics

Neural networks are amenable for end-to-end learning to directly
optimize ranking metrics [7, 8] by creating a differentiable approx-
imation. ApproxNDCG [8] revisits the idea proposed in [31] of
replacing indicator functions in rank computation with sigmoid
functions for a differentiable surrogate. Sampling scores from Gum-
bel distribution to compute the expectation of the approximated
metric (over induced permutations) is shown to gain additional
robustness [7, 19]. Based on these, we introduce differentiable ap-
proximations of diversity evaluation metrics for the first time.
Another common technique to make differentiable approxima-
tions of ranking metrics is LambdaRank [9, 16, 38], which uses the
metric delta when two documents are swapped in the loss. Com-
pared to the approximation techniques above, it is nontrivial to
apply LambdaRank to non-additive diversification metrics. A re-
cent work by Yigit-Sert et al. [43] treats diversification as a fusion
task of rankings obtained by sorting the documents with respect
to individual subtopics. The LambdaRank is used as the standard
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LTR to obtain the ranking for each subtopic, but not to optimize
diversification metrics directly.

3 DIVERSIFICATION-AWARE LOSSES

3.1 Diversity Evaluation Metrics

To introduce our differentiable losses that are close approxima-
tions of the actual diversity evaluation metrics, we first review two
commonly used diversity evaluation metrics: «-NDCG and ERR-IA.

3.1.1  a-NDCG. Consider n documents associated with a query
and each document may cover 0 to m subtopics, which is indicated
by subtopic labels y;;: y;; = 1 if document i covers subtopic [ and
y;; = 0 otherwise. The « discounted cumulative gain (¢-DCG) [13]
is then defined as,

a-DCG = Zn: i yur(1 = @)™ 1)

P 0g2(1+rl)

where « is a parameter between 0 and 1 quantifying the probability
a reader got the information about a given subtopic from a relevant
document, r; is the rank of the document i, and c;; is the number of
times the subtopic / being covered by documents prior to rank r;:

D i @)
Jirj<r;
We can normalize this measure into the range [0, 1] by dividing
the optimal a-DCG given the document list:
a-DCG

ANDCG = 2252 3
¢ #-DCGopt ®)

a-NDCG@k are metrics commonly used, which are obtained by
summing over only the top k ranked documents in the list.

3.1.2  ERR-IA. For the same setting as above, the ERR-IA [12] is
defined as

1 zyﬂ -1 | 2% -1
— . (4
~ ]_[ -—m) | S @

max — 1 this definition can be

easily rewritten in terms of rank r; and subtopic coverage cy;,

For binary labels y;; = 0 or 1 and y

nogodny vil
_ _ _ 12
ERR-IA = Z - > e )
i=1 =1
In practice, ERR-IA is further normalized by a constant }.7_; i2‘

Similar to a-NDCG@k, ERR-IA@k are commonly used metrics
with a summation over the top k documents for both ERR-IA and
the normalization factor.

3.2 Differentiable Approximate Losses

Inboth a-DCG and ERR-IA metrics, r; and cj; are ranking-dependent.
These make them non-differentiable. The first contribution of this

paper is a smooth approximation of the diversity metrics through

soft versions of the rank r; and subtopic coverage c;;. This is achieved
by re-expressing them using the scores assigned to each document.
In the following, we use a-DCG as an example. All the derivations

can be applied to the ERR-IA metric without any difficulty.
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Let s; be the score for document i, r; and cj; can then be formu-

lated as:
ri=1+ ZI[SJ'>SI':
J

Cli = Z yleSj>Si’
J

where I is the indicator function. The indicator function is not
differentiable, but can be approximated by the sigmoid function

1
1+exp(—x/T)

(6)

sigmoid(x) =

where T is a positive smoothness parameter. Applying this approx-
imation, to the explicit formulations of rank and subtopic coverage
in Eq.(6), we get the differentiable smooth approximations to rank
r; and subtopic coverage c;; with a single parameter T.

Sj—Si 1 1
R1—1+Zslgm01d(j 1)25"'2#
J#i 1+exp(’ ])

-5 i .
E Yjr - 51gm01d( ) D I

Si—s; 2
]#l ] 1+€Xp( )

The approximations are strictly equal but not differentiable as T —
0, and the larger is the parameter T, the more smooth are the
differentiable approximations. These soft versions of ranks and
subtopic coverage become the estimates to capture the soft version
of next document.

By inserting these approximations to the a-DCG metric defini-
tion in Eq.(1), we then obtain a directly differentiable diversification-
aware a-DCG loss,

(1 - ot)clt

Lopcec({s?}) = log,(1+RY)’
082

®

P

qeQ i=1 [=1

where we add back superscript g to define the loss over a set of
queries Q. Ly NpcG can be similarly derived with a constant nor-
malization weight for each query.

Finally, another useful variation to this diversity ranking loss is
to add a stochastic treatment [7].

Loumbel-a-pea({s] ) = Eg[Lanec ({B(s] +g0D)]. (9)

where parameter f is a noise-level parameter and Gumbel noise g;
is sampled from Gumbel distribution g; = — log(—log(U;)) with U;
uniformly distributed in [0, 1].

4 NEURAL LEARNING

Now that we formulated the diversification-aware loss, we next
describe how to leverage the neural networks to optimize this loss
in the learning-to-rank setting.

4.1 Distributed Representation

Instead of the heuristic aggregated ranking features, our approach
relies on distributed representations of the text-based query g and
candidate document list {d; }, which can be generated by a trainable
neural encoder. Popular choices are BERT [15] or doc2vec [25].
Essentially, they encode the text-based queries and documents with
various lengths into dense normalized vectors e4 € RE and e; € RE
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of a fixed embedding dimension E, so that one can determine the
similarity of different documents (and queries) in this latent space.

The latent space allows us to apply recent neural interaction
methods to better capture the relationship between query-document
pairs. In this work, we use a simple algorithm, latent cross [5],
which can effectively generate high-order interaction features: for
each pair of query and document representations e4 and e;, we
define a query-document cross feature ¢; € RE by an element-wise
multiplication,

ci=ejoeq. (10)

The representation of each query can be thought as a mix of the
subtopics and the element-wise product between a query and a
document can then be easily de-mixed to compute the matching
between subtopics and the document.

Note that the latent representations for query and document can
be extracted from pre-trained models, or jointly tuned with the
ranker end-to-end in our neural framework.

4.2 Listwise Context Embedding

Intuitively, information from the entire document list is helpful for
the diversification task. Thus, we enrich the distributed representa-
tion of a document by considering representations of the entire list
based on pairwise document similarity. Specifically, we incorpo-
rate into our framework the Document Interaction Network (DIN)
proposed in [30], a similar idea also implemented in [32]. Note that
while we use this to enhance our scoring function, the objective
of this work is to improve diversification of ranking, whereas [30]
focuses on improving ranking measures.

DIN generates an embedding of the candidate list, a;, for each
document i, using the multi-head self-attention (MHSA) mech-
anism, introduced in Transformers [37]. DIN uses pairwise dot-
product attention to capture document similarity between doc-
ument i and every document in the list. For the multi-head self-
attention mechanism, we concatenate the features for all documents
in the list to input D € R™K where k is the feature dimension
corresponding to one document. We project D into a query! matrix
Q= DW2, a key matrix K = DWX | and a value matrix V.= DWV
with trainable projection matrices WQ, WK and WV e kaz,
where z is the attention head size. Then a self-attention (SA) head
computes the weighted sum of the transformed values V as,

SA(D) = Softmax(S(D))V, (11)

KT

7

For each layer, the results from the H heads are concatenated to
form the output of multi-head self-attention by

MHSA(D) = concatpe[g] [SA (D) Wout + bout. (12)

where similarity matrix between Q and K is defined as S(D) =

where Wout € RFZ%Z and boy € R™Z are trainable parameters. To
compute the listwise context embedding, we apply L > 1 layers
of multi-head self-attention over the input documents D. Similar
to Transformer [37], we also apply residual connections [21] and
layer normalization [4] to each layer. We augment the features of
the query-document scoring function with the listwise context em-
bedding from the final output of the L-th self-attention layer. Since
this embedding contains information from the whole candidate

!Please note that this query is different from the search query.
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Figure 1: An illustration of the diversification-aware learning to rank (DALETOR) architecture. The inputs {eq, ej,cj,a;} on the
right are corresponding outputs from the left. FC stands for fully-connected layer, BN stands for batch normalization and

ReLU stands for the nonlinear activation.

list, it serves as complementary features to distinguish documents
covering the same subtopics.

4.3 Architecture

Figure 1 summarizes our end-to-end framework of Diversification-
Aware LEarning TO Rank (DALETOR). From a text-based query
and candidate document list, we first obtain their distributed rep-
resentations, e;, with a trainable document encoder. In the case
when the latent cross (in the blue box) is applied, we generate the
query-document cross representations ¢; by an element-wise mul-
tiplication of query and document representations. If DIN (in the
purple box) is incorporated, we pass all representations from query
ey, documents e;, and query-document cross ¢; (when applicable)
to a self-attention layer to get the listwise context representation
a; for each document. Finally, all generated representations, query
ey, document e;, latent cross c¢;, and listwise context embedding a;,
are concatenated and passed through several full connected layers
to compute the final ranking score for each document associated
with the query. The output scores are then fed into a diversification-
aware loss during training and used for sorting during inference.
For a univariate neural scorer s(.), the scoring function for the full
DALETOR architecture is as follows:

a; = DIN;({concat(eg, ej,c;j)})

SDALETOR (¢; {di}) = {s(concat(eq, €;,ci,a;))}.

5 A THEORETICAL ANALYSIS

In this section, we elaborate in-depth how diversification loss and
distributed representation work to output a diversified ranking list.

(13)

5.1 Relevance and Diversity in the Differential
a-DCG Loss

As the a-DCG loss captures both the relevance through rank dis-
count 1/log, (1 + R) and the diversity through coverage discount

(1 — a)€, optimizing a-DCG loss trains the model to capture both
sides of diversified ranking.

To show that, consider two documents 0 and 1 with close but
different initial scores sy ~ s1, while scores of all other documents
are fairly far from these two. We want to ask how this difference
ds = sp — s1 changes over the training course, especially, the sign of

d(s;t(t) and the sign of the coefficient if dos(t) 4 proportional to Js.
Scores tend to go downward along the gradient,
2]
si(t+1) —s;(t) o< ——L.
s
As a result, the relative score changes as
dds(t) oL oL
——= o« ds(t+1) = Os(t) « — — —.
dt o ds(t+1) s()oc8sl asg

For small score difference |ds| < T, rewriting so and s in ds and

§= SOszSl ass) =5+ % and s; =5 — %, we can expand around §,

dt as1 9so

dds(t) N (aL aL)
as1 330

50,51=5

+0(8s%). (14)

50,51=S

8s (2L d*L *L
-2 =+=-2
2 asg asf 050051

So the gradients 9L /s and the hessians 82.£/ds? are important for
this analysis. We compute the explicit expressions of gradients and
hessians for a-DCG loss and softmax loss (not shown in the main
text) and keep the dominant order in analysis below.

To show the a-DCG loss promotes the relevant documents, we
consider two documents: document 0 is not relevant to any of the
subtopics yy; = 0, while document 1 covers some subtopic, 3/ s.t.
yy; = 1. Without loss of generality, assume document 1 covers
subtopic I = 1. As scores of document 0 and 1 are close to each
other but far from the others |so — s1| < T and [so1 —sj| > T
for Vj # 0,1, we have Ry = R1, Cjy = Cjq, and the derivative of
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the sigmoid function sigmoid” (@) ~ 0 for Vj # 0,1. So the
relative score change between 0 and 1 will be dominated by the
oL

gradient §= term in Eq.(14) as

dds 1 yn (1-a)¢In2

dt ° T1+R (In(1+R))?
The ranker learns to rank the relevant document 1 higher relative
to document 0.

To demonstrate the loss promotes the diversity through learning
features differentiating documents with the same labels, we now
suppose the two documents cover the same subtopic of the query,
say topic 1, yo1 = y11 = 1 and 0 for [ # 1. Then it is easy to show
the gradient terms in Eq.(14) vanish and the rate of relative score
becomes dominated by the hessian terms. Ignoring the higher order
contributions of 1/R from the derivatives of rank, we have

! = ) Js,
1+R
where the coefficient of the ds term on the right hand side is positive.
So indicated by the a-DCG loss, the score difference of the two
documents with the same label tends to diverge over the training.
In contrast, in other typical relevance ranking losses, softmax loss
for example, one can show that the same coefficient in front of Js

is negative so that the scorer trained with the softmax loss always
tends to score the documents with the same label similarly.

1 _
dss(t) (nz) (- w »
dt T2 log,(1+R)

5.2 Distributed Representation Facilitates
Diversity

Distributed representation boosts diversity learning through the
following three aspects: (i) Neural networks can learn the represen-
tations of subtopics in the latent space; (ii) The alignment between
a subtopic and a candidate document can be learned from a trans-
formation of the latent cross between the corresponding query and
document; (iii) A score function that discriminates the documents
aligning with the same subtopics can be learned from the query
and subtopic independent dimensions with nontrivial distributions
of candidate documents.

Consider distributed representations in a latent space, the num-
ber of dimensions E is much greater than the number of subtopics
m. All subtopics and query can be represented as vectors in the
space: say elq as the vector representation of subtopic [ of query q.
It can be decomposed into a component aligning with the query
and a part that is perpendicular, e;] = Ajeq + e, with the latter
as the additional information in subtopics that clarifies different
modalities of the query. Proposition (i) becomes to show whether
a neural network is able to infer this subtopic component e; from
the training data query eq and document representations {e;}.

In general, the subtopic vector can be further decomposed into
a query-specific component and a general component,

e =fi(eg) +e). (15)

Apparently, the general modality e? can be learned from the training
documents and encoded as constant biases in the neural network.
While how to encode the query dependent part is less obvious:
linear transform functions will fail to generate features that are
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perpendicular to their variable. Fortunately, the neural networks
are nonlinear in nature and are thus capable to learn nonlinear
functions f; for subtopic representations. A simple example of such
nonlinear functions is the projection operation used in Table 1:
fi(eq) = P; - eq. In the coordinate system with axes aligned with
subtopic vectors as in the example in Table 1, the projection matrix
P equals to 1 at diagonal indices [ and 0 otherwise, and is linearly
transformed from such a diagonal matrix in general.

In addition, such projection operations also allow the neural net-
works to demonstrate (ii): learn to retrieve the alignment between
a document and a subtopic e; - e; from the query document latent
Cross c;:

ej-ei=(fileg)+e’) ej=eq - P-ej+e’ e = Zfz,j(cz')+e° “ej,
j

which can be used as a feature in determining the relevance be-
tween the document and subtopic. In general, there exist nonlinear
transformations in the representation space for neural networks
to learn to encode implicitly subtopics and alignments between
subtopic and documents — useful features in the diversification task.

Finally, to Proposition (iii), in the latent space, as E > m, there
are many query and subtopic independent, in other words, relevance-
neutral directions where the candidate documents are spreading
over. The nontrivial distributions of the document lists in these
dimensions are useless for relevance ranking but can be utilized to
diversify the output list. For example, giving higher scores to docu-
ments with less neighbors along these dimensions will end up with
a more diverse subtopic-coverage in top ranks. See the example
in Table 1. Our @-DCG loss naturally leads the neural network to
learn such a scoring rule by exploiting the nontrivial distributions
in the query-independent dimensions.

Suppose n; documents equally relevant to subtopic [ are dis-
tributed over a subtopic independent dimension eg;, as p;(x) with
Xi = egiy - €; a measure on how a document i aligns with this
dimension. Then the score function training dynamics of a docu-
ment of alignment x can be obtained by integrating Eq. 14 over the
distribution p;(x),

ds(x) ds 1
2=
dt dt ny

/ dEp(D)als(x) - (@],

where § = nll / dép;(E)s(&) is the average score of these n; docu-
ments, a is the positive coefficient computed form the hessian terms
of a-DCG loss. Knowing that a is finite for [s(&) — s(x)| <« T and
decays rapidly to zero when |s(z) — s(x)| = T due to the derivative
of the sigmoid funtion, we can expand functions of ¢ around x and
get approximately,

dt dt

ds(x) _ds ar? pj(x) 18)

n; s’(x)’
where pl' (x) and s’ (x) are the gradients of distribution and score
function on alignment x. At the high score end s(x) > §, when
distribution decays with x, pl' (x) < 0, score converges to increase
with x, s’(x) > 0, and vice versa when pl’ (x) > 0. As aresult, scorer
learns to give high scores to documents at low document density
p; along the subtopic independent dimensions.
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6 EXPERIMENTS

To verify the effectiveness of DALETOR, we experiment on the di-
versity task benchmarks of TREC 2009 - 2012 Web Track datasets?,
which are derived from ClueWeb09 and commonly tested by exist-
ing diversification models. The combined dataset of the four TREC
datasets includes 198 queries in total (out of 200, 2 queries with no
subtopic judgment are dropped). Each query covers 3 to 8 subtopics
and the corresponding candidate documents are labeled in binary
at the subtopic level, identified by the TREC assessors. We focus on
the TREC official diversity evaluation metrics of a-NDCG@k [13]
and ERR-IA [11]@k with k = 5 and 10, where the parameter « is set
to 0.5 as the default settings in official TREC evaluation program.

6.1 Settings

For a fair comparison with recent methods, we specifically work on
a public, pre-processed version of the dataset® by Feng et al. [18],
which is based on the official TREC judgements on the ClueWeb09
Category B data collection. There are 42,245 (40,537 unique) labeled
candidate documents associated with the 198 queries. Among them,
about one third (13,279) documents contain at least one subtopic.
The query and document representation vectors were generated by
doc2vec and the dimension of vector representations E was set to
100. Please refer to [18] for more details of the dataset.

We conduct 5-fold cross-validation experiments on the combined
dataset with the same subset split as in [18]. At each fold, three
subsets were used for training, one was used for hyper-parameter
tuning, and one was used for testing. The results reported are the
average over the five trials on the testing set in each fold.

Through cross-validation, we choose the following optimizer
and model configurations: the optimizer is “Adagrad” [17] with
learning rate n = 0.01. The univariate neural scorer contains three
hidden layers with dimensions equal to 256, 128, and 64, followed
by a one-dimension dense output layer to compute scores. When
applicable, the listwise context embedding is composed of L = 2
self-attention layers with H = 2 attention heads in each layer with
head size z = 256. Finally, the smoothness parameter of the a-DCG
loss and its variants is set to T = 0.1.

We compare with the following baseline methods, including sev-
eral recent state-of-the-art ones: MMR [10]: a heuristic approach
with the documents selected sequentially according to maximal
marginal relevance; xQuAD [34]: a representative method which
models subtopics of the original query with sub-queries; PM-2 [14]:
a heuristic method of optimizing proportionality for search result
diversification; SVM-DIV [44]: a learning approach which utilizes
structural SVMs to optimize subtopic coverage; R-LTR [46]: alearn-
ing approach developed in the relational learning to rank frame-
work; PAMM [40]: a learning approach that optimizes a-NDCG
using structured Perceptron;

All methods above are taking classical aggregated features as in-
put, while methods below are taking the distributed representations
as input. NTN-DIV [41]: a learning approach which learns novelty
features based on neural tensor networks, PAMM-NTN in specific
to directly optimize a-NDCG@10; MDP-DIV [42]: a state-of-the-
art reinforcement learning approach which uses a Markov Decision

Zhttps://plg.uwaterloo.ca/ trecweb/
3https://github.com/sweetalyssum/M2DIV/
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Table 2: Performance comparison with baselines. *’ indi-

cates statistically significant improvement over M>DIV. The
best results are bolded.

Method [ @NDCG@5 | a-NDCG@10 | ERR-IA@5 | ERR-IA@10
MMR 0.2753 0.2979 0.2005 0.2309
XQuAD 0.3165 0.3941 0.2314 0.2890
PM-2 0.3047 0.3730 0.2298 0.2814
SVM-DIV 0.3030 0.3699 0.2268 0.2726
R-LTR 0.3498 0.4132 0.2521 0.3011
PAMM 0.3712 0.4327 0.2619 0.3029
NTN-DIV 0.3962 0.4577 0.2773 0.3285
MDP-DIV 0.4189 0.4762 0.2988 0.3494
M2DIV 0.4429 0.4839 0.3445 0.3658
DNN(softmax) 0.4280 0.4676 0.3293 0.3496
DNN(R-LTR) 0.4149 0.4517 0.3265 0.3454
DNN-LC(a-DCG) | 0.4968" 0.5322" 0.3868" | 0.4068"
DIN-LC(a-DCG) |  0.5009* 05294 | 0.3942" | 0.4119"

Table 3: Benefits of the -DCG loss, by comparing with R-
LTR loss. “*’ indicates statistically significant improvement
over DNN(R-LTR). ‘™ indicates statistically significant im-
provement over DNN-LC(R-LTR).

Method | @-NDCG@5 | @-NDCG@10 | ERRIA@5 | ERRIA@10
DNN(R-LTR) 0.4149 0.4517 0.3265 0.3454
DNN(ar-DCG) 0.4614* 0.5005* 0.3633 0.3838*

DNN-LC(R-LTR) 0.4451 0.4842 0.3483 0.3690
DNN-LC(a-DCG) | 0.4968" 0.5322% 0.38687 | 0.4068"

Process (MDP) to model the diverse ranking process; M2DIV [18]:
a state-of-the-art reinforcement learning approach which incor-
porates Monte Carlo Tree Search (MCTS) to enhance the MDP.
M2DIV-LC: The variant of M2DIV, with latent cross features fed
in as an input to the LSTM model*.

We investigate the following models in our DALETOR frame-
work: DNN (softmax): a deep univariate scoring model with no
latent cross or listwise context embedding, trained with the listwise
softmax loss using number of covered subtopics as labels, which
serves as a baseline that is not diversification-aware. DNN (R-LTR):
a deep univariate scoring model with no latent cross or listwise
context embedding, trained with the ListMLE loss using scores
from a greedy solution optimizing @-NDCG as labels, which serves
as a diversification-aware baseline. DNN (a-DCG) and DNN-LC
(a-DCG): a deep univariate scoring model without listwise context
embedding trained with the a-DCG loss, without and with latent
cross. DIN (¢-DCG) and DIN-LC (¢-DCG): a document interac-
tion network model with listwise context trained with the a-DCG
loss, without and with latent cross. We also test the other option to
incorporate the listwise context with groupwise scoring functions
(GSF) [3] and report the best among group sizes tuned over 4, 16,
and 64. The results of GSF (¢-DCG) and GSF-LC (¢-DCG) are
without and with latent cross respectively.

*We reproduced M*DIV and M?DIV-LC of the MCTS methods, but recalled their public
results on other baselines in [18].
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Table 4: Performance of the latent cross features and the
groupwise scoring functions. *’ indicates statistically signif-
icant improvement over DNN(a-DCG). > indicates statisti-
cally significant improvement over DIN(a¢-DCG).

Method [ @-NDCG@5 | a-NDCG@10 | ERRIA@5 | ERRIA@10
MZDIV 0.4429 0.4839 0.3445 0.3658
M2DIV-LC 0.4551 0.4971 0.3509 0.3735
DNN(a-DCG) 0.4614 0.5005 0.3633 0.3838
DNN-LC(a-DCG) | 0.4968* 0.5322* 0.3868 0.4068
DIN(a-DCG) 0.4615 0.5041 0.3582 0.3808
DIN-LC(a-DCG) | 0.50097 0.5294 0.39427 0.4119
GSF(a-DCG) 0.4568 0.5023 0.3569 0.3802
GSF-LC(a-DCG) 0.4865 0.5219 0.3786 0.4003

6.2 Experimental results

The performance of different methods is reported in Tables 2, 3,
and 4, where boldface indicates the highest scores among all meth-
ods in each metric. All statistical significance tests are under the
double tailed t-test with p-value< 0.01 indicated by superscripts ‘x’
and “i’. We can make several main observations from the results in
these tables:

e Our complete model, DIN-LC(a-DCG), outperforms all the
baseline models by a large margin, as shown in Table 2. The
improvements are statistically significant in terms of both
a-NDCG and ERR-IA metrics when compared with the state-
of-the-art implicit method M?DIV.

o The benefits of our diversification-aware losses are shown
in Table 3. We compare our a-DCG loss and the R-LTR loss
under both DNN and DNN-LC in this table. We can see that
DNN(a-DCG) improves upon the baseline DNN(R-LTR) by
more than 10%, so as DNN-LC(a-DCG) against the baseline
DNN-LC(R-LTR).

o Our methods can effectively leverage the distributed repre-
sentation. On one hand, using distributed representations
of query and documents as input features directly improves
the results by comparing DNN(R-LTR) and R-LTR, seen in
Table 2. On the other hand, incorporating the latent cross
features based on the distributed representation adds up an-
other 8% increase in terms of a-NDCG and ERR-IA metrics
consistently over DNN and DIN as in Table 4.

e Worth noting in Table 4, though the latent cross features
also slightly help M?DIV, they appear to bring much larger
gain within our DALETOR framework.

e While slightly better, DIN-LC(a-DCG) does not show statisti-
cal significance when compared with DNN-LC(a-DCG). On
the TREC dataset, the distributions of the candidate lists are
consistent over the training and testing sets, so DNN itself is
sufficient to encode information needed for the diversifica-
tion task. In Sec. 6.2.3 we will show that the context-aware
DIN models are more robust to the training-testing skew
with perturbed testing sets.

6.2.1 Variants of a-DCG loss. We investigate different variants of
a-DCG loss to show its extendability and robustness in terms of
hyper-parameters. All experiments in this section are built on the
DNN-LC base. We report a-DCG loss with different smoothness
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Table 5: Performance comparison of variants of ¢-DCG loss

Method [ a-NDCG@5 | a-NDCG@10 | ERRIA@5 | ERRIA@10
a-DCG (T=0.1) |  0.4968 0.5322 03868 | 0.4068
a-DCG (T=1.0) |  0.4811 0.5184 0.3703 0.3912
a-DCG (T=0.01) |  0.4715 0.4978 0.3633 0.3799

Gumbel-a-DCG | 0.4970 0.5339 0.3855 0.4066

parameters T and Gumbel a-DCG loss (f = 10) defined in Eq.(9).
The results are summarized in Table 5.

From variants of approximation smoothness T, we find that the
performance is robust in general and still outperforms existing
methods. However, there exists an optimal smoothness with T
around 0.1. Either too smooth T = 1.0 or too sharp T = 0.01 of the
approximation makes the learning less efficient. This is intuitive
since very sharp approximation of the metric (i.e., T — 0) makes
the gradient of the loss almost zero everywhere so that the learning
becomes impossible. On the other end, very smooth approximation
(i.e. T — co) makes the loss deviate too far from the metric.

We also find some marginal but statistically insignificant im-
provement with stochastic treatment of the a-DCG loss. It shows
our framework is easily extendable, and such modifications might
be more significant in other datasets.

Table 6: Performance comparison of variants of self atten-
tion layers

(L, H, z) ‘a-NDCG@S a-NDCG@10 | ERR-IA@5 | ERR-IA@10

(1,1,256) | 0.4724 0.5182 0.3679 0.3915
(1,2,256) | 0.4761 0.5139 0.3706 0.3908
(1,3,256) | 0.4893 0.5224 0.3801 0.3993
(1,4,256) | 0.4895 0.5252 0.3810 0.4010
(2,1,256) | 04918 0.5299 0.3842 0.4052
(2,2,256) | 0.5009 0.5294 0.3942 0.4119
(2,3,256) | 0.4902 0.5224 0.3800 0.3991
(2,4,256) | 0.5066 0.5344 0.3950 0.4122
(2,2,128) | 0.4931 0.5295 0.3842 0.4048
(2, 2, 64) 0.4908 0.5245 0.3796 0.3993
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Figure 2: Model performance on perturbed dataset. Left:
a-NDCG@10 metric. Right: Percentage change in o-
NDCG@ 10 metric.
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6.2.2 Variants of self-attention layers. We study the variants of
listwise context embedding by tuning the self-attention layer hy-
perparameters in terms of number of attention layers L, number of
attention heads in each layer H, and the size of each attention head
z. In Table 6, we have performances of DIN models with number of
layers L = 1, 2 and number of heads H = 1, 2, 3, 4 given head size
z = 256 and DIN models with head size z = 64, 128, and 256 given
L=H=2.

In Table 6, we find that the performance of DIN model with L = 2
is consistently better than the DIN model with L = 1. However,
when the model gets larger with L > 2, it becomes more difficult to
train self-attention layers with the relatively small TREC dataset.
The effect of the number of heads is less obvious. The performance
tends to increase with the number of heads, but is not very consis-
tent. The trend is more consistent with increasing head size: DIN
models with larger head size perform better. But this increase be-
comes marginal when the head size is comparable to the embedding
dimension of the representations.

6.2.3 Effects of listwise context. As we have seen in Table 2, when
comparing DIN-LC with DNN-LC, we do not have statistically sig-
nificant difference in performance by incorporating the listwise
context embedding on the TREC dataset. The GSF results reported
in Table 4 also show similar observations, despite some minor de-
ficiency of GSF in utilizing the latent cross features. This result is
likely due to the fact that DNN is already sufficient to capture the
training distribution, which is consistent with the testing distribu-
tion, for the diversification task. However, if there is a noticeable
difference between training and testing sets, DIN may better model
the distribution change captured by the listwise context. In this
section, we explore the robustness of the listwise context embed-
ding by artificially introducing duplication into the testing set. Note
that the goal of this section is to rigorously show the robustness of
DIN. In practice, it is likely that the training and testing distribu-
tions are similar. Also, document near-deduplication techniques are
recommended when there is a concern of duplicated documents.

We randomly duplicate fraction p of positive candidate docu-
ments by n times with n uniformly distributed in [0, 20]. We then
apply the trained models on these perturbed testing sets.

As shown in Fig. 2, increasing the probability of duplication p,
the testing set deviates from the original distribution of the training
set and both DNN and DIN model performances reduce. But the
reduction of DIN performance is clearly slower than the DNN
model. In terms of percentage change in a-NDCG@10, DNN model
performance is reduced by 4.7% and DIN model is reduced by 3.0%
when about 20% of the positive documents are duplicated.

7 DISCUSSION

Here we discuss the differences between the traditional “next-
document” diversification methods and the proposed “score-and-
sort” setting with a “soft” version of “next document” to give an
intuition on how it is able to promotes diversification. The key differ-
ence is that in the “score-and-sort” setting, the scores are predicted
simultaneously rather than sequentially as in the “next-document”
setting. We try to answer the following two successive questions:
how can a scorer properly score the documents without knowing
the context? And even if the scorer knows the scoring context, how
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Table 7: Candidate documents with the same subtopic label
of Query 78.

Subtopic label | Score(softmax) | Score(a-DCG)
d, | [00000100] 0.905 21.418
dy | [00000100] 0.906 14.785
ds | [00000100] 0.902 14.292

can it differentiate documents with the same relevance to certain
subtopics?

To the first question, the naive solution is to take the context
information as part of input to the scorer, which is what we did by
incorporating listwise context using DIN. But we found in Table 2,
the performance of DIN models is not significantly better than
that of simple univariate models. This indicates that our models
were able to learn subtopic distributions over the documents and
reasonably diversify the results based on the listise diversification-
aware losses.

The second question is special to the “score-and-sort” setting: in
the “next-document” setting, we can output a diversified ranking
as long as the relevance to each subtopics are inferred, but in the
“score-and-sort” setting, we have to consult to features that are
“perpendicular” to the relevance measure encoded in the distributed
representations as shown in the Section 5. The intuition we got
from the relevance-neutral features is that as long as we can score
the documents with the same subtopic relevance differently, we
will be able to rank the top ones in a diverse way. This is exactly
we found from the scorers trained with diversification-aware loss:
Table 7 shows several candidate document examples that have the
same subtopic label and they are scored by a scorer trained with
softmax loss — Score(softmax) and a scorer trained with ¢-DCG loss
- Score(a-DCG). When the model is trained with softmax loss, which
is not diversification-aware, it tends to score documents with the
same label similarly. However, when the model is trained with the
diversification-aware ¢-DCG loss, it can capture their differences in
the latent space and score one document much higher than others
to improve diversification.

Another advantage of the "score-and-sort" framework is it al-
lows O(n) inference complexity, which can be done in parallel and
significantly reduces serving latency in real-world applications.

8 CONCLUSION

In this work, we introduced a new perspective for learning-based
search result diversification. To enable the diversification-aware
learning, we introduced a differentiable loss from a close approxi-
mation of a commonly used diversity metric, -DCG in particular.
With this differentiable loss, we could then train a neural network
end-to-end from distributed representations of queries and doc-
uments. We further leveraged the latent cross of the distributed
representations and the listwise context, resulting in a deep ranker
that performs significantly better than state-of-the-art methods on
the TREC dataset in terms of various diversity evaluation metrics.
We further elaborated that how our model learns subtopics implic-
itly from distributed representations, how the approximate a-DCG
loss promotes diversity by learning the distribution of the candidate
list from subtopic-independent features.



WWW 21, April 19-23, 2021, Ljubljana, Slovenia Yan et al.

REFERENCES

[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.
Diversifying Search Results. In International Conference on Web Search and Data
Mining (WSDM). 5-14.

[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep
listwise context model for ranking refinement. In ACM Conference on Research
and Development in Information Retrieval (SIGIR). 135-144. (27

[3] Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Nadav Golbandi, Mike Bendersky,
and Marc Najork. 2019. Learning Groupwise Multivariate Scoring Functions

[25] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and
Documents. In International Conference on Machine Learning (ICML). 1188-1196.
Jiongnan Liu, Zhicheng Dou, Xiaojie Wang, Shuqi Lu, and Ji-Rong Wen. 2020. DV-
GAN: A Minimax Game for Search Result Diversification Combining Explicit and
Implicit Features. In ACM Conference on Research and Development in Information
Retrieval (SIGIR). 479-488.
Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225-331.
Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi Cheng, and Jirong Wen.
Using Deep Neural Networks. In ICTIR. 85-92. 2019: SetRank: Learning a Permutation-Invariant Ranking Model for Information
[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza- Retrieval. arXiv:1912. 058?1 (2019)4' . L
tion. arXiv preprint arXiv:1607.06450 (2016). [29] Rama Kumar Pasumarthl, Sebastllan Bruch, Xuanhu% Wang, Chgng Li, Michael
[5] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H. Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan

[26

[28

Chi. 2018. Latent Cross: Making Use of Context in Recurrent Recommender
Systems. In International Conference on Web Search and Data Mining (WSDM).
46-54.

Wolf. 2019. TF-Ranking: Scalable tensorflow library for learning-to-rank. In ACM
SIGKDD International Conference on KnowledgeDiscovery and Data Mining (KDD).
2970-2978.

[30] Rama Kumar Pasumarthi, Honglei Zhuang, Xuanhui Wang, Michael Bendersky,
and Marc Najork. 2020. Permutation Equivariant Document Interaction Network
for Neural Learning to Rank. In Proceedings of the 2020 ACM SIGIR on International
Conference on Theory of Information Retrieval. 145-148.

[31] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework
for direct optimization of information retrieval measures. Information Retrieval

[6] Andrei Z. Broder. 2000. Identifying and Filtering Near-Duplicate Documents. In
Annual Symposium on Combinatorial Pattern Matching. 1-10.

[7] Sebastian Bruch, Shuguang Han, Michael Bendersky, and Marc Najork. 2020. A
Stochastic Treatment of Learning to Rank Scoring Functions. In International
Conference on Web Search and Data Mining (WSDM). 61-69.

[8] Sebastian Nima Bruch, Masrour Zoghi, Mike Bendersky, and Marc Najork. 2019.
Revisiting Approximate Metric Optimization in the Age of Deep Neural Networks. 13,4 (20‘10)’ 375_397' . . e
In ACM Conference on Research and Development in Information Retrieval (SIGIR). (32] lebo Qin, ZhICh?ng Dou, and Ji-Rong Wen. 2020. Diversifying Search Results
1241-1244. using Self-Attention Network. In Proceedings of the 29th ACM International Con-

[9] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to ference on Information and'Knowledge Management. . .
Rank with Nonsmooth Cost Functions. In NewrIPS. 193—200. [33] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
[10] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based Wang, Michael Bendersky, and Marc Najork. 2021. Are Neura4l Rankers still
reranking for reordering documents and producing summaries. In ACM Confer- Ogtperformeq by Gradient Boosted DEFISIOn Trees?. IAn Proceedings of the The
ence on Research and Development in Information Retrieval (SIGIR). 335-336. Ninth International Conference on Learning Represen.tatmns (ICLR)', .
Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected Rodrygo .LT Santos, Craig Macdonal'd, ar{d Iad,h Ounis. 2010. Exploiting query re-
Reciprocal Rank for Graded Relevance. In ACM Conference on Information and formulations for web search result diversification. In The Web Conference (WWW).
Knowledge Management (CIKM). 621-630. 831-890. 1 - s . . .
[12] Olivier Chapelle, Donald Metzler, Ya Zhang, and Pierre Grinspan. 2009. Expected (35 Alelfsandrs _SthmS’ Fll}p Radlinski, and Sreenivas GOHHPUdl‘ 2010. Legrmng
Reciprocal Rank for Graded Relevance. In ACM Conference on Information and Optimally Diverse Rankings over Large Document Collections. In Proceedings of
Knowledge Management (CIKM). 621-630. the 27th International Conference on International Conference on Machine Learning
Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, (ICML ?0)',983_?'90' o X R X X
Azin Ashkan, Stefan Biittcher, and Ian MacKinnon. 2008. Novelty and diversity in Alex Sthme Filip Radlinski, and Sreenivas QOIIaPUdl' 2010. Learning optimally
information retrieval evaluation. In ACM Conference on Research and Development dlve.rse rankmgs_ over large documen_t _collectlonsA (2010). o
in Information Retrieval (SIGIR). 659-666. [37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
[14] Van Dang and W Bruce Croft. 2012. Diversity by proportionality: an election- Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
based approach to search result diversification. In ACM Conference on Research you need. In NeurIPS. 5998-6008. o .
and Development in Information Retrieval (SIGIR). 65-74. Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.
[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: 2018. The LambdaLoss. Framework for Ranking Metric Optimization. In ACM
Pre-training of Deep Bidirectional Transformers for Language Understanding. In Confer ence on Inf ?rmatwn and Knowledge Management (CIKM)j 1313_1322,‘
Conference of the North American Chapter of the Association for Computational Marlf Wllhélm’ Ajith Ramanathanj Alegande? Bonomo, Sagar J a1‘n, EdH Chi, and
Linguistics: Human Language Technologies (NAACL-HLT). 4171-4186. Jennifer Gillenwater. 2018. Practical diversified recommendations on youtube
[16] Pinar Donmez, Krysta M Svore, and Christopher JC Burges. 2009. On the local with determinantal poixllt processes. In Proceedings of the 27th ACM International
optimality of lambdarank. In Proceedings of the 32nd international ACM SIGIR Confere'nce on Information and Krzowledge Management: 2165-2173. .
conference on Research and development in information retrieval. 460-467. Long Xia, Jun ?(u, Yanyan Lan, ]1afen‘g Quo, and X}le(}l'Cher'lg. 2(,)15' Learn%ng
[17] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods maximal marginal relevance model via directly optimizing dl\.lersuy eval?;atlon
for online learning and stochastic optimization. Journal of Machine Learning measures. In ACM Conference on Research and Development in Information Re-
Research 12 (July 2011), 2121-2159. trieval (SIGIR). 113-122, _ _ )
[18] Yue Feng, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. 2018. Long Xia, Jun Xu, Ya'nyan Lan, Jiafeng Guo, and Xuegi Cheng. 20,16' N'lodel'mg
From Greedy Selection to Exploratory Decision-Making: Diverse Ranking with document novelty with neural tensor network for search result diversification.
Policy-Value Networks. In ACM Conference on Research and Development in In ACM Conference on Research and Development in Information Retrieval (SIGIR).
Information Retrieval (SIGIR). 125-134. 395-404.

[19] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic (42] Long )_(ia, Jun Xu, Yanygn Lan, Jiafeng Guo, Wei Zeng, a-nd X‘_JEqi Cheng. 2017.
optimization of sorting networks via continuous relaxations. arXiv preprint Adapting Markov Decision Process for Search Result Diversification. In ACM

arXiv:1903.08850 (2019). Conference on Research and Development in Information Retrieval (SIGIR). 535-544.

[34

(11

(13

[36

[38

[39

[40

[41

[20] Shuguang Han, Xuanhui Wang, Mike Bendersky, and Marc Najork. 2020. [43] nggi Yigit-Sert, Ismail Sengor Altingovde, Craig Maf:donald, Tadh O}mis,‘ and
Learning-to-Rank with BERT in TF-Ranking. arXiv preprint arXiv:2004.08476 Ozgiir Ulusoy. 2020. Supervised approaches for explicit search result diversifica-
(2020). tion. Information Processing & Management 57, 6 (2020), 102356.

[21] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual [44] Yisong Yue and Thorsten Joachims. 2008. Predicting diverse subsets using struc-

tural SVMs. In International conference on Machine learning (ICML). 1224-1231.
ChengXiang Zhai, William W. Cohen, and John D. Lafferty. 2003. Beyond in-
dependent relevance: methods and evaluation metrics for subtopic retrieval. In
ACM Conference on Research and Development in Information Retrieval (SIGIR).
10-17.

Yadong Zhu, Yanyan Lan, Jiafeng Guo, Xueqi Cheng, and Shuzi Niu. 2014. Learn-
ing for search result diversification. In ACM Conference on Research and Develop-
ment in Information Retrieval (SIGIR). 293-302.

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

[22] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In ACM Conference on Information and Knowledge Management
(CIKM). 2333-2338. [46

[23] Zhengbao Jiang, Ji-Rong Wen, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie,

and Ming Yue. 2017. Learning to Diversify Search Results via Subtopic Attention.

In ACM Conference on Research and Development in Information Retrieval (SIGIR).

545-554.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A highly efficient gradient boosting

decision tree. In Neural Information Processing Systems (NeurIPS). 3146-3154.

[45

[24



	Abstract
	1 Introduction
	2 Related Work
	2.1 Search Result Diversification
	2.2 Learning To Rank
	2.3 Approximation of Ranking Metrics

	3 Diversification-Aware Losses
	3.1 Diversity Evaluation Metrics
	3.2 Differentiable Approximate Losses

	4 Neural Learning
	4.1 Distributed Representation
	4.2 Listwise Context Embedding
	4.3 Architecture

	5 A Theoretical Analysis
	5.1 Relevance and Diversity in the Differential -DCG Loss
	5.2 Distributed Representation Facilitates Diversity

	6 Experiments
	6.1 Settings
	6.2 Experimental results

	7 Discussion
	8 Conclusion
	References

