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Abstract—Code review is a powerful technique to ensure high quality software and spread knowledge of best coding practices between
engineers. Unfortunately, code reviewers may have biases about authors of the code they are reviewing, which can lead to inequitable
experiences and outcomes. In principle, anonymous author code review can reduce the impact of such biases by withholding an
author’s identity from a reviewer. In this paper, to understand the engineering effects of using author anonymous code review in a
practical setting, we applied the technique to 5217 code reviews performed by 300 software engineers at Google. Our results suggest
that during anonymous author code review, reviewers can frequently guess authors’ identities; that focus is reduced on reviewer-author
power dynamics; and that the practice poses a barrier to offline, high-bandwidth conversations. Based on our findings, we recommend
that those who choose to implement anonymous author code review should reveal the time zone of the author by default, have a
break-the-glass option for revealing author identity, and reveal author identity directly after the review.
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1 Introduction
While developers believe that code changes are accepted

based on change quality and fitness [1], prior research suggests
that when women use profile pictures and gender-identifiable
names, the acceptance of their open source code contributions
drops, compared to peers with gender-neutral profiles [2].
Previous research suggests that such gender disparities are
due to implicit gender bias and have been replicated in a
variety of work contexts [3], and also extend beyond gender
to race [4], age [5], and physical attractiveness [6].

Outside of code review, implicit bias in professional deci-
sion making is increasingly handled through anonymization,
where irrelevant personal details are purposefully hidden from
the decision maker. For example, research on performing
orchestra auditions without seeing the person who auditioned
“fostered impartiality in hiring and increased the proportion
of women in symphony orchestras” [7]. Academic papers
reviewed by scholars who are aware of author identity gives
“a significant advantage to papers with famous authors and
authors from high-prestige institutions” compared to when
author identity is not revealed during review [8].

With a similar motivation, having engineers review code
changes without being explicitly informed of who made those
changes – anonymous author code review1 – can in prin-
ciple reduce the effect of bias in organizations. Indeed, in
response [10] to the GitHub study on gender bias [2], Mozilla
developed a browser extension that anonymizes GitHub pull
requests [13], yet the extension has not been evaluated. In
the social sciences, Kim and colleagues identified anonymous
author code review as a step towards reducing structural

1. Others [9], [10] have called this technique ‘blind’ code review,
alluding to ‘blind reviewing’ of scientific articles. We avoid this
term purposefully because ‘single-blind reviewing’ of scientific papers
means that the author is not aware of reviewer’s identity, whereas here
we mean the reviewer is not aware of the author’s identity. Some have
also argued the metaphorical use of the word ‘blind’ in these contexts
is ableist [11], [12].

sexism [9], a problem tech companies such as Google have
been criticized for [14].

But we know essentially nothing about how anonymous
author code review would work in practice. After Facebook
reportedly replicated the GitHub study [15], news reports
indicate that Facebook’s VP of Engineering rejected the
practice saying “Hiding the identity of authors or reviewers is
counterproductive from an engineering perspective” [16]. But
is it counterproductive in practice? Unfortunately, we know of
no empirical evidence.

So while in principle anonymous author code review re-
duces the impact of biases, we don’t know what other effects
it might have on the engineering process. This paper seeks to
understand these effects by answering the following research
questions:
RQ1: How often can reviewers guess author identi-
ties? When reviewers are aware of who the author is during
anonymous author review, this undermines the effectiveness
of anonymous author review. Analogously, prior research sug-
gests that during double-blind paper academic paper review,
reviewers can rarely guess author identities [17], [18]. We also
investigate whether reviewers are less able to guess authors
during certain types of reviews, making these types more
amenable to anonymous author code review.
RQ2: How does anonymous author code review change
reviewers’ velocity? Speed of code review is a significant
concern across companies and organizations that practice
it [19], yet anonymous author code review may slow down the
code review process, for example, when reviewers can’t easily
contact authors for high-bandwidth communications.
RQ3: How does anonymous author code review change
review quality? Prior research suggests that double-blind
research paper reviews are of equal [20], [21], [22], [23] or
higher quality [24], [25] as single-blind reviews because re-
viewers are more critical when they are unaware of author
identity [26]. We may expect similar quality effects for anony-
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mous author code review.
RQ4: What effect does anonymous author code re-
view have on reviewers’ and authors’ perceptions of
fairness? Fairness is both considered important by software
engineers [27] and a central goal of anonymous author code
review. While our field study is not well-suited to study
fairness objectively, we take the approach of prior work [24],
[28] to study it though the subjective perceptions of reviewers
and authors.
RQ5: What do engineers perceive as the biggest ad-
vantages and disadvantages of anonymous author code
review?We next explore the tradeoffs involved in performing
anonymous author code review, beyond the effects explored in
the prior questions.
RQ6: What features are important to an implementa-
tion of anonymous author code review? Understanding
what features of an anonymous author code review tool is de-
signed to help organizations decide how they might implement
anonymous author code review.

In answering these questions, this paper contributes the
first empirical study of anonymous author code review. While
the motivation for this work is reducing bias during code
review, in this paper we will not directly examine whether
bias is actually reduced, which would likely require a larger-
scale study than we performed here.

2 Background: Code Review at Google
Process. At Google, most of our code resides in one large
repository. When an engineer wants to make a change, they:

• Create a changelist (CL) that contains diffs of one or
more files, similar to pull requests on GitHub.

• Use the tool that facilitates this review process –
Critique – that has the ability to display diffs, post and
reply to comments about a CL, and display analysis
results, such as code coverage and linter warnings.

• Choose one or more appropriate reviewers either man-
ually or by getting a recommendation from Critique. If
the author is not an owner of the code being changed,
a reviewer must be an owner. The majority of CLs are
reviewed by someone on the author’s team.

• Tell Critique to notify reviewers to begin their review.
Reviewers add comments about the change and ask for
further changes, if necessary.

• Make fixes and respond to comments about the
change. The process of asking for changes and making
changes may be repeated several times.

• Merge the changelist into the repository, once the
requisite positive signal – a “looks good to me” or
LGTM – is granted by reviewers.

More information about the review process at Google can be
found in prior work [19].

Readability. Google has instituted a mandatory coding
style and recommended best practices for each of the various
languages in wide use, such as Java, C/C++, and Python.
Additionally, for each language there is a process by which
an engineer can demonstrate their knowledge of the best
practices and agreement to enforce them. This process is
known as readability. If a changelist author modifies a file
in a language for which they do not have readability, the

Fig. 1: What a reviewer (jdicker) using our extension sees at
the top of Critique when reviewing.

changelist must be approved by a reviewer with readability
in that language. Linter tools catch most style violations
automatically. Review for readability is primarily intended
to ensure best practices are being followed, for example, in
naming conventions, recommended APIs, modular design,
and good testing practices.

Comparison to Other Code Review Processes.
Sadowski and colleagues have compared the code review
process with Critique at Google to code review processes
elsewhere [19] using Rigby and Bird’s convergent practices
framework, which compares code review across multiple orga-
nizations [29]. Sadowski and colleagues conclude that Critique
at Google is similar to other code review contexts insofar as
it’s a lightweight and flexible code review process, but the
notion of explicit ownership and readability is unique. We also
note that Critique supports asynchronous review with email
notifications like other systems, but in contrast to systems like
AMD’s CodeCollaborator [30] and Microsoft’s CodeFlow [31],
Critique does not explicitly support live chatting between the
author and reviewers.

3 Method
To answer our research questions, in early 2019, we built
a browser extension that automatically hides information
about the authors of changes from reviewers (Section 3.1),
deployed the extension to volunteering developers at Google
(Section 3.2), and collected (Section 3.3) and analyzed (Sec-
tion 3.4) qualitative and quantitative data on code review
experience and outcomes.

3.1 Implementation of Anonymous Author Code Review
While changing Critique would be the most seamless way
to implement anonymous author code review at Google, a
browser extension allowed us to evaluate the idea of author
anonymous code reviews without any changes to critical
engineering infrastructure. The extension we built removed
authorship information from Critique, anywhere the author’s
username appears; from our email client (Gmail), in Cri-
tique emails where the author’s username or profile images
appear; and in CL Monitor, another browser extension used
by many engineers at Google that notifies them of incoming
and outgoing reviews. Our browser extension also prompted
participants for information about each CL they reviewed,
directly after they provided LGTM. Figure 1 shows a screen-
shot of how our extension removes the author’s username from
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Critique. While the reviewer experience in Critique changes,
authors see Critique as normal, with all usernames included.

In taking the browser extension approach, we were unable
to remove author information from the following sources:

• Emails and notifications from a users’ mobile device,
• Emails and notifications on non-Google-owned de-

vices, and
• Bugs that link to the CL being reviewed.

Due to these limitations, we had to ask participants to create
an email filter where Critique emails would skip their inbox
and to refrain from looking at such emails on mobile and
non-corp devices. We also told participants that our extension
would not be able to remove author information in all contexts
and to work around such issues. Participant instructions can
be found in the Supplemental Material Sections 1 through 3.

Finally, we anticipated that in some situations, partici-
pants would need to know an author’s identity, so the exten-
sion had a button to deanonymize a CL in Critique.

3.2 Participants
We recruited participants (Table 1) by sampling engineers
across Google who met the following criteria:

• Employed by Google for at least 6 months, in an at-
tempt to avoid conflating the experience of anonymous
author code review with overall novelty of Google’s
review process;

• Been on the same team for at least 3 months, in an
attempt avoid conflating the experience of anonymous
author code review with the novelty of being on a new
team; and

• Reviewed at least 10 CLs in the two weeks before the
study, in an attempt to ensure that the participant
would perform enough reviews during the study period
to generate a sufficient volume of data.

Additionally, using stratified random sampling we aimed
to have a subsample of participants – 25% – be readabil-
ity reviewers. When a readability review is requested, the
readability reviewer is assigned randomly from a queue of
already-certified developers, a queue that contains hundreds
of potential reviewers for popular languages like Java or
C/C++. Thus, we hypothesize that for such readability re-
views, reviewers are unlikely to know the identity of authors.
If that hypothesis is true, readability reviews are thus good
candidates for anonymous author code review. To recruit
readability reviewers, for this subsample we required engineers
to have performed at least 2 readability reviews per week in
the two weeks prior to the study.

One third of all volunteers were randomly assigned to a
control group (stratifying on readability), which enabled us
to compare data collected from engineers reviewing with and
without anonymous author code review. The control group
performed reviews in a standard, author-visible manner, but
completed reports similar to those in the treatment (that is,
anonymous author) group. A post-hoc analysis shows that the
random assignment to control and treatment groups yielded
statistically similar levels of seniority (median level 4, one
level above entry-level, p = 0.59), though the control group
had statistically significantly longer tenure (median 3.67 years

Engineers Invited 1650 (350R)
Engineers Volunteered 439 (128R)

Treatment Control
Engineers Enrolled 330 (96R) 109 (32R)

Engineers Reporting on 1+ CLs 300 (90R) 95 (29R)
Submitted CL Reports 5217 (1858R) 1935 (682R)

Submitted Final Reports 282 (85R) 92 (29R)

TABLE 1: Statistics about who participated and the number
of reports they submitted. Numbers in parentheses indicate
readability. Example: 439 engineers volunteered, of which 128
had readability. Example: 5217 total CLs were reviewed by the
treatment group, of which 1858 were by readability reviewers.

for control versus 3.63 years for control), using a Wilcoxon
rank sum test (p < .001). This motivates the use of covariate
controls in our analysis (Section 3.4).

The study complied with human Google ethics guidelines
for conducting research with human participants and under-
went internal employee privacy review. Participants could
terminate their participation in the study at any time.

3.3 Data Collection
3.3.1 Quantitative Data
Quantitatively, we used metrics from several sources. First,
we logged when participants pressed the deanonymize button
to answer RQ1, in part. Second, we used metrics derived
from tool logs to collect active reviewing time as a measure
of the reviewers’ velocity (RQ2). Active reviewing time is
the time a reviewer spends actively viewing, commenting, or
working on a changelist, which may include time outside of
Critique in other tools, such as time spent looking up APIs or
documentation. Further information on the active reviewing
time metric can be found in our prior work [32]. Third, we use
quantitative metrics to measure which changelists were rolled
back in the 10 months after the code reviews took place. We
posit that the higher the quality of the code review (RQ3), the
lower the likelihood of rollback.

3.3.2 Qualitative Data
Qualitative data was collected to through two report types
completed by participants:

• CLReports.Our browser extension asked participat-
ing reviewers to fill out a report immediately after ev-
ery LGTM, asking the participating reviewer to guess
the author’s identity (RQ1, treatment group), and
what perceived effect the anonymization (or identity,
for the control group) had on review velocity (RQ2),
quality (RQ3), and fairness (RQ4).

• Final Report. Sent by email at the end of study
period, a report asking participants about the reviewer
experience during the study period, including review
velocity (RQ2), quality (RQ3), and fairness (RQ4).2
Questions also asked participants about overall advan-
tages and disadvantages of anonymous author code
review (RQ5) and desired features of an anonymous
author code review system (RQ6).

2. We additionally asked authors of CLs reviewed as part of the
study (both treatment and control) about their perceptions about
fairness of the review they received (RQ4).
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Table 1 indicates how the number of reports participants
filled out. The texts of each question will be described with
results (Section 4), and blank reports are available in the
Supplemental Material, Sections 4 through 9.

3.4 Data Analysis
Analyses varied from research question to research question,
but all statistical analyses were performed in R. R scripts were
code reviewed by both an experienced software engineer and a
quantitative analyst. Statistical tests were run with an alpha
value of .05 to determine significant effects.

In every inferential statistical analyses in this paper, we
used one of two types of regressions: review-level regressions
(RLR) and participant-level regressions (PLR). Regressions
allowed us to isolate effects of interest by controlling for
covariates; for example, to estimate whether review time was
different between groups, we controlled for changelist size and
the seniority of the reviewer, among other variables listed
below. Both RLRs and PLRs included the following fixed
effects:

• Group: Whether the participant was in the control or
treatment group.

• Participating reviewer variables: tenure (years at
Google), seniority (level), role (individual contributor
vs. tech lead, etc.), job code (software engineer vs
research engineer, site reliability engineer, etc), region
(US West vs Latin America, US South, etc), and
whether the participant was a readability reviewer (bi-
nary). We controlled for tenure, seniority, and readabil-
ity because they mediate code review pushback [33];
role and job code because different types of developers
have different code review motivations and expecta-
tions [31]; and region because culture influences engi-
neering practice [34].

RLRs included a random effect (reviewer identity) to account
for individual variation from reviewer to reviewer. RLRs
included these additional fixed effects:

• Author variables: The same variables as the participat-
ing reviewer (above), but for the author of the change
(e.g., the tenure of the author).

• Changelist variables: the log of the number of review-
ers, the CL size3, whether the reviewer was a read-
ability reviewer, and whether the CL changed “code”.
Here code means that at least one file is changed that’s
attributed to one of the known 40 coding languages
at Google, including C++, Java, and Go. Examples of
non-coding changes are those that exclusively change
documentation, access control, and build management.
Additionally, we included a binary “large-scale change”
variable; these are relatively low-risk changes to a
broad swath of our monolithic codebase (e.g. changing
all uses of one API method to another). Large-scale
changes are typically split up into multiple smaller
CLs, where each CL is sent to appropriate code owners
for review. We controlled for number of reviewers,

3. The categories of code review sizes are: XS (0-9 lines changed),
S (10-49 lines changed), M (50-249 lines changed), L (250-999 lines
changed), XL (over 1,000 lines changed), and U (could not be calcu-
lated).

size, and readability because they mediate code review
pushback [33]; controlled for code changes because
programming language correlates with pull request
acceptance [2]; and controlled for large-scale changes
because they are fundamentally different than other
types of changes.

• Relationship: We modeled past interactions between
reviewer and author as ‘insider’, ‘outsider’, or an
‘unclear’ relationship. An insider relationship means
that the reviewer has reviewed 10 or more CLs at
Google for the author prior to the CL in question; an
outsider relationship means the reviewer has reviewed
2 or fewer CLs for this author previously; and unclear
otherwise. We included this control variable because a
similar notion of relationship in open source software
correlates with pull request acceptance [2]

To convey a sense of overall model fit, we report adjusted R2

values for Ordinary Least Squares regressions and adjusted
McFadden’s pseudo R2 [35] for other regressions.

4 Results
This section is structured as follows. In the next section,
we describe to what extent participants and the CLs they
reported on are representative of Google’s engineering popu-
lation. Then, starting in Section 4.2, we report on the answers
to our research questions.

4.1 Participation and Representativeness
Invited engineers could decide to participate or not, and if
they participated, decide whether to report on an individual
changelist or not. This section reports on the extent to which
those engineers who participated and those changelists that
were reported on were representative.

4.1.1 Who Was Likely to Participate and Not Participate
To determine whether some invited engineers were more or
less likely to volunteer in our study, we created a logistic PLR
that predicts participation (adjusted McFadden pseudo-R2 =
0.18). We found:

• Engineers with readability were twice as likely to par-
ticipate as those without (Odds Ratio = 2.0, p < .001).

• Engineers who have been at Google for 7 or more years
were less likely to participate than engineers who have
been at Google for less than a year (OR = 0.33, p <
.001).

• Engineers in the US South were more likely to par-
ticipate than in the US West region, with 4 out of
6 invitees volunteering in the US South (OR = 6.8,
p = .042).

No other predictors emerged as statistically significant.

4.1.2 Which Changelists Were Reported On
While we instructed participating engineers to report on
their experience reviewing every CL during the study period,
sometimes they did not. We ran a logistic RLR that predicted
whether a CL was reported on (adjusted McFadden pseudo-
R2 = 0.09). While the raw median percentage of CLs reported
on by control group participants was 88%, and the median
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Normal reviews Readability reviews
Correct Guess 76.6% (n=3239) 4.6% (n=24)

Uncertain 21.3% (n=903) 95.1% (n=500)
Incorrect Guess 2.1% (n=88) 0.4% (n=2)

TABLE 2: How often participants were able to correctly guess
the identity of the authors of the changelists they reviewed.

was 84% for treatment group participants, this difference
was not statistically significant (p = 0.8), controlling for
other covariates. However, a variety of other covariates were
associated with an increase in the odds that a CL was reported
on (e.g. CLs from outsiders and readability reviews), while
other covariates were associated with a decrease in those odds
(e.g. more reviewers and large scale changes) These findings
underscore the importance of using RLR regressions, which
control for these covariates, in the remainder of this paper.

Finally, during the study, we asked participants to what
extent the CLs they reviewed during the study were typical of
their personal experience. The response distribution between
the two groups was similar, but the treatment group was
slightly more likely to perceive the CLs they reviewed as
being typical. 71% of the control group rated this as “Very
typical”, versus 77% of the treatment group. “Somewhat
typical” was chosen by 25% of the control group versus 22% of
the treatment group, and “Not at all typical” was chosen by
5% and 1%, respectively.

4.1.3 Participating Reviewers Per Changelist
In the changelists that were part of this study, most were
reviewed by just one (55% of reviews) or two (29% of reviews)
reviewers. 0.5% of reviews had multiple study participants
as reviewers. 0.15% of reviews had a treatment group and a
control group reviewer, so cross-contamination of results was
a limited risk.

4.2 RQ1: How often can reviewers guess author identi-
ties?
Reviewers may know the identity of authors without being
explicitly informed. In this section, we investigate how often
reviewers with anonymous authors can guess author identity,
by what means, and for what reasons.

4.2.1 Author Guessability Rates
To examine how often authors were guessable, we asked treat-
ment group participants to guess author usernames after say-
ing they were either “Very Certain”, “Somewhat certain”, or
“Uncertain” of author identity. If they chose “Uncertain”, we
did not ask them to provide a guess. We performed two data
cleaning steps: we manually inspected and fixed incorrectly-
spelled guesses, then removed any remaining guesses that
didn’t correspond to any known Google engineer (e.g, blank
responses). We next took the remaining cases and categorized
them into correct guesses and incorrect guesses. Results are
displayed in Table 2. Let’s first examine readability reviews,
since we hypothesized that authors and reviewers were un-
likely to know each other during these reviews because re-
viewers are assigned randomly. The data confirms this – in
95% of anonymous author readability reviews, the reviewer
reported being uncertain of the author’s identity. Of the

cases where the readability reviewer did know the author’s
identity (n=24), the most common reasons were the author
contacting the reviewer outside of code review (n=8, 33%)
and the part of the codebase being changed (n=6, 25%). With
non-readability reviews, in 77% of cases reviewers guessed the
author correctly. In 21% of cases the reviewers were explicitly
uncertain of the author’s identity. In 2% of cases, the authors
were at least somewhat certain of the author’s identity, but
guessed incorrectly.

4.2.2 Author Guessability Mechanisms
We asked treatment group participants how they knew au-
thor identities. These participants had a set of 11 predefined
options, but could also state their own reasons; participants
chose to do so in 660 cases. One author of this paper coded
respondents’ reasons and grouped them into several reason
categories. Because reviewers could choose multiple reasons,
the total number of reviews sums to more than the total
number of reports submitted.

The most common reason that reviewers with anonymous
authors knew the identity of authors was for two contextual
reasons (n=2845, 53%). The first was that authors could
determine the author from the part of the codebase that was
being changed. The second was from the nature of the change,
such as the language or programming style. As one participant
stated, “The author has been doing a large number of similar
migration CLs”.

The second most common reason was because the author
and reviewer communicated (n=1294, 24%). This was usually
because the author contacted the reviewer. One participant
gave an example as “The author pinged our chat about fixing
a test”. This also occurred when the author and reviewer
collaborated prior to a change or could guess identity by virtue
of being on the same team. For instance, one participant noted
“I know who is working on this specific change from sprint
planning/standup”.

The third most common reason was because of some
limitation of our implementation of anonymous author code
review (n=579, 11%). This was usually because the descrip-
tion of the change indicated – either explicitly or implicitly –
the author’s identity. For instance, the “design doc linked in
the CL description” revealed author identity.

The fourth most common reason was through deductive
means (n=259, 5%), typically because a change did or didn’t
need approval from an owner of the code being changed. This
is because at Google, at least one reviewer must be an owner
if the author is not an owner. Thus, if Critique indicates that
an owner’s review is not required, then the author must be an
owner, which narrows the set of potential authors.

Other less common reasons include from the knowing what
tasks coworkers are performing prior to the review (n=161,
3%), because some part of our tool failed (n=147, 3%), be-
cause the reviewer decided to deanonymize the author (n=43,
1%), and because the reviewer was in close enough physical
proximity to happen to see the CL on the author’s screen
(n=7, <1%).

Some of the less frequent reasons for author deanonymiza-
tion during anonymous author code review can be alleviated
in a straightforward way (e.g. redacting bug assignee when
browsing a linked bug). However, the top two most common
reasons – the part of the codebase being changed and the
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nature of the change – appear more challenging to alleviate.
The next most common set of reasons – author to reviewer
communication – may be alleviated in part by building anony-
mous communication, such as through anonymous messaging.
If anonymous messaging between an author and reviewers
were retained alongside a CL, side benefits might accrue,
such as the retention of design rationales contained in author-
reviewer discussions.

4.2.3 Why Reviewers Need to Know Author Identities

When treatment group participants filled out a report on
their experience after a code review during the study, our
chrome extension inserted logs about whether the participant
explicitly requested to deanonymize the CL. In total, 47
reports with logs indicated that the participant requested
deanonymization, compared to 5112 reports with logs where
the participant did not.

To determine why this rare event occurred, we asked par-
ticipants “If you [deanonymized] the CL using the extension,
why did you do so?” We qualitatively coded the 534 open
ended responses into 10 types of reasons, with some responses
containing multiple reasons.

• A set of common deanonymization reasons were about
the context of the CL. For example, one participant
stated, they were “curious about the reason of the
change.” In n=10 (19%) cases, the reviewer needed
additional context to review the change that wasn’t
contained in the original CL. In n=5 (9%) cases, the
reviewer may have needed to supply additional context
about the change to the author, depending on the au-
thor’s identity. In n=8 (15%) cases, the author needed
to be made aware of other people relevant to this
change, and the reviewer did not know if the author
is one of these people. Similarly, in n=3 (6%) cases,
the reviewer needed to assess the level of knowledge
the author has about the context.

• In n=7 (13%) cases, the reviewer needed to know
whether the author had implicit permission to make
a change, including changes to access control lists
(ACLs) and TODOs. As one participant stated, “CL
author added themselves to OWNERS file. Diff showed
addition as "redacted." I needed to know who is being
added to the OWNERS file.”

• In n=6 (11%) cases, the reviewer mentioned
deanonymization because they needed to contact the
author.

• In n=5 (9%) cases, our extension inadvertently
redacted a relevant URL in Critique, so deanonymiza-
tion was required to click through the URL.

4. The six-report discrepancy between the 47 logs indicat-
ing deanonymization and 53 open ended answers indicating
deanonymization could be due to either our extension failing to
log events correctly or to participants misinterpreting the question.
Manual inspection of the open ended responses suggests a likely
combination of these two. Similarly, the discrepancy between the
47 logs indicating deanonymization and the 43 reports where par-
ticipants said they knew authors’ identity because they pressed the
deanonymize button, may be explained by four engineers either
forgetting that they deanonymized the review or forgetting author
identity after they deanonymized.

• In n=2 (4%) cases, the reviewer deanonymized to
determine who made the change so that they could
thank the author.

• In n=2 (4%) cases, the reviewer indicated simply being
curious about the author’s identity.

• In n=13 (25%) cases, it was unclear from the reports
why the reviewer needed to deanonymize the CL.

As the list above suggests, out-of-Critique communication
between reviewers and authors occurs for some CLs. In the
post-LGTM report, we asked respondents, “If you contacted
the author or the author contacted you outside of Critique,
why?” We received 1009 responses to this question.

Authors were about four times more likely to contact
reviewers than reviewers contacting authors. Although it was
sometimes difficult to tell who initiated contact, based on our
reading of the responses, in 59% percent of cases authors con-
tacted reviewers; in 14% of cases reviewers contacted authors,
and in 27% of cases it was unclear.

It was clear that a substantial number of responses were
largely about how the reviewer knew the author’s identity,
rather than about the reason behind the contact. Including
only answers to the latter (n=691), several themes emerged:

• The most common theme (n=211, 31%) was that the
author contacted the reviewer at the start of the review
to introduce the CL, request a review, offer some up-
front context, or ask for a swift review due to the
urgency of the CL. For example, one participant noted,
“The author promised me to deliver a fix for a tool.
Later I saw a fix for the said tool. Inferred the author’s
identity.”

• The second most common theme (n=185, 27%) was
making contact to discuss a CL or address/clarify a
comment made during the review. For instance, one
participant commented, “To ask follow-up questions
on the comments I’ve left in Critique.”

• The third most common theme (n=107, 15%) was
to ask the author or reviewer a question related to
the review. As one participant noted, “He asked me
questions about. . . the tests he was going to change, as
he wasn’t sure of how they worked.”

• Other reasons include the author or reviewer men-
tioning their preference for a conversation outside of
Critique due to the relative speed or ease as compared
to going back and forth in comments (n=45, 7%);
the author contacting the reviewer to remind them
about the CL awaiting review (n=35, 5%); contact
made convenient by close physical proximity of author
and reviewers (n=33, 5%); expediting a CL rollback
(n=15, 2%); mentioning the change fixing something
that’s broken or breaking something (n=11, 2%); ask-
ing for clarification around the readability process
(n=10, 1%); and needing permission to access a shared
resource (n=6, 1%).

4.3 RQ2: How does anonymous author code review
change reviewers’ velocity?
We measured the effect on review velocity through both
qualitative and quantitative measures.

During the course of the study, we asked the following after
a participant LGTM’d a CL:
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Quality Velocity
Significantly decreased 2% 4%
Somewhat decreased 14% 51%
No change 57% 37%
Somewhat increased 22% 6%
Significantly increased 2% 0%

Fig. 2: Treatment participants’ expectations about what effect
anonymous author code review would have on review velocity
if practiced regularly at Google. An additional 2% of partici-
pants responded “I don’t know”.

• Treatment participants were asked “what effect did
the [anonymous author] code review process had on
reviewing velocity, compared to [non-anonymous] code
review?” For 89% of CLs, participants said anonymous
author code review did not change velocity; for 6%
anonymous author review had a negative impact on
velocity; for 2% a positive impact; and the rest were
not known.

• Conversely, we asked control participants to estimate
the effect of knowing the identity of the author com-
pared to not knowing their identity in terms of review
velocity. Here, for 69% of CLs the reviewers said know-
ing the identity had no effect; for 3% knowing identity
decreased velocity; for 26% knowing identity increased
velocity.

After the study, we asked treatment participants “what
[effect on velocity] did the [anonymous author] code review
process have, compared to [non-anonymous] code review?”
59% said anonymous author code review had no effect on
velocity; 5% said a positive effect on velocity, 36% said a
negative effect, and the remainder did not know.

We also wanted to know the impact of anonymous author
code review on velocity more broadly, so we asked all par-
ticipants, “If [anonymous author] code review was regularly
practiced at Google, I expect that my engineering velocity
would be...”, followed by a rating. As shown in Figure 2, most
(55%) treatment group participants thought that anonymous
author code review would have a negative effect on review
velocity, with most of the remainder of participants (37%)
expecting no effect.

Overall, this data suggests that participants perceived
that anonymous author code review generally has a
negative or neutral effect on code review velocity.

Although perceived review time is important, we can also
measure active reviewing time as an objective measure of
velocity. To do so, we compared not only the control and
treatment groups during the study, but also those groups
against their own review velocities pre- and post-study. Thus,
we separated reviews into those performed in the approxi-
mately two weeks during the study, in the two-week period
before the study began, and in the two-week period after
the study ended. We defined study beginning and ending on
a per-participant basis, since participants may have begun
using our chrome extension or filled in the final report at any
point after we invited them to do so. We defined the study
beginning for a participant as the time when the participant
made the first comment on a CL that they filed a report for.

Fig. 3: The time participants spent actively reviewing each
changelist in minutes, comparing treatment and control
groups in terms of review time before (left), during (center),
and after the study (right).

We defined the study ending for a participant as the time
when the participant submitted their last report.

Figure 3 illustrates raw reviewing time differences between
the control group and treatment group, and in the pre-study
(ncontrol = 2351 and ntreatment = 7612 changelists), during-
study (ncontrol = 2169 and ntreatment = 6308 changelists),
and post-study (ncontrol = 1702 and ntreatment = 6149
changelists) periods. In the figure, we show boxplots that
summarize reviewing time distributions, overlaid with indi-
vidual code review times as circles. We do not display any
code reviews that took more than about 30 minutes, but these
are accounted for by the boxplots.

This raw data suggests that reviewing time increased
during the study period for both control and treatment groups
– from 3.5 to 4.4 minutes for the treatment group, and from
4.1 to 4.5 for the control group. So was review time lengthened
by anonymous author review? To examine this, we created a
linear RLR predicting log review time (adjusted McFadden
pseudo-R2 = 0.07). We use log review time since review time
is highly skewed (most reviews take less than 5 minutes, but
some reviews can take 30 minutes or more). In addition to
the existing linear RLR covariates, we add a three-level fixed-
effect for time period (before, during, and after the study).

This RLR indicates that, indeed, changelist review time
was longer during the study than before the study (by 10%,
p < .001) and after the study (by 6%, p < .001). However,
this RLR also indicates that the time taken to review in
the treatment (anonymous author) group was not statistically
significantly different than the time taken in the control group
(p = .346).

Why might both the control and treatment group show an
increase in reviewing time during the study? Potential expla-
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nations include both groups of participants being influenced
by modulating behavior simply by being aware of identity-
issues and both groups changing their behavior due to being
part of a study [36].5

In sum, because both control and treatment groups re-
viewed more slowly during the study to a statistically sim-
ilar extent, our results suggest that anonymous author
code review did not substantially change objective
reviewing velocity during the study, compared to non-
anonymous review, in our study setting.

This conclusion applies to anonymous author code review
in practice at companies like Google, that is, when author
identities can often be guessed (Section 4.2). Other contexts
may exist where guessability is lower, such as open source
projects that accept pull requests from a wide variety of exter-
nal contributors; in these contexts, would we expect different
reviewing velocities? We answer this question by comparing
normal treatment group reviews where the reviewer knew
the author identity to those where the author’s identity was
not known. A detailed description of this analysis is in the
Supplemental Material Section 12; in short, we find that
there exists fundamental differences in code reviews when
the author is guessable compared to non-guessable. Therefore,
comparing guessable to non-guessable author code reviews on
metrics like velocity or quality is not a reasonable comparison,
so we make no further attempt to do so in the remainder of
the paper.

4.4 RQ3: How does anonymous author code review
change review quality?
Given the effect of code review on software quality [37], [38],
[39], [40], we asked how participants perceived their review
quality during and after the study.

After participants LGTM’d a CL:

• We asked treatment participants to rate what effect
the anonymous author code review process had on
code quality, compared to non-anonymous code re-
view. For 92% of CLs, participants said anonymous
author code review had no impact on quality; for 1%
anonymous author review had a negative impact on
quality; for 4% a positive impact; and the rest were
not known.

• Conversely, we asked control participants to estimate
the effect of knowing the identity of the author com-
pared to not knowing their identity in terms of review
quality. Here, for 79% of CLs the reviewers said know-
ing the identity had no effect; for 7% knowing identity
decreased quality; for 12% knowing identity increased
quality.

After the study, we asked treatment participants “what
[effect on quality] did the [anonymous author] code review
process have, compared to [non-anonymous] code review?”
75% said anonymous author code review had no effect on
quality; 18% said a positive effect on quality, 7% said a
negative effect, and the remainder did not know.

We examined the impact of anonymous author code review
on quality more broadly, so we asked all participants, “If

5. The increase is not due to filling out the post-LGTM report, as
review time does not include the time to fill out this form.

Quality Velocity
Significantly decreased 2% 4%
Somewhat decreased 14% 51%
No change 57% 37%
Somewhat increased 22% 6%
Significantly increased 2% 0%

Fig. 4: Treatment participants’ expectations about what effect
anonymous author code review would have on review quality
if practiced regularly at Google. An additional 1% of partici-
pants responded “I don’t know”.

anonymous author code review was regularly practiced at
Google, I expect that. . . ” As Figure 4 shows, most (57%)
treatment group participants thought that anonymous author
code review would be neutral toward review quality, with most
of the remainder of the treatment group participants (24%)
expecting positive impact on quality.

Finally, we ran a logistic RLR to predict whether the
changelists reviewed by treatment participants were more or
less likely to be rolled back in the roughly 17 month period
after the experiment took place, one measure of review quality
(adjusted McFadden pseudo-R2 = 0.0008). We found no
statistically significant difference in the odds of rollbacks,
comparing the treatment CLs reviewed during the study
period compared to the CLs in the two week period before
the study (p = .71) and the two week period after the study
(p = .46). However, surprisingly, control group participants’
changelists saw a slight but statistically significant rise in the
odds of a rollback for CLs reviewed during the study period
compared to the pre-period (Odds Ratio 1.02, p < .001) and
post-period (OR 1.01, p < .001). This evidence suggests that
review quality is at least as good during anonymous author
code review as during non-anonymous review.

Overall, this data suggests that anonymous author
code review generally has a neutral effect on code
review quality.

4.5 RQ4: What effect does anonymous author code re-
view have on reviewers’ and authors’ perceptions of fair-
ness?
At its core, the purpose of anonymous author code review
is to allow engineers to review code without being burdened
by any biases they might have about the author. Thus, we
examined whether code reviewers (Section 4.5.1) and authors
(Section 4.5.2) were able to perceive any differences in how
reviewers treated authors during anonymous author code
reviews, specifically from a fairness perspective.

4.5.1 Reviewer Fairness Perceptions
We first asked reviewers whether they perceived any dif-
ferences in their own fairness while performing anonymous
author code reviews. After participants LGTM’d a CL:

• We asked treatment participants to rate what effect
the anonymous author code review process had on
reviewing fairness, compared to non-anonymous code
review. For 93% of CLs, participants said anonymous
author code review did not change fairness; for 4%
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anonymous author review made the review more fair;
for <1%, less fair; and the rest were not known.

• Conversely, we asked control participants to estimate
the effect of knowing the identity of the author com-
pared to not knowing their identity in terms of review
fairness. Here, for 89% of CLs the reviewers said know-
ing the identity had no effect; for 3% knowing identity
decreased fairness; for 2% knowing identity increased
fairness; and the rest were not known.

After the study, we asked treatment reviewers “what
[effect on fairness] did the anonymous author code review
process have, compared to [non-anonymous] code review?”
66% said anonymous author code review had no effect on
fairness; 31% said a positive effect on fairness, 1% said a
negative effect, and the remainder did not know.

Overall, this data suggests that most reviewers per-
ceived that anonymous author code review has a
neutral or positive effect on code review fairness.

4.5.2 Author Fairness Perceptions
We also asked code review authors if they perceived any
fairness differences. Note that we don’t necessarily expect an
increase or decrease in perceived fairness. On one hand, if
authors perceived previous non-anonymous reviews as unfair,
then they may perceive anonymous author review as more
fair than they expected. On the other hand, authors who pre-
viously had been treated with undue deference might perceive
anonymous author reviews as less fair than they expected.

After reviews were completed by study participants, we
asked authors of those CLs “During code review for this
changelist, did you experience being treated as fairly as you
expected?” We asked authors about the following CLs:

• All control group CLs. These represent CLs when the
reviewer is aware of author identity.

• Treatment group CLs where the reviewer indicated
that they were “Uncertain” of the author’s identity.
These represent CLs where the reviewer did not have
knowledge of the author’s identity.

We also surveyed authors once, and only once, to reduce
survey fatigue. We did not indicate in this author survey
that the reviewers were participating in an experiment, nor
whether they were reviewing with anonymous authors (treat-
ment group) or non-anonymously (control group). Moreover,
study participants were discouraged from discussing the study
with other Google engineers, so as to avoid biasing authors.

We separately analyze reviews where the study participant
was the readability reviewer. Table 3 shows authors’ fairness
ratings.

The ‘Normal reviews’ columns shows that for most reviews
in both control and treatment groups, authors did not feel
treated more or less fairly than they expected (93% of con-
trol group authors, 94% of treatment group authors). The
control and treatment group were not significantly different
(p = .97), according to a linear RLR (adjusted McFadden
pseudo-R2 = −2.6) that predicts perceived fairness, where
"less fair" is coded as -1, "more fair" is coded as 1, and
otherwise as 0.

The ‘Readability reviews’ columns tell a curious story;
control group participants’ readability reviews were perceived

as more fair than those from the treatment group. The in-
teraction between control/treatment group and readability
is statistically significant (p = .002), according to the same
RLR.

Since we were surprised by this finding, we evaluated the
hypothesis that the control group participants gave inordi-
nately fair reviews.6 We asked authors who received readabil-
ity reviews from reviewers not invited to be part of the study
to report the fairness of the reviews that they received. Results
are shown in the ‘Post Study’ column in Table 3.

These readability CLs reviewed by non-participants show
levels of author-perceived fairness slightly closer to the treat-
ment group than the control group. An Ordinary Least
Squares regression with the same fixed effects as an RLR
predicting perceived fairness (adjusted R2 = .16) provides
more definitive evidence of this: non-participant CLs are
significantly different than control group CLs (p < .001) but
not significantly different from treatment group CLs (p = .38),
in terms of author-perceived fairness.7 In other words, control
group CLs appear to be the outliers here. The hypothesis that
the control group gave fairer reviews than the treatment group
– rather than the treatment group giving particularly unfair
ones – is supported.

Overall, this data suggests that authors who unknow-
ingly received anonymous author reviews did not per-
ceive a significant difference in fairness, compared to
authors who received non-anonymous reviews.

4.6 RQ5: What do engineers perceive as the biggest
advantages and disadvantages of anonymous author code
review?
4.6.1 Observed Benefits.
We asked treatment group participants “What was the main
benefit you experienced during this study while performing
[anonymous author] code review?” One author qualitatively
coded each of the 198 responses into 10 emergent categories.

The definitions of these categories are:

• No personal benefits / not sure. The most commonly
mentioned benefit was none that was perceptible to the
participant (n=71, 36%). To quote one participant, “It
is hard for me to find a clear benefit as I nearly always
knew who I was reviewing (due to the change being
made).”

• More thorough review without reliance on author iden-
tity. The second most commonly mentioned benefit
was that reviews were more thorough (n=65, 33%),
because the reviewer could not rely on a high level
of author expertise and consequently conducted their
reviews in a more neutral way, independent of the
authority of the author, the relationship between the
reviewer and the author, or trust based on prior experi-
ences with the author. Many comments mentioned the
necessity of taking a closer look without being able to
assume the author possessed certain knowledge, as well

6. Our analyses do not support three alternate hypotheses; see
Supplementary Material, Section 13.

7. A caveat of this model is requires the omission of the reviewer
random effect, because all non-participant CLs were reviewed by
different reviewers. Use of a fixed-effect model here requires us to
relax the assumption of independence.
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Normal reviews Readability reviews
Treatment Control Treatment Control Post Study

More fairly 5.6% 6.6% 6.5% 17.1% 9.5%
than expected (n=23) (n=29) (n=17) (n=24) (n=33)

About the same / 93.6% 92.7% 92.0% 82.9% 89.7%
don’t know / n/a (n=383) (n=406) (n=242) (n=116) (n=312)

Less fairly 0.7% 0.7% 1.5% 0% 0.9%
than expected (n=3) (n=3) (n=4) (n=0) (n=3)

TABLE 3: How authors of changelists perceived fairness of normal and readability reviews from developers in the control
group, the treatment group, and a set of non-participants after the study.

as feeling more empowered to leave feedback without
regard to whether it was appropriate given the author’s
status. To quote one participant, “When I didn’t know
for sure that an author was a subject matter expert on
a CL, it made me pay more attention to the content
than I would have otherwise.”

• Reduce bias.Another commonly mentioned benefit was
a reduction in bias towards the author (n=45, 23%). A
specifically mentioned category of reducing bias was
reducing level/tenure bias (n=8, 4%). Note that there
was a high overlap between the benefits of “reduce
bias” and “more thorough review without reliance on
author identity,” and the latter benefit can be con-
sidered a form of reduced bias. During analysis, only
comments that explicitly mentioned the terms bias and
fairness or the concept of treating all CLs equally were
tagged with the theme “reduce bias”. To quote one
respondent, “I think that I (and I would daresay most
reviewers) probably apply some bias to CLs based on
various attributes we attach to the author (tech level,
tenure at Google, readability, role, past interactions or
discussions with the authors, etc.). In some these cases,
the biases serve as a bit of a short-circuit and I’m more
willing to give an LGTM to someone that I "trust"
more. . . even if I don’t fully understand the content of
the change.”

• Other benefits. Several participants mentioned expe-
riencing other benefits, including the review process
being quicker or simpler when they didn’t have to
consider additional context related to the author’s
identity (n=20, 10%); special value for readability
reviews where reviewers and authors have little re-
lationship (n=17, 9%); enjoying and reflecting on a
different kind of review process (n=12, 6%); needing
to provide better documentation and context in a CL
(n=9, 5%); encouraging promptness (n=4, 2%); and
removing CL notifications from email (n=3, 2%).8

4.6.2 Observed Drawbacks.
As with benefits, we also asked treatment group participants
to state the main drawback they observed during the study
of anonymous author code review. In the 233 responses, the
most commonly observed themes were:

• Lack of context to aid in decisions. This refers to addi-
tional information that can be gleaned from knowing

8. “Removed CLs from the inbox” was a requirement of the study
that participants should have Critique emails bypass their inbox. This
would not be a constraint in a full implementation of anonymous
author code review.

an author’s identity, which reviewers stated would have
aided in a swifter or more tailored review (n=111,
48%). Examples of such contextual information in-
clude the background and motivation behind the CL,
the time zone of the author, the author’s familiarity
with the part of the codebase being modified, and the
CL’s level of urgency. One participant said, “Often,
CLs come in with context that was chatted about of-
fline or over other channels (bugs, emails) and knowing
who authored the CL helps trigger the context of the
CL.”

• Barriers to offline communication. Similarly, this cat-
egory refers to the need for reviewers and authors
to communicate outside of a CL to quickly convey
information (n=48, 21%). One participant said, “At
times, it is useful to have an in person conversation
to clarify a point or to make a design decision more
quickly than trading back and forth over critique.
[Anonymous author code review] made that process
a little bit harder.”

• Minimal or no impact/often knew author. This cate-
gory describes minor or no effects of anonymous author
code review, often because the reviewer could guess the
author (n=45, 19%). One participant said, “I’m able to
identify the author for most of the CLs anyway, making
this experience less efficient to me.”

• Reduced velocity. Some participants reported that their
reviews took longer when reviewing with anonymous
authors (n=35, 15%). As one participant said, “Be-
cause of the increased fairness and quality, reviews
took longer.”

• Inconvenience/performance issues with extension or
reports. This theme refers to the limitations of the
study that were drawbacks (n=30, 13%), such as the
extension redacting many usernames in error or slow-
ing down Gmail inordinately. One participant said,
“Not really a drawback of the process, per se, but
the aggressiveness with which the Chrome extension
redacted names sometimes made it hard to get addi-
tional information”. A similar theme was lack of email
notifications, which was a limitation required by our
chrome extension (n=13, 6%).

• Other drawbacks. Participants reported other draw-
backs, including reviewers being unable to tailor feed-
back to the background of the author, such as giving
detailed explanations to new employees (n=21, 9%);
not being able to distinguish core contributors from
external contributors (n=18, 8%); not being sure or
stating non-drawbacks (n=12, 5%); reducing personal
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Fig. 5: How participants rated the importance of various potential features of an anonymous author code review system.

interactions with peers (n=12, 5%); being less knowl-
edgeable about colleagues’ work (n=11, 5%); chal-
lenges in looking back over old CLs without seeing au-
thor names (n=8, 3%); awkwardness around the code
review process (n=7, 3%); and difficulty in prioritizing
important CLs over less important ones (n=6, 3%).

4.7 RQ6: What features are important to an implemen-
tation of anonymous author code review?
At the end of the study, we asked participants about a set of
features that anonymous author code review might have, if
implemented at Google. The top of Figure 5 shows a variety
of features that we asked participants to rate the importance
of. Of these features, participants were most strongly positive
about the ability to deanonymize author the author during
review, with 52% of participants noting the feature as essen-
tial. Most respondents rated the following features as at least
worthwhile: the ability of the author to request anonymous
author review, making the reviewer anonymous to author
identity when no specific reviewer is required (e.g. when using
a reviewer queue), showing which reviewers are reviewing
with anonymous authors, and deanonymizing the author after
granting LGTM. Showing which reviewers deanonymized a

CL was rated positively by some respondents (27%), but also
was rated as unwise by 19% of participants.

We also asked about what information should be revealed
about the author, if the author’s identity were anonymized,
as shown in the middle of Figure 5. This figure indicates a
variety of opinions, overall it indicates that most participants
support revealing author time zones, whether the author is on
the reviewer’s team, and whether the author has readability.
Author tenure and level were the two types of information
that participants were more likely to believe would be unwise
to show than worthwhile or essential.

We also asked “Suppose [an anonymous author] review
system is opt-in, where those who opt-in perform [anonymous
author] review by default, but reviewers can [deanonymize] as
they see fit. How important is it to allow opt-in to be chosen
by each of the following?” Results at the bottom of Figure 5.
The results indicate participants were positive about having
individual reviewers and teams opt-in, mixed about whether
product areas (PAs) opt-in, and somewhat negative about
having the entire company opt-in.
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5 Limitations
Readers should consider several limitations of this study while
interpreting its results.

• Results obtained from a similar study, run in another
organization or an open source software project, may
differ.

• Although we randomly selected participants, those
who opted to participate likely do not represent the
full population of developers, both within Google and
beyond.

• Participants used anonymous author code review over
a relatively short period of time. As we describe in
Section 6, the effect of anonymous author code review
may differ if practiced over a longer period.

• Participants’ self-reports are likely influenced by cogni-
tive biases and by question wording. For instance, one
question asked authors to rate fairness relative to their
expectations as a baseline and another asked reviewers
to rate fairness relative to a hypothetical counterfac-
tual baseline. Both baselines makes interpreting the
answer challenging.

• While we reported the number of times various themes
from our qualitative data were mentioned, these num-
bers may not capture the frequency or severity. Rather,
they likely capture how salient or memorable the
theme was for participants.

• Given the number of open-ended responses and the
amount of work required, we opted to have just one
coder categorize the open-ended themes. More robust
themes may have emerged with more coders.

• While this paper examined the effects of anonymous
author code review in several dimensions, the practice
may yet have other effects not fully explored in this
study, effects such as relationship building and knowl-
edge sharing.

6 Discussion
We found that for about 77% of non-readability reviews,
developers performing anonymous author review correctly
guessed the author’s identity. Rather than concluding that
blind code review doesn’t work or is impossible in practice,
we instead argue that guessability is simply the unavoidable
reality of contemporary code review. Nonetheless, our results
suggest that “low context” changes are less guessable than
other changes, and thus may be particularly effective places
for implementing anonymous author review; such low con-
text changes include readability reviews, large scale changes,
and small changes. But even for reviews where authors are
guessable, there may yet be benefits to anonymous author
code review. First, as McKinley argues of double blind pa-
per review, “the very act of omitting author details on the
paper. . . reminds reviewers that they should judge the paper
on its merits rather than based on whomever they guess the
authors might be” [41]. Second, we hypothesize that if author
information is regularly hidden during code review, it may
become less prominent in reviewers’ minds (this was not the
case in this study, since we frequently prompted developers
to guess author identity). Third, we hypothesize that even if
reviewers are 95% certain of author identity, the remaining

5% of doubt will be enough to change one’s behavior. These
hypotheses could be evaluated in future studies.

One finding from the study was that code reviews took
longer, for both the treatment group and the control group.
While we interpret this to mean that anonymous author code
review per se did not cause the increase in reviewing time,
it is still possible that anonymous author code review could
nonetheless increase reviewing time in a non-experimental
field deployment. If the time increase is due to a novelty
effect [42], we would expect active review time to come
back down after the novelty wears off. On the other hand,
anonymous author code reviewers might take more time to
review because the nature of their feedback changes, for ex-
ample by being more explicit, which may in turn yield higher
quality reviews. Which of these possibilities will materialize
in practice requires further study in a larger scale but less
experimental (e.g., no reports) study.

We found that fairness was, for most reviews, not per-
ceptibly different from reviewers’ and authors’ expectations.
We do not interpret this to mean that anonymous author
code review cannot make reviews more fair, but rather that
any changes in fairness were not perceptible to the group of
respondents as a whole. We instead argue that anonymous
author code review is more fair by construction, because
irrelevant personal details are excluded, to the extent possible,
from the decision making process.

For organizations that choose to implement anonymous
author code review, we have several recommendations based
on our results. The first is that the downsides appear minor
for implementing author-anonymous review on low-context
changes, where the reviewer has limited contextual informa-
tion about the change prior to review. In open source, for
instance, pull requests from newcomers might be a low-risk
place to start implementing anonymous author code review.
In terms of which features to implement for anonymous author
code review, we recommend:

• Implement a break-the-glass option for revealing au-
thor identity, which participants were strongly in favor
of. The downsides to this option are minimal; our
results suggest the feature is rarely used, and when
it is, it’s used largely for important reasons such as
understanding who’s making access control changes.

• Implement displaying author time zone information,
which participants were also strongly in favor of. This
allows developers to make informed decisions about
when to review.

• Reveal author information by default after LGTM
is granted. This would allow developers to maintain
familiarity with their colleagues’ work, which was a
downside of anonymous author code review as imple-
mented in this study.

7 Related Work
Studies on the impact of code review have become increasingly
popular. Microsoft [31] found that developers report using
code review not only for finding bugs, but also for knowledge
transfer. Developers reported that they provided more useful
and detailed feedback when they were also experts in the
code being reviewed, as they had relevant context for the
review. Sadowski and colleagues also found that at Google,
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there were similar practices around using code review for
knowledge transfer, and that reviewers with context pro-
vided valuable feedback to the author [19]. A later study
at Microsoft confirmed that a reviewer provided more useful
comments when they had prior experience with the code being
reviewed, though there was no difference based on whether
the reviewer and author were on the same team [43]. This
is particularly important for the effectiveness of anonymous
author code review: reviewers provide more useful comments
if they are familiar with the code, but our study suggests that
reviewers who are familiar with the code may be more likely
to successfully guess the author’s identity.

Prior work has shown that in open-source code reviews,
female authors are less likely to get their patch accepted
when their gender is known [2]. Additionally, German and
colleagues have found that fairness is a concern in open-source
code reviews [27]. German and colleagues describe four types
of fairness relevant to code review: distributive fairness, proce-
dural fairness, interaction fairness, and information fairness.
Anonymous author code review addresses distributive fairness
by improving the equity and equality in how authors are
treated in code review. Anonymous author code review also
adds procedural fairness as it is a form of bias suppression.

While there is little prior work on anonymous author
code reviews, there is significant prior work in anonymization
in the peer-reviewed research papers. Prior work has found
that anonymizing the author and affiliations from the peer
reviewers increases representation of female authors [44] and
also increases the representation of less-famous authors and
authors from lower-prestige institutions [8]. These results have
also famously held in areas outside of peer reviewed publica-
tions, such as in orchestral auditions [7] and in hiring [45].

There has been some prior work in non-technical factors
that impact the outcome of code reviews. Baysal and col-
leagues examined several such factors, including the author’s
prior experience [46]. They found that prior experience im-
proved the likelihood that a patch is accepted, and reduced
the time spent in code review. However, it is not known
whether this is a direct result of the author’s prior experience
or an artifact of bias on the part of the reviewer. Kononenko
and colleagues also examined the impact of an author’s prior
experience on the quality of the review and found that it does
not affect review quality [47].

8 Conclusion

While in principle anonymization reduces bias during code re-
view by removing decision-irrelevant information (e.g., when
an engineer has gender biases, removing identity removes the
most salient gender signal), the principle is threatened by
practical considerations, such as the ability of reviewers to
guess author identity. In this paper we described a field study
of anonymous author code review, building an understanding
of its benefits and drawbacks. Building on this increased un-
derstanding, we encourage researchers to investigate whether
anonymous author code review reduces disparities in code
review outcomes, such as the gender gap in pull request
acceptance rate [2].
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Supplemental Material

1. Invitation Email
Dear Googler,

We’re writing to invite you to participate in a study about “blind” code review, which we define as
the practice of reviewing a changelist (CL) without explicit knowledge of the author’s identity.
You were selected randomly from a pool of qualified Googlers. This invitation is for you only;
please do not forward it to your colleagues.

To experiment with this idea, we’ve created a Chrome extension that hides CL author
information from Critique and Gmail, and modified CL Monitor to hide author information as well.
If the experiment goes well, we’ll work towards implementing the idea more widely within
Google. But we need your help, by participating in this study!

To be eligible to participate, you must agree to do the following over the course of the study (just
FYI on what you can expect -- no need to do these yet):

● Install our Chrome extension. The extension modifies the Critique and Gmail pages
you look at to hide author information about CLs. The extension also collects
information about which CL you are reviewing and what extension features you use.

● Complete a short questionnaire after each LGTM you grant.
● Complete a questionnaire at the end of the study.
● Create an email filter that collects Critique emails and skips your inbox, so that you

don’t get email notifications in any device, such as your mobile device (we will provide
explicit instructions for doing this). If you still want to get notifications when you receive
a CL to review, we recommend that you install CL Monitor. You should refrain from
looking at these Critique messages on mobile and non-corp devices, since our
extension will not be able to blind these messages on such devices.

● Refrain from using Inbox during the study. The reason is that our extension does not
blind Critique emails in Inbox. As a reminder, Inbox will shutting down in the middle of
March.

● Refrain from discussing your participation in the study with other Googlers, until the
study period is complete. In particular, authors of CLs that you review will not be
aware that you are participating in this experiment, and your identity will not be blinded
to the author of the CL. We will, however, contact some CL authors with a survey so
that they can report if they noticed any differences in how their CLs are reviewed.

Other things to note about the study:



● The study will last about two weeks
● You will be able to “unblind” any changelist in Critique, if you decide that viewing

changelists in a blind manner will significantly diminish your ability to work effectively.
Please use this ability sparingly and using your best judgement. You will have the
opportunity to report such unblinding in the survey.

● Not every participant in the study will be performing blind code reviews. Some
participants will review CLs as normal, but still be asked to answer our survey
questions. These participants are critical to establish baseline measures.

● This study only applies to code reviews through Critique, not those through GitHub,
Gerrit, etc.

● The purpose of the study is not to evaluate people or even the way we have
implemented it with a browser extension, but instead to evaluate the impact of blind
code review at Google, how/if ever we might implement it in the future.

That’s it! If you’d like to participate in this study, please fill out this short questionnaire by XXX.
Once you submit the form, expect to hear from us within the next two days for further
instructions on how to participate.

Sincerely,

Emerson Murphy-Hill & Jill Dicker
Engineering Productivity Research

2. Treatment Group Welcome Email
Thank you for volunteering to be part of our study on blind code review! We hope that you are
as excited as we are!

You have been selected to perform code reviews in Critique in a blind way (that is, without
knowing the identity of the authors). Please complete the following instructions as soon as
possible:

● Please install our Chrome extension. This extension will ensure that you receive
survey invitations after each code review, and that author information is hidden from
you.

● Please create an email filter that collects Critique emails and skips your inbox, so that
you don’t get email notifications in any device, such as your mobile device. If you still
want to get notifications when you receive a CL to review, we recommend that you
install CL Monitor. To make things easier, there are two ways you can create this filter:

A. Click on Settings -> Filters in Gmail -> Import filters, then upload this xml file; or



B. Create a filter in Gmail that skips the inbox with the following values:
to: XXX@google.com

● If you use CL Monitor, please update your extension and in the options page check the
blinding option. Since CL Monitor uses local storage for preferences, you will need to
check this option on your workstation and laptop. This will ensure that author
information will be hidden in CL Monitor.

For the next two weeks:
● The extension will prompt you to fill out a survey after you grant an LGTM to a

changelist. Please fill out each survey at your earliest convenience, preferably before
moving on to your next task. If you’re a readability reviewer, please fill out this survey
before you fill out your usual readability survey.



● You will be able to “unblind” any changelist in Critique, if you decide that viewing
changelists in a blind manner will significantly diminish your ability to work effectively.
Please use this ability sparingly and using your best judgement. You will have the
opportunity to report such unblinding in each follow-up survey.

● Refrain from looking at Critique messages on mobile and non-corp devices, since the
extension will not be present on those devices to remove author information.

● Refrain from discussing your participation in the study with other Googlers, until the
study period is complete (in about 2 weeks). In particular, authors of CLs that you
review will not be aware that you are participating in this experiment, and your identity
will not be blinded to the author of the CL. We will, however, contact some CL authors
with a survey so that they can report if they noticed any differences in how their CLs
are reviewed.

● Refrain from using Inbox during the study. The reason is that our extension does not
blind Critique emails in Inbox. As a reminder, Inbox will be shutting down any day now.

● Note that our Chrome extension isn’t perfect, and might inadvertently reveal author
information. Please do your best to work around such issues, and feel free to report
bugs.

In two weeks, we will send you another email informing you that the study has ended and
asking you to fill out the final survey.

Thanks again,

Emerson Murphy-Hill & Jill Dicker
Engineering Productivity Research

3. Control Group Welcome Email
Thank you for volunteering to be part of our study on blind code review! We hope that you are
as excited as we are!

You have been randomly selected to be part of the control group. This means that you will be
performing code reviews in Critique as you usually do (knowing the identity of authors), but will
still be asked to report your experience after each code review and at the end of the study. The
control group is critically important as a reference point against which to compare those who are
in the treatment (blind code review) group.

Please complete the following instructions as soon as possible:



● Please install our Chrome extension. This extension will ensure that you receive
survey invitations after each code review.

● Please create an email filter that collects Critique emails and skips your inbox, so that
you don’t get email notifications in any device, such as your mobile device. If you still
want to get notifications when you receive a CL to review, we recommend that you
install CL Monitor.  This step ensures that participants in the control group have a
similar experience to participants in the treatment group. To make things easier, there
are two ways you can create this filter:

A. Click on Settings -> Filters in Gmail -> Import filters, then upload this xml file; or
B. Create a filter in Gmail that skips the inbox with the following values:

To: XXX@google.com

For the next two weeks:
● The extension will prompt you to fill out a survey after you grant an LGTM to a

changelist. Please fill out each survey at your earliest convenience, preferably before
moving on to your next task.

● Refrain from looking at Critique messages on mobile and non-corp devices, since the
extension will not be present on those devices to remove author information.

● Refrain from discussing your participation in the study with other Googlers, until the
study period is complete (in about 2 weeks). In particular, authors of CLs that you
review will not be aware that you are participating in this experiment, and your identity
will not be blinded to the author of the CL. We will, however, contact some CL authors
with a survey so that they can report if they noticed any differences in how their CLs
are reviewed.

● Refrain from using Inbox during the study. The reason is that our extension does not
blind Critique emails in Inbox. As a reminder, Inbox will be shutting down any day now.

● Note that our Chrome extension isn’t perfect; feel free to report bugs.



In two weeks, we will send you another email informing you that the study has ended and
asking you to fill out the final survey.

Emerson Murphy-Hill & Jill Dicker
Engineering Productivity Research



4. Screener Questionnaire

Thanks for your interest in the study on blind code review. We define blind code review as the
practice of reviewing a changelist without explicit knowledge of the author’s identity.

<Google Data Collection Informed Consent Omitted>

* Required

If blind code review was regularly practiced at Google, I expect that...

Significantly decreased

Somewhat decreased

No change

Somewhat increased

Significantly increased

I don't know

my engineering quality would be...

my engineering velocity would be...

my job satisfaction would be...

our products' ability to serve users' needs would be...

my engineering quality would be...

my engineering velocity would be...

my job satisfaction would be...

our products' ability to serve users' needs would be...

What do you believe the most significant benefit of blind code review will be?



Your answer

What do you believe the most significant drawback of blind code review will be?

Your answer

How important is it for development tools to support blind code review at

Google?

Essential

Worthwhile

Unimportant

Unwise

I don't know

*

I want to participate in this study.

I do *NOT* want to participate in this study.

5. Author Survey
When working with this CL, did you look up any information about the reviewer(s) or

their work (e.g., on Teams or prior CLs)? If so, for what purpose?

During code review for this changelist, did you experience being treated as fairly as

you expected?

If you encounter serious issues or potential policy violations, these issues may warrant further investigation by HR,
including following up with you. You are encouraged to report concerns via any of the channels listed on
go/saysomething (including the anonymous helpline open to FTEs, Interns, and TVCs which is run by a helpline
provider that is entirely independent of Google) or talk to your HRBP (go/myhrbp), so it can be addressed
appropriately.

Less fairly than I expected



About the same as I expected / Don’t know / Not applicable

More fairly than I expected

Was there anything remarkable about the feedback you received from reviewers?

6. Post-LGTM Reviewer Form (Treatment Group)
CL Number (this answer filled in by the chrome extension)

Your answer

In your estimation, what effect did the blind code review process have, compared to

normal code review?

Significantly decreased

Somewhat decreased

No change

Somewhat increased

Significantly increased

Don't know

Review quality

Review velocity

Review fairness

Review quality

Review velocity

Review fairness



In this text field, the extension inserted data about your CL. This includes timestamps

of when you used the unblinding feature (if at all) and when you granted LGTM. If you

feel it is in error, please explain in the text box at the end of this form.

We’d like to know how often authors are guessable or otherwise known to reviewers.

How certain are you that you know the identity of the author of this CL?

Uncertain

Somewhat certain

Very certain

Who do you think the CL author is? (provide an LDAP)

Your answer

How did you know or guess the author’s identity? (check all that apply)

I unblinded the CL using the blind code review extension

The author contacted me outside of Critique

I needed to contact the author outside of Critique

The part of the codebase being changed

The author told me something about this change

The nature of the change (language, programming style, etc)

From the description of the change

The readability status of the CL

That this change did or didn’t need OWNERS approval

That the author did or didn’t need readability approval

I accidentally saw a notification or email about this CL

Other:



If you unblinded the CL using the extension, why did you do so?

Your answer

If you contacted the author or the author contacted you outside of Critique, why?

Your answer

Anything else we should know about this CL?

7. Post-LGTM Reviewer Form (Control Group)
CL Number (this answer filled in by the chrome extension)

Your answer

In your estimation, what effect did knowing the identity of the author of this CL have,

compared to not knowing their identity?

Significantly decreased

Somewhat decreased

No change

Somewhat increased

Significantly increased

Don't know

Review quality

Review velocity

Review fairness

Review quality



Review velocity

Review fairness

If you contacted the author or the author contacted you outside of Critique, why?

Your answer

If you looked up any information about the author or their work (e.g., on Teams or prior

CLs), for what purpose did you do so?

Your answer

Anything else we should know about this CL?

8. Final Questionnaire (Treatment Group)
How much did the study constraints (turning off Critique email notifications and

refraining from looking at Critique emails on mobile devices) impact your productivity?

Not at all

Slightly impacted my productivity

Significantly impacted my productivity

Setting aside those constraints, what effects did the blind code review process have,

compared to normal code review?

Significantly decreased

Somewhat decreased

No change

Somewhat increased

Significantly increased

I don't know



Review quality

Review velocity

Review fairness

Review quality

Review velocity

Review fairness

If blind code review was regularly practiced at Google, I expect that...

Significantly decreased

Somewhat decreased

No change

Somewhat increased

Significantly increased

I don't know

my engineering quality would be...

my engineering velocity would be...

my job satisfaction would be...

our products' ability to serve users' needs would be...

my engineering quality would be...

my engineering velocity would be...

my job satisfaction would be...

our products' ability to serve users' needs would be...

What was the main benefit you experienced during this study while performing blind

code review?



Your answer

What was the main drawback you experienced during this study while performing

blind code review?

Your answer

To what extent were the changelists you reviewed during this study typical of those

the changelists you usually review?

Very typical

Somewhat typical

Not at all typical (please explain at the bottom of this form)

How important is it for development tools to support blind code review at Google?

Essential

Worthwhile

Unimportant

Unwise

I don't know

The following questions ask about the importance of various features of a hypothetical

blind code review system at Google. For each statement, please rate how important

each feature would be to such a system.

Suppose a blind code review system supported blind communication between authors

and reviewers, outside of Critique. How important is supporting the following types of

communication?

Essential

Worthwhile



Unimportant

Unwise

I don't know

Blind chat

Blind email

Blind GVC with anonymizing face and voice distortion

Blind chat

Blind email

Blind GVC with anonymizing face and voice distortion

Suppose a blind review system is opt-in, where those who opt-in perform blind review

by default, but reviewers can unblind as they see fit. How important is it to allow opt-in

to be chosen by each of the following?

Essential

Worthwhile

Unimportant

Unwise

I don't know

Individual reviewers

Individual teams

Individual product areas (PAs)

The whole company

Individual reviewers

Individual teams



Individual product areas (PAs)

The whole company

During blind code review, without being informed of the author’s identity, how

important is it for reviewers to be able to see the following information about the

author?

Essential

Worthwhile

Unimportant

Unwise

I don't know

Tenure at Google

Level

Role (SWE, SETI, UXR, etc.)

Time Zone

Is a TVC

Is an FTE

Is an intern

Is on your team

How many CLs you’ve previously reviewed from this author

Whether they have readability in the language that CL is written in

Tenure at Google

Level

Role (SWE, SETI, UXR, etc.)



Time Zone

Is a TVC

Is an FTE

Is an intern

Is on your team

How many CLs you’ve previously reviewed from this author

Whether they have readability in the language that CL is written in

How important are the following features?

Essential

Worthwhile

Unimportant

Unwise

I don't know

Reviewers can unblind the author username as they see fit

Critique shows the author’s identity to reviewers after LGTM

Critique shows which reviewers of a CL, if any, are reviewing blind

Critique shows which reviewers of a CL, if any, unblinded an initially blind CL

An author can request that a CL be reviewed blindly

When a specific reviewer isn’t required (e.g., assigned through gwsq), an author is blinded to the

reviewer’s identity

Reviewers can unblind the author username as they see fit

Critique shows the author’s identity to reviewers after LGTM

Critique shows which reviewers of a CL, if any, are reviewing blind



Critique shows which reviewers of a CL, if any, unblinded an initially blind CL

An author can request that a CL be reviewed blindly

When a specific reviewer isn’t required (e.g., assigned through gwsq), an author is blinded to the

reviewer’s identity

Other than the features described above, what features do you think would be

important to a blind code review system at Google?

Your answer

We may reach out to a small number of engineers to interview them about their

experience during this study. May we contact you for an interview?

Yes

No

In this text field, the Chrome extension inserted data about the CLs you reviewed, if

any data was not captured in any previous forms. This includes timestamps of when

you used the unblinding feature (if at all) and when you granted LGTM. If you feel it is in

error, please explain in the text box at the end of this form.

Use the text box below to provide context for your previous answers, or tell us anything

else we should know about blind code review.

9. Final Questionnaire (Control Group)
How much did the study constraints (turning off Critique email notifications and

refraining from looking at Critique emails on mobile devices) impact your productivity?

Not at all

Slightly impacted my productivity



Significantly impacted my productivity

If blind code review was regularly practiced at Google, I expect that...

Significantly decreased

Somewhat decreased

No change

Somewhat increased

Significantly increased

I don't know

my engineering quality would be...

my engineering velocity would be...

my job satisfaction would be...

our products' ability to serve users' needs would be...

my engineering quality would be...

my engineering velocity would be...

my job satisfaction would be...

our products' ability to serve users' needs would be...

To what extent were the changelists you reviewed during this study typical of those

the changelists you usually review?

Very typical

Somewhat typical

Not at all typical (please explain at the bottom of this form)

How important is it for development tools to support blind code review at Google?

Essential



Worthwhile

Unimportant

Unwise

I don't know

The following questions ask about the importance of various features of a hypothetical

blind code review system at Google. For each statement, please rate how important

each feature would be to such a system.

Suppose a blind code review system supported blind communication between authors

and reviewers, outside of Critique. How important is supporting the following types of

communication?

Essential

Worthwhile

Unimportant

Unwise

I don't know

Blind chat

Blind email

Blind GVC with anonymizing face and voice distortion

Blind chat

Blind email

Blind GVC with anonymizing face and voice distortion

Suppose a blind review system is opt-in, where those who opt-in perform blind review

by default, but reviewers can unblind as they see fit. How important is it to allow opt-in

to be chosen by each of the following?



Essential

Worthwhile

Unimportant

Unwise

I don't know

Individual reviewers

Individual teams

Individual product areas (PAs)

The whole company

Individual reviewers

Individual teams

Individual product areas (PAs)

The whole company

During blind code review, without being informed of the author’s identity, how

important is it for reviewers to be able to see the following information about the

author?

Essential

Worthwhile

Unimportant

Unwise

I don't know

Tenure at Google

Level



Role (SWE, SETI, UXR, etc.)

Time Zone

Is a TVC

Is an FTE

Is an intern

Is on your team

How many CLs you’ve previously reviewed from this author

Whether they have readability in the language that CL is written in

Tenure at Google

Level

Role (SWE, SETI, UXR, etc.)

Time Zone

Is a TVC

Is an FTE

Is an intern

Is on your team

How many CLs you’ve previously reviewed from this author

Whether they have readability in the language that CL is written in

How important are the following features?

Essential

Worthwhile

Unimportant

Unwise



I don't know

Reviewers can unblind the author username as they see fit

Critique shows the author’s identity to reviewers after LGTM

Critique shows which reviewers of a CL, if any, are reviewing blind

Critique shows which reviewers of a CL, if any, unblinded an initially blind CL

An author can request that a CL be reviewed blindly

When a specific reviewer isn’t required (e.g., assigned through gwsq), an author is blinded to the

reviewer’s identity

Reviewers can unblind the author username as they see fit

Critique shows the author’s identity to reviewers after LGTM

Critique shows which reviewers of a CL, if any, are reviewing blind

Critique shows which reviewers of a CL, if any, unblinded an initially blind CL

An author can request that a CL be reviewed blindly

When a specific reviewer isn’t required (e.g., assigned through gwsq), an author is blinded to the

reviewer’s identity

Other than the features described above, what features do you think would be

important to a blind code review system at Google?

Your answer

We may reach out to a small number of engineers to interview them about their

experience during this study. May we contact you for an interview?

Yes

No

In this text field, the Chrome extension may insert data about the CLs you reviewed, if

any data was not captured in any previous forms. This includes timestamps of when



you used the unblinding feature (if at all) and when you granted LGTM. If you feel it is in

error, please explain in the text box at the end of this form.

Use the text box below to provide context for your previous answers, or tell us anything

else we should know about blind code review.

Your answer

10. Analysis of Miscellaneous Open-Endeds

After every CL, we asked participants: “Anything else we should know about this CL?”.  Before
and after the study, we also asked participants: “Use the text box below to provide context for
your previous answers, or tell us anything else we should know about blind code review.”

In response to the first question, some participants provided a quick summary of the change,
i.e., “C++ readability review”, “automatically generated CL”, “clean up CL”, etc. In response to both
of these questions, many participants offered similar or additional context to what was
requested in the other preceding open response questions within the surveys, such as how they
knew the identity of the author, why they contacted them, issues with the extension, or general
feedback on the concept of blind code review or requested features. There were no emergent
themes beyond those reported in the analysis and summary of the other open text responses.

11. Manually categorized reviewer-provided reasons for inferring
author identity

Category Description

automated CL automatically generated CL

bug Saw the author's name in a bug associated with the CL.

design
doc/other
documentatio
n

Saw the author's name in a document associated with the CL,
normally a design doc. In these cases the respondent did not
always specify whether the document was linked within the CL
description.

review started
before study

The reviewer had begun reviewing the CL prior to entering the
study and/or installing the extension.

workspace/gr
oup name The workspace/group name included the author's username.



comments in
CL

Most frequently, other reviewers addressed the author by name in
their comments. Also includes cases when the author's name was
included in a TODO comment.

extension
failed

The extension failed to hide the author's name, often momentarily
while the CL was loading.

not blinded -
unclear why

The author's name was visible. Based on the level of detail in
these comments it's unclear whether it was a result of the
extension failing.

opened on
device without
extension

The reviewer opened the CL on a device on which they had not
installed the blinding extension.

physical
proximity

The reviewer sits close enough to the author that they saw the CL
on their screen or heard them talking about it.

process of
elimination /
list of other
reviewers +
CC line

Based on the list of individuals listed as reviewers and/or CCed on
the CL, the reviewer was able to deduce who the author was.
Common in small teams or when the reviewer knows everyone
who is working on a certain task.

readability
tracking
spreadsheet

The spreadsheet which assigns readability reviewers to CLs
includes the author's name.

task

The reviewer knew the author was working on the
content/task/featureproject associated with the CL for various
reasons. Ex: heard them mention it in stand-up. See also the
common sub-categories below.

requested the
change The reviewer had requested the change from the author.

discussed the
change
beforehand

The reviewer had discussed the change with the author before
they submitted it.

linked or
follow up CL

The CL in question was one within a series by the author that the
reviewer was aware of and had been involved with in some way.
Includes CLs following up on previous CLs.

diffbase
In several cases the author's name appeared in an associated
diffbase CL.

username in
additional
places

The author's name showed up in an another tool which the
reviewer viewed during the review. These include: git5 workspace
name, sponge link in CL, g3doc preview page, code search
history, screen capture.



12. Guessable vs. Non-Guessable Reviews: An Analysis of Review
Velocity
The analysis so far includes CLs where the reviewer knew the author’s identity implicitly with
those CLs where the reviewer did not. We also investigated review time, separating these two
cases.

To do so, we repeat our RLR regression, with three modifications:
- We exclude readability reviews, since the number of known-author readability reviews are

both exceptional and small in number.
- We exclude control group participants, which contain no unknown-author reviews by

design.
- We replace the time period covariate with a condition covariate with 5 levels: Before

(baseline), During-Author-Certain, During-Author-Uncertain,
During-Author-Somewhat-Certain, After

This regression shows that, compared to CLs reviewed before the study began, CL reviews
during the study took:

- 16% less time to review when the reviewer was uncertain of the author’s identity
- 15% more time to review when the reviewer was somewhat certain of the author’s

identity
- 34% more time to review when the reviewer was very certain about the author’s identity

All three effects were statistically significant (p<.01, adjusted McFadden R2=0.06). This analysis
suggests that greater knowledge of the author identity is associated with increased review time.

We were surprised by this finding, given that many participants told us that an experienced
drawback of author anonymous code reviews was reduced velocity. However, many participants
also articulated reasons why author anonymous code review actually increased their velocity.
For example, participants said the main advantage of author anonymous code review was:

● “Less time trying to guess intent”
● “less time thinking about the background that the author approaches their CL with”
● “I didn't spend time considering the social dynamics of the code review interaction -- I

wrote respectfully, but didn't have to fine-tune my register or my standards of review
depending on my familiarity with the author.”

● “taking a step ("this author may / may not know what [s]he is doing") out of the process
and just try to understand the code.”

● “For common CLs from other teams, I realized I didn't have to care who was sending the
cl, instead I could review the cl under the assumption that they were intending (and
should be intending) to do what the cl description stated.”

● “No time wasting looking up the author and their team”



Nonetheless, we were skeptical that knowledge of author identity alone could increase
reviewing speed so substantially. To investigate further, we modified our regression model
above to predict the number of comments and average comment length in a CL. These models
revealed that being uncertain about author identity correlated with fewer comments (-18%,
p<.001, adjusted McFadden R2=0.10) and shorter average comment length (-12%, p<.001,
adjusted McFadden R2=0.006). As a whole, we interpret this to mean that uncertain participants
reviewed code faster largely because, at least in part, they were making fewer and shorter
comments.

But did author anonymous code reviewers write fewer and shorter comments because they
didn’t know the author’s identity, or because CLs with unknown authors are fundamentally
different from those CLs with known authors?

To investigate this question, we directly asked participants about why they “might have added
fewer comments on these ‘uncertain’ CLs?”. In particular, we sent follow up emails to the
participants who reported at least 10 instances of being uncertain about author identities.
Fourteen out of 15 participants we emailed responded, citing the following rationales:

- Five participants said that trivial or straightforward changes -- small modifications,
library upgrades, clean ups, and so on -- could both be performed by multiple potential
authors and are unlikely to incur code review comments.

- Two participants noted that their roles as Site Reliability Engineers meant that they often
reviewed configuration changes from people they did not know, changes which had
minimal impact on production so were unlikely to incur comments.

- Two participants noted that they reviewed a large number of CLs that are largely
boilerplate, which both get authored by people they don’t know and are unlikely to
contain problems worth commenting on. Similarly, another participant said that many
CLs they review are created by a variety of engineers using a tool specific to his org, a
tool whose changes typically don’t require much feedback.

- One participant noted that the more comments on a CL, the more likely the discussion
about the CL would be taken offline, breaking anonymity.

- One of the participants who reviews a lot of changes submitted by different teams said
that in the cases where they are certain of author identity, they have been more involved
with the project beforehand and have stronger interest, opinions, and feedback to offer,
which results in more comments.

- One participant said they could determine a CL author’s identity by the way they
responded to comments, so the more comments they left, the easier it was to determine
their identity.

- One participant said that CLs from people he doesn’t know are likely to get fewer
comments from him, because the participant also does not know the codebase well.

- One participant noted that their team recently grew substantially to include many people
they did not know, and the participant performed code reviews for the new people
specifically for the purpose of increasing his knowledge of those people’s code, rather
than to provide feedback.



- One participant said that knowing the author’s identity allows them to leave more
tailored feedback, which in some cases, would result in more comments (e.g., for a new
employee).

This last comment was the only one where the reviewer said they wrote fewer comments
because they didn’t know the author’s identity. Based on the other comments, we conclude that
CLs with unknown authors are often fundamentally different from those CLs with known
authors.

13. Hypotheses for Why Control Group Authors Perceived More Fair
for Readability Reviews

- Perhaps the results are a statistical anomaly caused by a violation of the model’s
assumption of a linear relationship between the three outcomes (more fair, less fair,
same). To test this hypothesis, we ran two separate linear regressions with the same
independent variables a binary dependent variable: Model A that combined the “less fair”
and “same” responses and Model B that combined the “more fair” and “same”
responses. Model A confirmed our original model, that for readability, control group
participants were more likely to receive a “more fair” rating. Model B showed no effect of
group, that control and treatment groups did not show a significant difference in
likelihood to report a less fair experience than expected. These results suggest that our
original model’s differences were driven largely by the “more fair” ratings, and that our
results are unlikely to be caused by violating the linearity assumption.

- Perhaps a few reviewers were disproportionately contributing multiple high-fairness
reviews from multiple authors. This hypothesis is bolstered by the fact that of the 14
reviewers in the treatment group to receive a “more fair” review rating, only 1 received
multiple “more fair” ratings; in the control group, 5 of 13 did. To investigate this
hypothesis, we ran a second regression predicting mean fairness scores per-reviewer
using a similar regression to the one described above. This model also showed that
readability reviews given by reviewers in the control group were still more likely to give
“more fair” ratings. So this hypothesis is also not confirmed.

- Perhaps during author anonymous code review, authors at lower levels may feel more
fairly treated while reviewers at higher levels may feel less fairly treated having
previously been granted more leeway during code review, leeway that was not granted
during author anonymous review. This hypothesis would explain our results above if
these two opposite effects were cancelling each other out.  To investigate this, in our
regression models we included a 3-way interaction between control/treatment,
readability, and author level. No significant interaction emerged, disconfirming this
hypothesis.


