Tracking Audience Statistics with HyperLogLog

Evgeny Skvortsov, Jeff Wilhelm, Will Bradbury,
Josh Bao, Andreas Ulbrich, Lawrence Tsang

Google LLC

February 2021

Abstract

HyperLogLog is the state of the art nearly optimal algorithm for approximate
cardinality estimation. We consider the application of HyperLogLog for building
scalable systems for internet audience reach reporting. We present an exten-
sion of HyperLogLog that enables tracking additional information about the
audience, such as demographic distribution, frequency histogram or fraction of
spam. We also give an intuitive explanation of why HyperLogLog works, which
we find useful, as intuition of the proof in the original HyperLoglLog paper re-
quires a lot of effort to understand. This extension and the intuition are itself
generic and are not limited to internet reach reporting.

1 Introduction

HyperLogLog [1I] is an algorithm for approximate cardinality estimation. A
HyperLogLog sketch is a datastructure that describes a collection of objects
and can be used to estimate approximate cardinality of the number of unique
objects in the collection. The size of the sketch is bounded by a constant factor,
which depends on the required accuracy of the cardinality estimation. The
structure of the sketch allows computing unions of sketches. That is given a
sketch S7 representing collection Cy and a sketch Sy representing collection Cy
one can compute sketch S that would represent collection Cy U Cs.

We are interested in the applications of the HyperLogLog to the Internet
advertising reach reporting [2]. Reach of a campaign or a group of campaigns
is the number of unique people that were exposed to this campaign or group of
campaigns.

The ability to compute unions of sketches makes HyperLogLog valuable for
efficient reach reporting. The system can store sketches of individual campaigns
and allow interactive queries for arbitrary campaign groups. To compute the

reach of a campaign group the system extracts sketches for all of the campaigns
of the group and computes union of those, then extracting the cardinality.

In addition to total number of people in the audience the reach reports
may have additional information like demographic and frequency distribution
in the audience. In this paper we propose an extension of HyperLogLog that
stores a sample of characteristics of the audience, which is updated when a
new event is inserted, as well as when sketches are merged. Characteristics of
the sample stored along with the HyperLoglLog sketch can then be used for
estimating statistical distribution of the audience across various dimensions,
such as demographics and frequencies of ad exposure.

The rest of the paper consists of two sections. In Section [2] we describe
extensions of the HyperLogLog for tracking of user statistics. In Section |3| we
discuss a theoretical algorithm that gives a simple intuition of why HyperLogLog
cardinality estimate works.

2 Statistics tracking HyperLogLog

We extend the HyperLoglLog algorithm by making it trace characteristics of a
sample of users. Specifically, for each register of the sketch we store information
about characteristics of one user. This user is identified in the sketch by a
combination of the number of leading zeroes in their integer hash (the value
that is generally tracked in HyperLogLog sketch registers) and an additional
integer indicator hash of the small number of bits.

2.1 Storing demographics and frequency in HyperLogLog

Algorithm [I] shows the extension of HyperLogLog that tracks demographics and
impression frequency of the audience.

input : Stream of events £
output : Extended HyperLogLog sketch
parameters: The number of registers m = 2= and the size of the
auxiliary indicator space s = 2%+, function h hashing user
ids to uint64
1 initialize m registers M[0],..., M[m — 1] to 0;
2 initialize m auxiliary indicators I[0],...,I[m — 1] to 0;
3 initialize m frequency counts F[0],..., F[m — 1] to 0;
4 initialize m demographic samples D[0],..., D[m — 1] to null;
5 for e € £ do
6 let © = h(e.user_id);
7 letj: <Z‘0,...,$bm_1>2;
8 let i = <'rbm,7"'7xbm+bs_1>2;
9 let w= (min{t | t >=0,2p,,+p.4¢ = 1}) + 1;
10 if M[j] <w or (M[j]=w and I[j] <) then
11 update I[j] = i;
12 update F[j] = 1;
13 update D[j] = e.user_demo;
14 else if M[j] = w and I[j] =i then
15 update F[j] = F[j] + 1;
16 if D[j]! = e.user_demo then
17 choose D[j] from (D]j], e.user_demo) following a
pre-specified ranking randomly selected for each j;
18 end
19 end
20 update M[j] = max(M|[j], w);
21 end
22 return (M, I, F, D);

Algorithm 1: HyperLogLog with demographics and frequency tracking

Note that each register is designed to keep information about one sampled
user. Condition on line 15 is satisfied if the demographic of the user_id is
inconsistent from event to event, or if we had a collision of both M[j] and I[§]
for two different users that impacted the sketch. In this case on line 16 we
make a deterministic choice between the demo in the register and the demo
of the event. Furthermore this choice must be done based on a full ordering
of the demo values by priority (which could vary from register to register) so
that we are guaranteed that the sketch does not depend on the order of element
insertion, which is a useful property for software debugging and maintenance.

Algorithm [2| shows how to merge sketches created by Algorithm

© o N ;TR W N R

e e e H
gk W N = O

16
17
18
19
20
21
22
23

input : Two extended sketches to merge (M, I, F1, D1),
(Ma, I3, F», Dy)

output : Extended HyperLogLog sketch
parameters: The number of registers m = 2=
initialize m registers M[0],..., M[m — 1] to 0;
initialize m auxiliary indicators I[0],...,I[m — 1] to 0;
initialize m frequency counts F[0],..., F[m — 1] to 0;
initialize m demographic samples D[0], ..., D[m — 1] to null;
for j€[0,...,m—1] do
if Mi[j] < Ma[j] or (Mi[j] = Mz[j] and I1[j] < I3[j]) then
update M{j] = Ma|j];
update I[j] = I[j];
update F[j] = Fa[j];
update D[j] = Daljl;
else if M[j] = Ms[j] and I,[j] = I2[j] then
update M[j] = My]j];
update I[j] = I |j];
update F'[j] = Fi[j] + F2[j];
choose D[j] from (D1[j], D2[j]) following a pre-specified ranking
randomly selected for each i;
else
update M{[j] = M [j];
update I[j] = I[j];
update F[j] = Fi[j];
update D[j] = D1[j];
end
end
return (M, I, F, D);

Algorithm 2: Merging HyperLogLog sketches that track demographics
and frequency

Lemma 1. For any k > 0, among all non-empty registers the expected fraction
of registers j such that there are k values of user_id in the sketch that has M|j)
leading zeros is equal to 27F.

Proof. Consider a register j. Consider a Markov chain, where the state k is
the number of objects that are stored in the sketch and have the number of
leading zeros equal to M[j]. Consider an event that an object z was added to
the sketch and was hashed to the register and that has greater than or equal to
MTj] leading zeros.

With probability 0.5 the hash of this new object will have exactly M[j]
leading zeros and with probability 0.5 it will have more than M[j] leading zeros.
Indeed it will have more than M[j] leading zeros if and only if (M[j])-th bit in
binary representation of h(z) is zero.

If z has more than M[j] leading zeros then the chain transitions to state 1
regardless of which state it was in. If z has exactly M[j] zeros then the chain
transitions from state k£ to state k + 1.

Let p(k) be the probability of the k-th state. At each step of the Markov

chain we have
p(1)=> 05-p(k) =05-> p(k) = 0.5.

k>1 k>1
While for & > 1 we have p(k) = p(k — 1) - 0.5. From which the desired
equality p(k) = 27 follows. O

The probability of full collisions, i.e. collision of the number of leading zeros
and auxiliary hash together, is low and the impact on the histogram is not
significant. Indeed Lemma [I| shows that half of the registers have a unique
element that has the maximal number of leading zeros, and from there the
number of registers with k colliding elements decreases exponentially. In a
practical setting using an indicator of the size of 1 byte, i.e. by = 8,5 = 256,
makes the number of registers occupied by colliding registers insignificant. We
leave getting exact estimates for the probability of collision outside of the scope
of this paper.

Demographic and frequency distributions can be recovered from the sketch
via extrapolating from the sampled demographic values. Algorithm [3] shows
how this extrapolation is done for the demographic distribution.

2.2 Generalized statistics tracking with HyperLogLog

We can generalize Algorithm [1] to aggregate arbitrary statistics, as long as an
update to the information about an individual user can be done with a commu-
tative associative operation. Commutativity and associativity are required to
ensure that the sketch does not depend on the order of elements being added
to it. This generalization is Algorithm [4]

Function A can be an arbitrary function for initializing and accumulation of
characteristics of a user. Algorithm [5| shows an example of such function that

input : demographic samples DI0],..., D[m — 1] from the
extended HyperLogLog sketch

output : demographic distribution D mapping demographic
category to the estimated fraction in the audience

1 initialize D[d] = 0 for all demographic buckets d;
2 initialize total = 0;
3 for j €{0,...,m—1} do
4 if D[j] is not null then
5 | | update DDj]) = DID[]) +1;
6 update total = total + 1
7 end
8 end
9 for d € D do
10 | update D[d] = D[d]/total
11 end

12 return D

Algorithm 3: Extracting demographic distribution from the extended
HyperLogLog sketch.

input : Stream of events £

output : Extended HyperLoglLog sketch

parameters: The number of registers m = 2’ and the size of the
auxiliary indicator space s = 2%+, function h hashing user
ids to uint64, commutative associative function A for
statistics initialization and accumulation.

1 initialize m registers M(0],..., M[m — 1] to 0;

2 initialize m auxiliary indicators I[0],...,I[m — 1] to 0;

3 initialize m statistic objects S[0], ..., S[m — 1] to null;

4 foreec & do

5 let = h(e.user_id);

6 let j = {(xg,...,xp,,—1)2;

7 let i = (xp, ,. ., Tb,,+b.—1)2;

8 let w = (mln{t | t>= 07xbm+bs+t = 1}) + 1,

9 if M[j] <w or (M[j]=w and I[j] <i) then

10 | update S[j] = A(null, e); // Initializing S[j]
11 else if M[j] = w and I[j] =i then

12 | update S[j] = A(S[j],e); // Updating S[j]
13 end

14 update M[j] = max(M|[j], w);
15 end

Algorithm 4: HyperLogLog extended for arbitrary statistics tracking

input : Current state s which is null or of the form
(frequency, watch_time, user_demo, spam_frequency)
and an event e
output : Updated state
if s.is_spam then
‘ let spam_count = 1;
else
‘ let spam_count = 0;
end
if s is null then
‘ return (1, e.watch_time, e.user_demo, spam_frequency);
end
update s.frequency = s.frequency + 1;
update s.watch_time = watch_time + e.watch;
chose s.user_demo from (s.user_demo, e.user_demo) following a
pre-specified ranking;
12 return s;

© 00 g & U ph W N -

[
= o

Algorithm 5: Example of a statistic accumulation function tracking
total video watch time, frequency, demographics and spam fraction.

can be called from Algorithm 4] to accumulate statistics about demographics,
frequency, watch-time distribution and fraction of spam traffic.

Algorithm [5| is written to handle some events marked as spam afterwards,
say based on some batch pipeleine or manual analysis. These events should be
inserted into the sketch with is_spam set to true. The fraction of users that were
added to the sketch purely due to spam can then be estimated as the fraction
of registers for which frequency = spam_frequency.

Note that if watch_time is measured with high granularity, e.g. up to mi-
crosecond, then there will be no two users with the same watch time and there-
fore aggregating the watch time into a distribution is not helpful, as each value
would have overly high uncertainty. Yet the sketch stores an almost uniform
sample of the watch times and can be used as such. For instance median watch
time can be estimated as the median watch time value stored in the registers.
Intuitively such estimate would be reasonable, but calculating its exact variance
is a non trivial statistical exercise which is outside of the scope of this paper.

3 HyperReal: building intuition for HyperLogLog

In this section we discuss the HyperReal algorithm, which we find helps build
intuition for how HyperLoglog and extended HyperLogLog works. HyperReal
differs from HyperLogLog in that its registers store float valued hashes rather
than counts of leading zeros. Real values take more space than counts of ze-
ros and thus HyperReal is not practical, but they make the mechanics of the
algorithm simpler and thus helps build intuition about how HyperLoglLog works.

input : Stream of events £
output : Extended HyperLogLog sketch
parameters: Function r hashing user ids unformly at random to
integer range [0, m — 1] and function f hashing user ids
to float uniformly at random in the range [0, 1]
initialize m float valued registers F[0], ..., F[m — 1] to 1;
for e € £ do
let w = f(e.user_id);
let j = r(e.user_id);
update F'[j] = min(F[j], w);
end
return F;

N 0 A W N

Algorithm 6: HyperReal algorithm

Algorithm [6] shows the creation of the HyperReal sketch. Each element is
hashed to a random register and for each register minimal value of a float-valued
hash is computed.

Algorithm [7] shows how cardinality is estimated from HyperReal sketch. It
is easy to see that it implements formula

m2

Zij]

input : HyperReal sketch F
output : Estimation of cardinality of the set of objects inserted
into F

1 let v =73 F[j]/m;

2 return m/v;

Algorithm 7: Cardinality estimation for HyperReal sketch

Lemma 2. For large m and large cardinality n,n > m of objects inserted into
HyperReal sketch, Algoritm[7 gives an unbiased estimate of the cardinality n.

Proof. For large n and m each register has approximately n/m elements hashed
to it. Thus each register is a minimum of about n/m random variables uniformly
distributed over [0, 1] and therefore each register approximately follows M[j] ~
Beta(l,n/m). Since n > m we have Beta distribution well approximated by
an Exponential distribution and thus M[j] ~ m/n - Exp(1).

Therefore value v computed on line 1 of Algorithm [7]is approximately equal
to the expectation of a random variable distributed according to m/n - Exp(1)
and is thus equal to m/n. Thus the returned value is approximately equal to n,
which is the desired quantity to estimate. O

HyperLogLog achieves extra efficiency compared to HyperReal by storing an
integer value

M{[j] = —logy(F[5])], (2)

which can fit in one byte, compared to 8 bytes usually required for high precision
float number storage.
If we invert equation [2| we get an approximate equality

F[j] ~ 27U (3)

Note that HLL’s cardinality estimate formula

m2

Zj 2—M]Jj]

can be obtained by substituting approximate Equaltion [3] into the formulas of
Algorithm[7} Normalization constant o, happens to account for the truncation
of the float value to the floor.

Algorithm [§ extends HyperReal for tracking user statistics. The probability
of float valued hash collision is zero and thus F'[j] for each register is defined
by a unique element. For this element we store and update user characteristics
that we need to track such as demographics and frequency. Algorithm [is more
complicated as it has to deal with hash collisions to save the space storing in
each register two bytes M{j], I[j] instead of a float F[j].

n X Q-

(4)

input : Stream of events £
output : Extended HyperLoglLog sketch
parameters: Function r hashing user ids unformly at random to
integer range [0, m — 1] and function f hashing user ids
to float uniformly at random in the range [0, 1],
commutative associative function A for statistics
accumlation.
1 initialize m registers F[0],..., F[m — 1] to 1;
2 initialize m statistic objects S[0], ..., S[m — 1] to null;
3 for e € £ do
4 let z = f(e.user_id);
5 let j = r(e.user_id);
6 if < F[j] then
7 | update S[j] = A(null, e); // Initializing S[j]
8 else if x = F[j] then
9 ‘ update S[j] = A(S[j], e); // Updating S[j]
10 end
11 update F[j] = min(F[j], z);
12 end

Algorithm 8: HyperReal extended for arbitrary statistics tracking

Acknowledgment: We are grateful to Jim Koehler for multiple discussions
of the algorithms presented here and valuable advice on preparation of this
report for publication.

References

[1] Frédéric Meunier, Olivier Gandouet, Eric Fusy, and Philippe Flajolet, Hy-
perloglog: the analysis of a mear-optimal cardinality estimation algorithm,
Discrete Mathematics & Theoretical Computer Science (2007).

[2] Evgeny Skvortsov and Jim Koehler, Virtual people: Actionable reach mod-
eling, (2019), available at https://research.google/pubs/pub4d8387/.

10

https://research.google/pubs/pub48387/

	Introduction
	Statistics tracking HyperLogLog
	Storing demographics and frequency in HyperLogLog
	Generalized statistics tracking with HyperLogLog

	HyperReal: building intuition for HyperLogLog

