
Accessibility of Command Line Interfaces
Harini Sampath

Google Inc.
Seattle

harinis@google.com

Alice Merrick
Google Inc.
Seattle

amerrick@google.com

Andrew Macvean
Google Inc.
Seattle

amacvean@google.com

ABSTRACT
Command-line interfaces (CLIs) remain a popular tool among de-
velopers and system administrators. Since CLIs are text-based in-
terfaces, they are sometimes considered accessible alternatives to
predominantly visual developer tools like IDEs. However, there is
no systematic evaluation of the accessibility of CLIs in the litera-
ture. In this paper, we describe two studies with 12 developers on
their experience of using CLIs with screen readers. Our findings
show that CLIs have their own set of accessibility issues - the most
important being CLIs are unstructured text interfaces. Based on
our results, we provide a set of recommendations for improving
the accessibility of command-line interfaces.

CCS CONCEPTS
• Human-centered computing → Command line interfaces;
Empirical studies in accessibility.

KEYWORDS
accessibility, command-line interfaces, screen reader users, devel-
opers with visual impairments

ACM Reference Format:
Harini Sampath, Alice Merrick, and Andrew Macvean. 2021. Accessibility of
Command Line Interfaces. InCHI Conference on Human Factors in Computing
Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3411764.3445544

1 INTRODUCTION
Though command-line interfaces (CLIs) are less popular end-user
interfaces than GUIs, they remain an important tool for developers,
and system administrators [4, 20]. For these technical users, CLIs en-
able more efficient interactions than GUIs and allow them to create
custom workflows through scripting [20]. Many popular developer
tools (e.g., git, docker) and almost all major cloud providers offer
command-line interfaces (e.g., GCP. AWS, Azure, Digital Ocean)
for their technical users.

Text is the primary mode of interaction with CLIs. Users input
commands, which are lines of text that adhere to a specific syntax
and receive a response from the command, which is also in the
form of lines of text. Interaction with a CLI is mostly through the
keyboard.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8096-6/21/05.
https://doi.org/10.1145/3411764.3445544

Both these qualities - a) being a text-based interface and b) being
an interface that can be accessed entirely through a keyboard -
make CLIs an attractive option in terms of accessibility for devel-
opers with visual impairments (DWVI). In literature around the
accessibility of developer tools and personal accounts of program-
mers with visual impairments, CLIs are often considered accessible
alternatives to other visual developer tools (e.g., IDEs) [7, 22, 25].

Perhaps due to this assumption that CLIs are inherently more
accessible, there has been no systematic evaluation of their acces-
sibility to date. While being a text- and keyboard-based interface
contributes to improved accessibility compared to graphical user in-
terfaces, this does not necessarily translate into a completely acces-
sible user experience. For instance, being text-based and keyboard-
operable would meet only a small subset of the WCAG [5] criteria.

In the research described in this paper, our goal is to understand
if command-line interfaces are accessible to developers with visual
impairments (DWVI) who use screen readers. We describe two
studies with DWVI who use CLIs and describe their experience of
using CLIs with screen readers. We conclude by articulating a set
of recommendations for building accessible CLIs.

2 RELATED RESEARCH
2.1 Accessibility of Programming
In a recent survey, around 1.5 % [23] of software developers self-
report as having some form of visual impairment. However, many
modern programming tools are visual (e.g., IDEs, code review tools
and source code repositories). While programming is not inherently
a visual activity, it has been argued that the advent of visual tools
has made it inaccessible to individuals with visual impairments
[16, 28].

Existing research into making programming accessible has in-
vestigated multiple facets of the problem like - a) understanding
the needs of developers with visual impairments [1, 19] , b) build-
ing accessible developer tools [3, 25, 31], c) making programming
education accessible [10, 17], d) making visual artifacts associated
with programming (e.g., UML diagrams) accessible [9, 15].

In this paper, we review two particular areas of literature most
relevant to our research on CLI accessibility - i) understanding
the needs of developers with visual impairments and ii) building
accessible developer tools. When applicable, we also highlight the
assumption that CLIs are accessible alternatives to visual program-
ming tools.

2.1.1 Understanding needs of developers with visual impairments.
Research into understanding the needs of DWVI has sought to iden-
tify the issues developers face and the strategies and workarounds
they use while programming [1, 19].

In interviews with eight software developers, Mealin et al. [19]
found that DWVI use a variety of assistive technologies in their

https://doi.org/10.1145/3411764.3445544
https://doi.org/10.1145/3411764.3445544

CHI ’21, May 8–13, 2021, Yokohama, Japan Sampath, et al.

work, rely heavily on API documentation to get an overview of
the code structure, and feel they excel at tasks that do not require
vision like algorithm design. They also note the lack of development
tool usage by DWVI - most of them used text editors instead of
IDEs, printf debugging instead of debuggers, used temporary text
buffers for editing code outside the IDE, and preferred languages
like Python primarily due to the availability of the interpreter.
Albusays et al. [1] conducted a survey of 69 blind developers and
a follow-up study with more in-depth observations [2]. The most
frequent issues foundwere around IDE accessibility, debugging, and
code navigation. Common workarounds included printf debugging
and usage of text editors instead of complex IDEs.

It is interesting to note that many of the workarounds used, such
as text editors, printf debugging, and using a Python interpreter,
all require developers to interact with a command-line interface.

2.1.2 Building accessible developer tools. Writing, comprehend-
ing, and debugging code are canonical developer tasks [29]. There
have been multiple efforts in literature to make these experiences
accessible to DWVI by building accessible developer tools.

Making code structure accessible: Many cues about the structure
of source code like indentation and nesting hierarchies are encoded
visually, making it difficult for DWVI to comprehend and navigate
code with screen readers efficiently. SructJumper [3], is an Eclipse
plugin that creates a tree-based representation based on the hierar-
chical structure of source code. Developers can use this tree view
to comprehend the code’s high-level structure and switch to a text
editor to get the details. Schanzer et al. [27] extend this approach
of making the code structure accessible for multiple programming
languages with a language-independent, cloud-based toolkit. The
toolkit generates a block editor and audio descriptions for the code
structure. Codetalk [25], is a Visual Studio plugin that aims to make
multiple facets of IDE and thus software development accessible
like code comprehension, debugging, and working in a team. In
their formative studies, the authors found that DWVI use CLIs and
a text editor as an alternative to using IDEs.

Multimodal cues for encoding structure : A related approach to
improving source code comprehension is to encode signals about
code structure in the auditory and tactile modalities. Tactile Code
Skimmer (TCS) [8] uses haptic cues to convey the shape of code
with the intent of reducing the hearing load on developers who
already use screen readers. Stefik et al. [32] evaluated auditory rep-
resentation of a program using ’lexical scoping cues’ that convey
the nesting structure of code. They also introduce the concept of
’artifact encoding’ to measure the auditory comprehensibility of
auditory program representations. Hutchinson et al. [14] investi-
gated the effectiveness of speech, non-speech, and spearcons (rapid
speech-based auditory icons) to convey code structure. They found
non-speech sounds to be useful in identifying code constructs. Ludi
et al. [18] investigated the role of auditory cues in improving visual
programming languages like Scratch. They found that spearcons
resulted in the fastest time-to-completion, speech resulted in the
most accurate understanding of the code.

Accessible Debugging : Sodbeans [31] is a plugin for NetBeans
IDE that uses auditory cues to make debugging accessible. In moti-
vating the work, the authors state command-line based tools are

more usable for DWVI than visual programming tools. WAD [30] is
an auditory debugger for Visual Studio IDE. It uses auditory cues to
improve comprehension during dynamic behaviors in debugging,
like tracking program flow and change in variable values.

Research into improving accessibility of developer tools has
been concentrated on writing, comprehending, and debugging code.
However, in the real world, developers use multiple tools outside
their IDEs like documentation, command-line interfaces, source
code repositories, code review tools, etc. There is a lack of research
into understanding and improving the accessibility of these tools.
In this paper, we concentrate on one of these tools - command-line
interfaces.

2.2 CLI Accessibility
As stated in the previous section, in the literature surrounding the
accessibility of developer tools, CLIs are often considered a more
accessible alternative to graphical interfaces. Many workarounds
that blind developers use, like working with text editors, using
printf debugging, or using python interpreters for coding, often
imply the use of command-line interfaces [2, 19, 25]. There is also
the sentiment that CLIs are inherently more accessible than visual
programming tools [28, 31].

To reiterate the possible reasons behind this assumption, CLIs
do not suffer from two of the most common accessibility issues
found in graphical user interfaces: a) they are mostly keyboard
accessible and b) there is no need for providing alternative labels
for non-text content. However, this does not necessarily mean that
the experience of using a CLI with a screen reader is efficient.

To date, there has been no systematic evaluation of the accessi-
bility of CLIs. The most relevant prior work is accessibility research
on text-based video games [13]. In this work, the author describes
a case study based on their experience, making a text-based interac-
tive game accessible. They argue that their findings could translate
to command-line interfaces due to the similar pattern of text-based
interaction in both CLIs and text-based games.

Our primary intent in this research was to address this gap in
the literature around the accessibility of command-line interfaces.
In particular, our research goals were to

(1) Understand the experience of using CLIs with screen readers
(2) Understand the accessibility issues developers with visual

impairments face when using CLIs
(3) Articulate a set of guidelines to improve CLI accessibility
To this end, we report findings from two studies conducted with

developers with visual impairments who use screen readers.

3 METHODOLOGY
To investigate our research questions, we conducted two studies.
The first study was a set of semi-structured interviews with six
developers who use CLIs and screen readers to understand their
perception on CLI accessibility. In the second study, six developers
with visual impairments used a CLI for a period of two weeks
and reflected on the accessibility issues they encountered in an
interview session.

As part of Study 2, participants recorded some task data (e.g.
task time, success metrics) as well. These are reported in Section
4 . Analysis of qualitative data from Study 1 and Study 2 revealed

Accessibility of Command Line Interfaces CHI ’21, May 8–13, 2021, Yokohama, Japan

significant overlap in themes. These are reported together in Section
5.

3.1 Study 1 : User Interviews with DWVI
3.1.1 Participants. In this formative study, we interviewed six soft-
ware developers. The inclusion criteria were that participants self-
identified as - a) software developers, b) using screen readers, and c)
using command-line interfaces as part of their development work-
flow. Two of the participants reported using a braille display. Five
participants had some form of visual impairment. One participant
did not have a visual impairment, but extensively used screen read-
ers as part of their work. The participant details and their assistive
technology usage are available in Table. 1. Informed consent was
obtained from all participants. Each participant received $175 for
their time.

3.1.2 Procedure. The interviews were semi-structured. We asked
participants about - a) their workspace and assistive technology
usage, b) code development practices, c) the role CLIs played in
their developmental workflow, d) the issues they faced with using
CLIs, and e) what would be their ideal experience of using CLIs
with screen readers.

Four interviews happened remotely over Google Meet. Two par-
ticipants preferred to be interviewed over the phone. Each interview
session lasted approximately 90 minutes. All the interview sessions
were recorded and transcribed.

3.2 Study 2 : Usability evaluation of the CLI
We conducted a second evaluative study to further refine and con-
firm the findings from Study 1. In this study, developers used a CLI
for two weeks and reported on their experiences.

3.2.1 Participants. Six developers took part in this study. The inclu-
sion criteria were identical to the first study - software developers
who used CLIs and screen readers as part of their development
workflow. All participants in the study reported having some form
of visual impairment. All participants self-identified as legally blind.
One participant had some light perception. The participant details
are available in Table. 2. Each participant received $450 for their
time.

3.2.2 Procedure. In the second study, six developers remotely com-
pleted four tasks with the gcloud CLI [24] of Google Cloud Platform
- a) Install and setup the CLI , b) create a virtual machine in the
cloud, c) recognize text from a given image using a public machine
learning service and d) deploy a docker container to the cloud in-
frastructure. All participants chose to use JAWS screen reader on a
Windows machine to complete their tasks.

The second study consisted of three parts: a) an onboarding
interview explaining the tasks, a brief interview of their code de-
velopment workflows, and provision of credentials and access to a
cloud platform to complete the tasks, b) the participants spent two
weeks working on the tasks and recorded their experiences, and c) a
final interview reflecting on their experiences of working with CLIs
and their accessibility. All communications with the participants
used plain text email. Participant P2.1 dropped out of the study
after the onboarding session, so their entries are not reported here.

3.2.3 Task Entries. Participants were provided the following struc-
ture for recording their entries - a) Give a brief overview of the
steps you used to perform this task, b) Did you complete this task?,
c) How long did you spend on this task?, d) What accessibility
or usability issues did you encounter on this task?, and e) What
resources or documentation did you use for this task?

They also recorded their perceived workload in completing each
task using a modified NASA TLX scale. The NASA Task Load Index
[11] measures subjective mental workload on five 7-point scales
with 21 gradations. For this study, we used three NASA TLX scales:
performance (success), effort, and frustration. The scales used were
7-point Likert scales, with one being lowest and seven highest.
Participants reported their TLX metrics after the completion of
each task.

We did not include the physical demand (e.g., physical activity
like pulling, pushing) scale from the NASA TLX as this construct
was not very relevant to our tasks. We also did not include the
temporal demand scale. Instead, we explained the four tasks to
the participants during the onboarding process and asked them
to estimate how long they anticipated each task would take them
to complete. We asked participants to keep track of the time they
started and stopped working on each task. After completing the
tasks, participants recorded the actual time the task took them. They
reflected on the difference between the estimated and reflected time
during the off-boarding interview.

3.3 Analysis
The transcripts from the interviews in Study 1 and the on-boarding
and off-boarding interviews in Study 2 were all coded using a
grounded theory approach [6]. The codes weremaintained in nViVo.
We found common themes emerging from both the studies. These
are reported together in Section.5. Any theme that emerged from
just one of the studies is noted explicitly.

4 RESULTS - TASK METRICS
4.1 Study 2 task metrics
Participants’ response to the NASA TLX scale is shown in Table.3,
Table.4, and Table.5. Figure.1 shows the estimated and actual time
taken for each participant for each of the tasks.

Participant P2.1 dropped out of the study after the onboarding
study, so their entries are not reported here. P2.3 and P2.5. had
the CLI already installed in the development environment they
were working on, even though they did not have prior experience
with the CLI. Hence, we do not report the TLX metrics for these
participants for Task 1.

Task 1 was the installation task. The installer for the CLI evalu-
ated in the study was GUI-based. The actual time users reported for
this task reflected their environment’s network latency rather than
actual time on task. Also, since the installer itself was GUI-based,
it did not add any additional insight into CLI accessibility, so we
chose not to report Task 1 time metrics in Figure. 1

The actual time to complete Task 2 (Mean(SD) : 129(111)minutes)
was significantly higher (t(4) = 2.34,p = 0.039) than the an-
ticipated time (Mean(SD) : 21(13.4) minutes). The time differ-
ences between anticipated and actual task times trended towards
significance for Task 3 (Anticipated : 32(26.1) minutes,Actual :

CHI ’21, May 8–13, 2021, Yokohama, Japan Sampath, et al.

Table 1: Participant Details - Study 1

Participant Assistive tech used for development work Platform or OS

P1.1 JAWS, NVDA, braille display Windows
P1.2 JAWS, NVDA, VoiceOver, braille display Windows OS on Mac
P1.3 JAWS, NVDA, VoiceOver Windows, Mac
P1.4 JAWS, NVDA Windows
P1.5 JAWS, NVDA Windows
P1.6 ChromeVox, ORCA, VoiceOver Linux, Mac

Table 2: Participant Details - Study 2

Participant Assistive tech used for development work OS Terminal

P2.1 JAWS Windows desktop-based
P2.2 JAWS, NVDA, Narrator, braille display, braille notebook Windows desktop-based
P2.3 JAWS, NVDA, braille display, braille embosser Windows web-based
P2.4 JAWS, NVDA, ChromeVox, braille display, braille notebook Windows desktop-based
P2.5 JAWS, Window-Eyes Windows web-based
P2.6 JAWS, NVDA, braille display Windows desktop-based

Table 3: Perceived Success. A higher score indicates higher
perceived success.

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6

Task 1 - 7 - 4 - 7
Task 2 - 6 7 6 2 6
Task 3 - 7 7 4 1 6
Task 4 - 5 6 3 1 4

Table 4: Perceived Effort. A higher score indicates higher
perceived effort.

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6

Task 1 - 5 - 7 - 3
Task 2 - 6 1 7 6 6
Task 3 - 2 1 6 5 7
Task 4 - 5 3 5 7 7

107(113.9) minutes, t(4) = −1.86,p = 0.06) and were statistically
significant for Task 4 (Anticipated : 33(24.9) minutes,Actual :
132(98.6)minutes, t(4) = −2.68,p = 0.02).

4.1.1 Discussion. While the task success rates in Study 2 were
high as shown in Table. 3, the effort (shown in Table. 4) and frustra-
tion (shown in Table. 5) to achieve the success was also relatively
high. This is also reflected in the difference in estimated and actual
time in Fig. 1. The relatively high success rate concurs with the
perception that CLIs are accessible. However, the high effort and
high frustration show that the user experience of using a CLI with
a screen reader is sub par. The analysis of open-ended interview
responses from Study 1 and Study 2 discussed in Section shed light
into the accessibility issues participants encountered.

Table 5: Perceived Frustration. A higher score indicates
higher perceived frustration.

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6

Task 1 - 2 - 7 - 1
Task 2 - 2 3 5 6 5
Task 3 - 2 1 7 5 5
Task 4 - 3 7 6 7 6

5 RESULTS - THEMES FROM STUDY 1 AND
STUDY 2

5.1 CLI Workflows
We asked participants about the type of tasks for which they used
CLIs. Participants mentioned using CLIs to compile and run their
code and scripts, source code management (e.g., working with git),
and connecting to remote machines (e.g., ssh-ing).

P1.3 : command-line is essentially a lot of script running, running
the code, I don’t write code using the command-line, I never do that,
almost never do that. Something like git commits, or git pushes, or set
up, running codes these kinds of development tasks is what, yeah.

P1.4 : File management, connection to remote resources, occasion-
ally downloading the files with wget and curl etc, logging into remote
systems, programming, short calculations by simply instantiating
Python.

5.2 Unstructured Text
While CLIs are text-based interfaces, much of the text represen-
tation in CLIs is unstructured. This means there is no underlying
structure for screen readers to take advantage of. For instance, in
web pages, html tags like h1 and h2 help screen readers infer the
structure and hierarchy of the pages and use hotkeys to navigate

Accessibility of Command Line Interfaces CHI ’21, May 8–13, 2021, Yokohama, Japan

(a) Participant P2.2

(b) Participant P2.3

(c) Participant P2.4

Figure 1: Anticipated time on task vs Self-reported time on
task

quickly to the next heading or another semantic tag (e.g., header,
nav).

The lack of underlying structure in the CLI results in users hav-
ing to parse content linearly, which is extremely inefficient. Users
mentioned three common areas where such unstructured text be-
comes problematic: man pages, tables, and long outputs from CLI
commands.

(d) Participant P2.5

(e) Participant P2.6

Figure 1: Anticipated time on task vs Self-reported time on
task

5.2.1 Navigation in terminal. Participants in both Study 1 and
Study 2 consistently noted the difficulty in navigating the terminal
with a screen reader. P1.1 and P1.2 noted in particular that simple
tasks like scrolling could be painful. P2.2 explained that it is almost
like trying to simulate a mouse with a keyboard and often does not
work reliably.

P1.1 : Scrolling in terminal is generally a pain
P1.2 : Sometimes the screen reader can’t, it’s almost as if you can’t

scroll past a certain boundary. So you have this buffer and you’re not
able you can’t scroll up past a certain point, or you can’t scroll down
past a certain point.

P2.2 : Because sometimes the limitation of a JAWS cursor, and I
think that’s the biggest limitation is like, it’s using themouse simulator
so sometimes it gets stuck at one point on the screen and then you
cannot navigate very well. It kind of sees what it’s seeing and then
it can only go so far, it doesn’t move very well. It’s almost like, what
we call a mouse cursor getting locked, almost. So, I couldn’t navigate
everything like I can on the web page.

Given that even simple navigation tasks like scrolling are difficult
in a terminal with screen readers, one of the common accessibility
issues mentioned was the difficulty in consuming unstructured text
that often appears as output of commands.

5.2.2 Man Pages. Man (short for manual) pages are a form of in-
terminal documentation for CLI. They have the advantage of being

CHI ’21, May 8–13, 2021, Yokohama, Japan Sampath, et al.

available fromwithin the terminal without having to context switch.
They are usually invoked by man [command] or [command name]
--help.

Participants in Study 1 called out man pages as a canonical
example of unstructured text in a CLI. Fig.2 shows the man page
for the ls command that lists the contents of a directory. While
the content in Fig.2 appears formatted, it is simply not possible to
navigate this content like a web page equivalent. For instance, users
can not jump to headings or skip sections to reach the location they
want. They would have to painstakingly read this content linearly
multiple times to get the information they are seeking.

Workarounds : The workarounds participants use for man pages
were diverse depending on their background. P1.1 mentioned hav-
ing to write their own script to render man pages in a browser
while P1.3 mentioned they never use man pages and rely only on
web-based documentation.

P1.1 : I wrote a script to render man pages in browser
P1.3 : I just fall back to the web if I need to read documentation, I

do a web search and go through it that way because man pages are
very unstructured in terms of navigating with a screen reader, so it
gets very cumbersome to navigate man pages.

This theme emerged primarily from Study 1, since the CLI used
in Study 2 offered html version of all reference documentation. So
users did not have to rely on just man pages.

5.2.3 Tables. This theme emerged in both Study 1 and Study 2.
Tables are a common form of unstructured text in CLIs. Many

CLI commands present their output in a tabular format. An example
is shown in Fig. 3 . While this appears structured with a title, row,
and columns, this is just visual formatting, and there is no inherent
structure here that is available to screen readers. Users can not
easily tab through to a desired row and column or have a row
heading announced. They would have to parse linearly and rely on
their memory to contextualize the current element at their cursor
location.

Most participants’ common workaround was to try to memo-
rize the column names and hypothesize which column an element
belongs to as they parse the table linearly.

P1.1: Usually, I just try to keep track of it all in my head because I
haven’t been able to figure out a good way to navigate tables. So I’d
just have to memorize the column names and then manually navigate
between each piece of information and try to remember what column
it’s associated with.

P1.5: A good example is the top command where it has the six or
seven columns going across the screen to show the PID and the memory
percentage and the CPU percentage and all that, that, those are a little
bit challenging to read because, since a screen reader won’t be able
to interpret that as a table, you have to memorize which numbers go
with which columns and which order they will appear in. So, anything
that’s tabular like that is hard

Some participants mentioned that this process becomes easier as
they repeatedly use a command, but this could be an arduous task
if the number of columns is large or the first time they encounter
the table.

P1.4 on relying on their past experience to read the content in
Fig. 3 : you always know the process line that comes first, you know

the process then comes next, you know the amount of CPU usage of
the next column, memory is the next one

5.2.4 Ideal Experience. When asked what the ideal experience
would look like, participants wished that the CLIs would be flexible
enough to convert tables into a format more suitable for consump-
tion via screen readers. Popular choices included the ability to
transform to flattened tables for easier parsing or being able to
export these tables as html or comma-separated files so that they
could read these in a browser or spreadsheet software.

P1.4 : I’ve done stuff like that before where I’ve written a full script,
to just take the output of something that was tabular in nature and
literally make it into a table by wrapping it in the table and some
<td>s and <tr>s and calling it a day.

P2.5 : I love flattened tables. I absolutely do because thatś just the
way that JAWS, interacts in a non-tabular form most of the time.
If that exported as a CSV, would pop straight up into [spreadsheet
software] and be on my way.

5.2.5 Long output text. This theme also emerged in both Study 1
and Study 2.

Many CLI commands provide long output texts as the response.
Due to the difficulties navigating in the terminal, users reported
copying the terminal contents to a notepad to review the content.
This workaround makes it easier to perform tasks like searching
for a keyword.

P1.5: I will have it display all of the text, so even if it’s four or five
screens ... I will select the entire scrollback buffer and copy it and paste
it in Notepad, and then I’ll review it in Notepad - it’s easier to do that
in a Notepad editor window. Or if I want to copy and paste text, that’s
much easier to do from the editor.

P1.4 : Let’s say I’m doing a Port Scan of a network and I have really
long output, then what I would do is I would output it to a file

Multiple utilities would allow users to search for a piece of text in
a long output from within a CLI (e.g. grep). For instance, in the out-
put snippet illustrated in Fig. 4, the field "description" contains the
most useful information. Using a utility like grep (e.g., [command]
| grep ’description’) would make it easy to parse just that line
of information.

However, in our study, participants did not report using these
utilities. This was because they did not have a mental model of the
output they are looking at until they review the content at least
once.

Unlike APIs, most CLI commands do not document their output
contract. So this means a user has no idea what to expect out of a
command until they actually execute it. They do not have a schema
in their mind ahead of time for the output they are parsing, which
makes it very difficult to comprehend the output and, in particular,
search for a specific value.

For instance, PC described his experience of obtaining the output
in Fig.4 like this :

P2.3 : But the results were pretty scrambled, I mean, they, I couldn’t
makemuch sense out of it other than the fact that they were, something
to do with a graph, Y-axis with an X-axis, coordinates. They were
like, Y, left brace, right brace, 500, then XX, then like, it was weird, I
thought it was a bit weird.

Accessibility of Command Line Interfaces CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 2: A typical man/help page.

5.3 Status and Progress Indication
This theme also emerged in both Study 1 and Study 2.

5.3.1 Lack of Status and Progress Indication. Linux has the con-
vention where a silent return without any errors is considered
success [26]. This convention translates to many commands, not
providing explicit progress and status indication. Unsurprisingly,
participants found this paradigm difficult with screen readers. For
instance, since the screen readers did not vocalize any status, P2.4
resorted to observing any brightness changes on their screen.

P2.4: Yeah, it might have been something on the screen, but the
screen reader didn’t say anything. Because I can tell there’s much
that when I was doing there, the screen would get a little bit darker.
That would tell me something is on there, but I don’t know, I can’t
see enough, so I don’t know what. But then when I moved my focus
away from it the screen would brighten up normal, so there’s probably
something happening, but I can’t tell what’s going on.

P1.1 observed this lack of status indication as a general issue
when working with CLIs.

P1.1 : sometimes it’ll not report status information, and so I’ve had
to guess as to whether it was, in the middle of compiling something
then sometimes it would hang. And I wouldn’t tell if it had really
froze or whether it was still doing something.

P2.6 stated that they ended up creating multiple resources be-
cause there was no status message.

P2.6: No it did not tell me. It did not, it didn’t, it wouldn’t, it didn’t
tell me and so I thought maybe I hadn’t created it. So I created a
second, not realising.

5.3.2 Lack of screen reader friendly progress indication. Sometimes
CLI commands do provide progress indication. In these cases, they
try to simulate GUI-like progress indicationmechanisms like progress
bars (Fig.5) and spinners (Fig.6). However, screen readers do not
recognize them as progress indicators and vocalize the underlying
Unicode characters.

P2.5 described their experience with the spinner like progress
indicator in Fig. 6 as

P2.5 : Little dots submit, little blah, blah, blah, blah, completed
with status failure.

5.4 ASCII Art
This theme also emerged from both Study 1 and Study 2.

Sometimes CLIs use ASCII characters to decorate tables and
other output entities to make them visually appealing. However,
our study participants found this experience very distracting and
adding to the already difficult task of reading a table. For instance,
in reference to the table in Fig.7 P2.5 said :

P2.5: So it’s in a table, all the decorators are distracting. I think the
main content here isn’t too bad; it’s just the way that it’s formatted.

CHI ’21, May 8–13, 2021, Yokohama, Japan Sampath, et al.

Figure 3: An example of tables in the CLI. Output of top command.

Figure 4: Example of a Long output

Figure 5: Example CLI Progress Bar

P1.4 observed that ASCII arts in general, were annoying. P1.4:
ASCII Art is beyond annoying, and it is very common, so [CLI] had
this thing for a little while where they would have, during an error, it

Figure 6: Example CLI Spinner

would have this error, and it would help with like ASCII Art and so
all you’re doing as a screen reader user is $ %̂ % $, you know what I
mean, it’s total nonsense.

Figure 7: A CLI table with ASCII decorators

5.5 Quality of Error Messages
This was a theme that emerged only from Study 2. Participants in
Study 1 did not explicitly call out error messages as an issue.

The role of error messages in API developer experience is well
documented in literature [12, 21]. Participants in our study also
encountered issues with clarity and usefulness of error messages.
The issues ranged from error messages that were difficult for screen
readers to verbalize to error messages not being actionable.

For instance, in Task 2, P2.2 experienced a regular expression as
part of the error message and described the experience as So, yeah,

Accessibility of Command Line Interfaces CHI ’21, May 8–13, 2021, Yokohama, Japan

it was just saying like, A-Z 1-0, you know, like it was saying, you have
to have in between these characters and symbols and letters. It would
give a range. So, it wasn’t still clear.

Participants heavily relied on cues from error messages to trou-
bleshoot, and the lack of clear, actionable messages cost them a
lot of effort. P2.5 mentioned that experiencing an unclear error
message resulted in them spending six hours debugging on a task
they expected to take 30 minutes.

Researcher : On your log entry for the final task, on a scale of one
to seven, how physically demanding was the task, and you said eight.
What made that task so physically demanding?

Participant 2.5 : I put eight just because I was going back through
the original instructions and said oh, this was supposed to take a half
hour and it took me six hours . . . it was very clear what was supposed
to happen except it was very unclear what, how to get around the
errors. So pretty straightforward, but it took a long time, so that’s
why.

6 DISCUSSION AND RECOMMENDATIONS
Even though CLIs are text-based and keyboard-operable interfaces,
the experiences of the developers we spoke to show that they do
not always provide a positive user experience. For instance, while
the tasks in Study 2 were achievable (Table. 3), they took longer
time to complete than participants expected (Fig. 1) and involved
high amounts of effort (Table. 4) and frustration (Table. 5).

The barriers participants encountered were that CLIs are un-
structured text-based interfaces, making them inefficient for use
with screen readers. Comprehending such unstructured text from
a CLI command often happens outside the CLI, in text files or html
documents where navigation is much easier. Status and progress
indication may not always be available in CLIs and may not be
screen reader friendly when available. Error messages also may not
be screen reader friendly or actionable.

Users persevere with slow line-by-line reading, relying on their
memory and experience and by being generally resilient to issues
they encounter. But all this results in a far from the optimal user ex-
perience. P1.3 described encountering such accessibility roadblocks
as P1.3 : I’m very, very resilient to accessibility bugs. I’m like, bring it
on, I’m going to navigate this, but again, sometimes even my patience
is put to the test.

It would be a better user experience if CLIs could enable some
of the common workarounds that users already use off-the-shelf,
see a table as a csv file, and export a long output as an HTML file
with appropriately leveled headings. To this end, we propose a set
of recommendations for building accessible CLIs.

Recommendation 1 : Ensure that a HTML version of all docu-
mentation is available.

Description : The output of --help or man is long unstructured
text and screen reader users do not use them for documentation.
They rely on the HTML / online version of this documentation.
Assume that if the reference documentation resides only within the
terminal, it is not available to screen reader users.

Recommendation 2: Provide a way to translate long outputs
into another accessible format.

Description: As described earlier, it is difficult to scroll in the
terminal with a screen reader. Users will have a hard time scrolling

across the entire output and reading/copying all the text available
to them. Being able to export this into a more accessible format like
text or html would be a better user experience. This would allow
them to search or navigate more quickly to the content they need.

Recommendation 3 : Document the output structure for each
command.

Description: To effectively parse and comprehend the output
from a command, users need to know what the command’s output
looks like ahead of running the command.

Recommendation 4: Provide a way to translate tables in CLI
output into another accessible format

Description: Even though a table in CLI output appears struc-
tured, it is just visually formatted. It is still unstructured content
for a screen reader user. They would have to linearly parse all the
elements to understand the structure and then parse and navigate
this structure again to understand the content. It is cognitively
demanding, and inefficient. Providing the ability to translate tables
to other formats like html or csv would make parsing this efficient.

Recommendation 5: Ensure that all commands provide status
and progress indication.

Description: All commands need to provide some form of sta-
tus indication and progress indication when appropriate. When a
command does not provide any status or progress indication, screen
reader users receive no feedback on the system status.

Recommendation 6: Ensure that all status and progress indi-
cators used are screen reader friendly.

Description: Screen readers do not read ASCII-art or non-ASCII
characters as intended for sighted developers. This means that if
any of these are used to represent progress, a screen reader might
not render this content correctly.

Recommendation 7 : Ensure that error messages are under-
standable when read aloud.

Description: Error (and output) messages from CLIs could con-
tain a lot of jargon (e.g. regular expressions, domain-specific acronyms,
URLs) that might be difficult for a screen reader to verbalize. This
might make it challenging to comprehend the error message.

7 CONCLUSION
This paper investigated the accessibility of command-line interfaces
through two studies with developers with visual impairments. We
found that despite being text-based and keyboard-operable, CLIs
suffer from their own set of accessibility issues: unstructured text,
lack of status and progress indication, lack of screen-reader friendly
progress indicators and inaccessible error messages. Based on these
findings, we provided a set of recommendations for improving the
accessibility of CLIs.

Study 2 was based on users using a particular CLI. Nevertheless,
the overlap in themes between Study 1 and Study 2 reassures that
our findings and recommendations can generalize to other CLIs.
However, we also found themes that emerged only in Study 2. It is
possible that a study with another CLI choice would have resulted
in new findings. Hence, our immediate future goal is to replicate
some of the findings with other CLIs.

CHI ’21, May 8–13, 2021, Yokohama, Japan Sampath, et al.

8 ACKNOWLEDGMENTS
We thank Kevin Storer, Sarah D’Angelo and Youyang Hou for their
valuable feedback on this paper’s early drafts. We also thank the
Google Cloud CLI tools team for their support of this work.

REFERENCES
[1] Khaled Albusays and Stephanie Ludi. 2016. Eliciting programming challenges

faced by developers with visual impairments: exploratory study. In Proceedings
of the 9th International Workshop on Cooperative and Human Aspects of Software
Engineering. 82–85.

[2] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and
observation of blind software developers at work to understand code navigation
challenges. In Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility. 91–100.

[3] Catherine M Baker, Lauren R Milne, and Richard E Ladner. 2015. Structjumper: A
tool to help blind programmers navigate and understand the structure of code. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 3043–3052.

[4] Rob Barrett, Eser Kandogan, Paul P Maglio, Eben M Haber, Leila A Takayama,
and Madhu Prabaker. 2004. Field studies of computer system administrators:
analysis of system management tools and practices. In Proceedings of the 2004
ACM conference on Computer supported cooperative work. 388–395.

[5] BenCaldwell, Michael Cooper, Loretta Guarino Reid, Gregg Vanderheiden,Wendy
Chisholm, John Slatin, and Jason White. 2008. Web content accessibility guide-
lines (WCAG) 2.0. WWW Consortium (W3C) (2008).

[6] Kathy Charmaz. 2014. Constructing grounded theory. Sage.
[7] Parham Doustdar. 2016. The Tools of a Blind Programmer. https://www.

parhamdoustdar.com/2016/04/03/tools-of-blind-programmer/, Last accessed Sep
2020.

[8] Olutayo Falase, Alexa F Siu, and Sean Follmer. 2019. Tactile Code Skimmer: A Tool
to Help Blind Programmers Feel the Structure of Code. In The 21st International
ACM SIGACCESS Conference on Computers and Accessibility. 536–538.

[9] Filipe Del Nero Grillo and Renata Pontin de Mattos Fortes. 2014. Tests with blind
programmers using awmo: An accessible web modeling tool. In International
Conference on Universal Access in Human-Computer Interaction. Springer, 104–
113.

[10] Alex Hadwen-Bennett, Sue Sentance, and Cecily Morrison. 2018. Making Pro-
gramming Accessible to Learners with Visual Impairments: A Literature Review.
International Journal of Computer Science Education in Schools 2, 2 (2018), 3–13.

[11] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In
Proceedings of the human factors and ergonomics society annual meeting, Vol. 50.
Sage publications Sage CA: Los Angeles, CA, 904–908.

[12] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. 2010.
What would other programmers do: suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
1019–1028.

[13] Michael James Heron. 2015. A case study into the accessibility of text-parser
based interaction. In Proceedings of the 7th ACM SIGCHI symposium on engineering
interactive computing systems. 74–83.

[14] Joe Hutchinson and Oussama Metatla. 2018. An Initial Investigation into Non-
visual Code Structure Overview Through Speech, Non-speech and Spearcons. In
Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing
Systems. 1–6.

[15] Alasdair King, Paul Blenkhorn, David Crombie, Sijo Dijkstra, Gareth Evans, and
JohnWood. 2004. Presenting UML software engineering diagrams to blind people.
In International Conference on Computers for Handicapped Persons. Springer, 522–
529.

[16] Mario Konecki, Alen Lovrenčić, and Robert Kudelić. 2011. Making programming
accessible to the blinds. In 2011 Proceedings of the 34th International Convention
MIPRO. IEEE, 820–824.

[17] Richard E Ladner and Andreas Stefik. 2017. AccessCSforall: making computer
science accessible to K-12 students in the United States. ACM SIGACCESS Acces-
sibility and Computing 118 (2017), 3–8.

[18] Stephanie Ludi, Jamie Simpson, and Wil Merchant. 2016. Exploration of the use
of auditory cues in code comprehension and navigation for individuals with
visual impairments in a visual programming environment. In Proceedings of the
18th International ACM SIGACCESS Conference on Computers and Accessibility.
279–280.

[19] Sean Mealin and Emerson Murphy-Hill. 2012. An exploratory study of blind
software developers. In 2012 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 71–74.

[20] Sandra R Murillo and J Alfredo Sánchez. 2014. Empowering interfaces for system
administrators: Keeping the command line in mind when designing GUIs. In
Proceedings of the XV International Conference on Human Computer Interaction.
1–4.

[21] Brad A Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM
59, 6 (2016), 62–69.

[22] Tuukka Ojala. 2017. Software development 450 words per minute. https://www.
vincit.fi/en/software-development-450-words-per-minute/, Last accessed Sep
2020.

[23] Stack Overflow. 2019. Stack Overflow Developer Survey. https://insights.
stackoverflow.com/survey/2019, Last accessed Sep 2020.

[24] Google Cloud Platform. [n.d.]. gcloud command-line tool overview. https:
//cloud.google.com/sdk/gcloud, Last accessed Dec 2020.

[25] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y Vidya, Manohar Swami-
nathan, and Gopal Srinivasa. 2018. Codetalk: Improving programming environ-
ment accessibility for visually impaired developers. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1–11.

[26] The Linux Documentation Project. 2020. Exit Codes With Special Meanings.
https://tldp.org/LDP/abs/html/exitcodes.html, Last accessed Sep 2020.

[27] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible
AST-based programming for visually-impaired programmers. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 773–779.

[28] Robert M Siegfried. 2006. Visual programming and the blind: the challenge and
the opportunity. ACM SIGCSE Bulletin 38, 1 (2006), 275–278.

[29] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An examination of software engineering work practices. In CASCON First Decade
High Impact Papers. 174–188.

[30] Andreas Stefik, Roger Alexander, Robert Patterson, and Jonathan Brown. 2007.
WAD: A feasibility study using the wicked audio debugger. In 15th IEEE Interna-
tional Conference on Program Comprehension (ICPC’07). IEEE, 69–80.

[31] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel
Garcia. 2009. Sodbeans. In 2009 IEEE 17th International Conference on Program
Comprehension. IEEE, 293–294.

[32] Andreas Stefik, Christopher Hundhausen, and Robert Patterson. 2011. An empir-
ical investigation into the design of auditory cues to enhance computer program
comprehension. International Journal of Human-Computer Studies 69, 12 (2011),
820–838.

https://www.parhamdoustdar.com/2016/04/03/tools-of-blind-programmer/
https://www.parhamdoustdar.com/2016/04/03/tools-of-blind-programmer/
https://www.vincit.fi/en/software-development-450-words-per-minute/
https://www.vincit.fi/en/software-development-450-words-per-minute/
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/sdk/gcloud
https://tldp.org/LDP/abs/html/exitcodes.html

	Abstract
	1 Introduction
	2 Related Research
	2.1 Accessibility of Programming
	2.2 CLI Accessibility

	3 Methodology
	3.1 Study 1 : User Interviews with DWVI
	3.2 Study 2 : Usability evaluation of the CLI
	3.3 Analysis

	4 Results - Task Metrics
	4.1 Study 2 task metrics

	5 Results - Themes from Study 1 and Study 2
	5.1 CLI Workflows
	5.2 Unstructured Text
	5.3 Status and Progress Indication
	5.4 ASCII Art
	5.5 Quality of Error Messages

	6 Discussion and Recommendations
	7 Conclusion
	8 Acknowledgments
	References

