
AN ATTENTION-BASED JOINT ACOUSTIC AND TEXT ON-DEVICE END-TO-END MODEL

Tara N. Sainath, Ruoming Pang, Ron J. Weiss, Yanzhang He, Chung-cheng Chiu, Trevor Strohman

Google, Inc., USA
{tsainath, rpang, ronw, yanzhanghe, chungchengc, strohman}@google.com

ABSTRACT
Recently, we introduced a two-pass on-device end-to-end (E2E)
speech recognition model, which runs RNN-T in the first-pass and
then rescores/redecodes the result using a noncausal Listen, Attend
and Spell (LAS) decoder. This on-device model obtained similar
performance to a state-of-the-art conventional model. However, like
many E2E models, it suffers from being trained only on supervised
audio-text pairs and thus performs poorly on rare words compared to
a conventional model which incorporates a language model trained on
a much larger text corpus. In this work, we introduce a joint acoustic
and text decoder (JATD) into the LAS decoder, which makes it possi-
ble to incorporate a much larger text corpus into training. We find that
the JATD model obtains in a 3-10% relative improvement in WER
compared to a LAS decoder trained only on supervised audio-text
pairs across a variety of proper noun test sets.

1. INTRODUCTION

E2E models [1, 2, 3, 4, 5, 6, 7, 8] combine the acoustic (AM), pro-
nunciation (PM) and language models (LM) of a conventional speech
recognition system into a single neural network. Such models are a
fraction of the size of conventional models and are therefore ideal for
embedded on-device ASR applications [1]. While these models have
shown competitive performance to conventional models [2, 9], their
performance still lags behind on rare words, such as long-tail named
entities. One reason for this performance gap is that E2E models are
often trained only on supervised audio-text pairs, i.e. the training set
for a conventional acoustic model, which is a small fraction of the
size of the text data used to train a conventional LM.

Numerous research ideas have been explored for training E2E
models using a large amount of unpaired data, either with text-only
data or unsupervised audio-text data. For example, training an RNN-
LM on text-only data and fusing this into the E2E model, via tech-
niques such as shallow, cold and deep fusion, has shown improve-
ments on long-tail queries [10, 11, 12]. However, these techniques
are not amenable to run on-device since the external LM significantly
increases model size and computational cost [1]. Another approach
uses an RNN-LM, trained on text-only data, as the teacher model to
regularize the label distribution of the E2E model while training on
paired data [13]. While this does not increase the model size during
inference, it still requires training a separate RNN-LM as a first stage
before training the E2E model.

Training the E2E model on unsupervised audio-text pairs, known
as “weak distillation” [14], has also shown benefits for long-tail
proper noun queries, without increasing model size. However, the
common recipe for training with this data – first pre-training with
supervised-only data, and then fine-tuning on supervised and unsuper-
vised data – significantly increases training time [14]. Furthermore,
weak distillation is vulnerable to errors from the teacher model.

Synthesizing speech from text-only data and then using it to train
the E2E decoder model, a technique known as “back-translation” [15]
in the machine translation literature, has had limited success in ASR
when evaluated on real audio sets [14, 16]. Alternatively, “cycle-
consistency” [17, 18] has also been explored to train E2E models on
unpaired speech and text data. This technique also requires model
retraining-steps, first supservised and then supervised + unsupservied.

We propose a new method for training the decoder of the E2E
model on unpaired data. Our goal is to develop a technique that can
leverage a large amount of unpaired data when training on-device
models without significantly increasing model size, training time and
inference cost. Our technique, which we call a joint acoustic/text
decoder (JATD), is motivated by past work in multilingual/multi-
dialect E2E models [19, 20, 21]. In that work, a domain identifier,
or “domain ID”, is appended to the input to indicate the language or
dialect of the speech. With this added bit of information, a single
model can perform well on many languages or dialects. In this work,
we adpot a similar technique, using a domain ID to indicate whether
a training example corresponds to a supervised audio-text pair or an
audio-text example generated from unpaired data. For unpaired data,
we can synthesize the missing half of the pair: if we have text data, we
can use TTS to synthesize corresponding audio; if we have audio data,
we can use ASR to hypothesize a text transcription. During training
with a paired example, an acoustic context vector computed from the
encoder is fed into the decoder, representing a paired data domain ID.
However, for unpaired examples, a fixed but learnable context vector
domain ID is used instead, thus bypassing the encoder network. This
technique allows the decoder to be trained simultaneously on both
paired and unpaired data without increasing model size.

A key benefit of this approach is that it does not increase inference
latency significantly, and is thus friendly for on-device deployment.
Here we take advantage of the fact that end-user devices are increas-
ingly becoming equipped with processors (GPUs, NPUs, or TPUs)
that can cheaply run large batches of computation against a single
set of model parameters. Since our technique does not increase the
overall number of model parameters significantly, it will work well
on such systems. In addition, it does not require additional training
stages, unlike past work with unsupervised data [14]. The proposed
approach is similar in spirit to [22] which explored a multi-modal
E2E decoder that took both acoustic and symbolic input. A main
difference is that [22] shares attention and decoder parameters across
all modes, only changing the parameters of the input passed to the
encoder depending on the input source. In contrast, in our approach,
only decoder parameters are shared. Different attention context pa-
rameters are used, depending on the source.

We evaluate the JATD model within the RNN-T + LAS two-pass
decoding framework [9], which is effective for resource constrained
on-device applications. Specifically, the RNN-T decoder emits first-
pass hypothesis transcripts, which the LAS decoder is used to rescore

Fig. 1: Two-Pass Architecture

or refine. In this work, only the LAS decoder is modified according
to the JATD framework. We evaluate JATD on a variety of proper
noun and rare-word test sets, and find that it gives a 3-10% relative
reduction in word error rate (WER), when used for rescoring/beam-
search, compared to a LAS decoder trained only on paired data.

2. JOINT ACOUSTIC AND TEXT MODEL

2.1. Two-Pass E2E Architecture

The two-pass architecture is illustrated in Figure 1. The input acoustic
frames are denoted as x = (x1 . . .xT), where xt ∈ R128 is a
frame of log-mel filterbank energies and T is the number of frames.
We denote the ground-truth label sequence of length U as y =
(y1, . . . , yU), where yu ∈ Z and Z corresponds to the set of word-
piece [23] output units.

Training takes place in two stages. First, the shared encoder
and RNN-T decoder are trained to maximize P (yr = y|x). Next,
the shared encoder is held fixed and the additional encoder (AE) +
LAS decoder (including the attention context) are trained to maxi-
mize P (yl = y|x). We add the AE since it is found to be useful
to adapt the encoder output to be more suitable for LAS 2nd-pass
models. Decoding is performed in two passes. In the first pass each
acoustic frame xt is passed through a shared encoder, consisting of a
multi-layer LSTM, to get output es

t , which is passed to the RNN-T
decoder which emits yr streaming fashion. In the second pass, the
shared encoder output for all frames, es = (es

1 . . . e
s
T) is passed to

a small AE to generate ea = (ea
1 . . . e

a
T), which is then passed to a

non-causal attention module to compute a context vector cu which
summarizes the encoder features ea for a each output step u ∈ U .

The LAS decoder can run in two modes. When run in beam-
search mode, the decoder produces output yl based on ea alone,
ignoring yr , the output of the RNN-T decoder. Alternatively, in
rescoring mode, the decoder consumes the top-K hypotheses from
the RNN-T decoder. The LAS decoder computes a score for each
hypothesis by evaluating the network in teacher-forcing mode, with
attention on ea. The resulting score combines the log probability of
the sequence and the attention coverage penalty [24]. The sequence
with the highest LAS score is chosen as the final output sequence.

2.2. JATD Model Description

Work in multi-dialect/lingual E2E ASR [19, 20, 21] has shown that
passing an embedding vector representing the domain of the input
data (i.e., dialect or language) is effective in helping the model handle
different types of inputs. In this spirit, we explore changing the
context vector cu passed to the LAS decoder depending on the type of

Fig. 2: Joint Acoustic and Text Model. During fprop, either the
acoustic context cau or fixed context clu is used.

input training data, thus developing a joint acoustic and text decoder.
The model is depicted in Figure 2.

Specifically, if the input example is a supervised audio-text pair,
we pass an acoustic context vector cau to the decoder. However, if
the input is an unpaired text sequence, we instead pass a fixed but
learnable language model context vector clu into the decoder. Below,
we describe changes to the LAS second-pass decoder inference and
training procedures to utilize both paired and unpaired data.

2.2.1. Inference

The log probabilities computed for LAS during inference are shown
in Eq. 1. Given acoustic input x, we can evaluate the LAS de-
coder using acoustic context vector cau to compute log probabilities
log p(yu|x, cau,yu−1:1) at each decoder step u. Here yu−1:1 =
{yu−1, . . . , y1} indicates all previous decoded labels of a single hy-
pothesis during inference. Alternatively, the text context vector clu
can be used to compute log probabilities log p(yu|clu,yu−1:1). Like
an RNN-LM, this formulation predicts labels based on previous labels
alone, ignoring audio features entirely. We can think of these two dis-
tributions as corresponding to AM and LM scores, respectively, since
each is generated from either acoustic or text context vectors. For
each autoregressive decoder step u, we interpolate the two log prob-
abilities with mixing weight λ. Note that this inference is used for
each step u, when LAS is run as a rescorer or beam search. Another
advantage of the JATD model is that the RNN-LM-like component
can be run and cached during the first-pass RNN-T inference, so
JATD does not increase 2nd-pass latency compared to standard LAS.

λ log p(yu|x, cau,yu−1:1) + (1− λ) log p(yu|clu,yu−1:1) (1)

2.2.2. Training

In all cases, the RNN-T model is first trained with supervised audio-
text paired data. Then we experiment with two strategies for training
the LAS model with paired and unpaired data. In the individual
strategy if audio-text paired data is used, as shown in Eq. 2, we
evaluate log p(yu|x, cau,yu−1:1) with the acoustic context vector cau
and update the LAS decoder and acoustic context vector parameters.
However, if unpaired data is used, the training loss reduces to the
cross-entropy loss computed from log p(yu|clu,yu−1:1), where clu
is the trainable context vector. In this case, only the LAS decoder and
context vector are updated. In Section 4, we show results varying the
amount of paired and unpaired data seen in training.

L =

{
log p(yu|x, cau,yu−1:1), if paired example

log p(yu|clu,yu−1:1), if unpaired example

(2)

Alternatively, in the joint strategy we define the training loss
by interpolating log probabilities generated from acoustic and text

context vectors (Eq. 3), as is done in inference. We denote supervised
audio data as xa ∈ x. Thus, for examples which contain supervised
audio-text pairs, we interpolate with both log p(yu|x, cau,yu−1:1)
and log p(yu|clu,yu−1:1), updating only the LAS decoder and acous-
tic attention parameters. However, for unpaired data, since we need
to compute log probabilities with an acoustic context vector, an audio-
text pair needs to be used, where we denote xl ∈ x as the “created
audio”. There are two options that can be explored. First, we can
take real audio and use a conventional model to generate hypothe-
size text, similar to [14]. Using untranscribed audio in this way is
akin to model distillation from a conventional recognizer. Alterna-
tively, we can take the given text and synthesize an acoustic signal.
In this work, we explore only the former. By creating xl, we can
interpolate the following in training log p(yu|xl, cau,yu−1:1) and
log p(yu|cl,yu−1:1), but we only update the LAS decoder and fixed
context vector parameters, in order to avoid biasing the acoustic at-
tention parameters toward unpaired data. λ = 0.1 was found to work
well in training.

L =


λ log p(yu|xa, cau,yu−1:1) + (1− λ) log p(yu|clu,yu−1:1),

if paired example

λ log p(yu|xl, cau,yu−1:1) + (1− λ) log p(yu|clu,yu−1:1),

if unpaired example

(3)

3. EXPERIMENTAL DETAILS

The paired audio-text training set used for experiments, the same
as [25], consists of multi-domain utterances spanning domains of
search, farfield, telephony and YouTube English utterances. The
search and farfield utterances are anonymized and hand-transcribed,
and are representative of Google’s voice search traffic. This data set
is created by artificially corrupting clean utterances using a room
simulator, adding varying degrees of noise and reverberation such
that the overall SNR is between 0dB and 30dB, with an average
SNR of 12dB [26]. The noise sources are from YouTube and noisy
environmental recordings. The unpaired data is collected by mining
anonymized utterances from voice search traffic. These utterances
are decoded by a state-of-the-art conventional ASR model [27], and
thus the transcription is not ground-truth. The data used in these
experiments is similar to that described in [19].

Our primary evaluation set is broken into a set of ∼13K short
utterances (SU) less than 5.5 seconds long and another set of ∼14K
long utterances (LU) with duration longer than 5.5 seconds, both
extracted from Google traffic and also anonymized.

To evaluate improvements on long-tail entities, we also evaluate
on 4 sets. The Corr (Corrections) dataset covers 5K utterances where
the user typed a query immediately after speaking, which likely means
that the recognition result was not correct. In addition, the SXS set
contains a set of 1K utterances where the quality of the E2E model
(without an LM) transcription has more errors than a state-of-the-art
conventional model [27]. It is useful for measuring how including
text-only training data can improve some of these errors.

As described in [16], the Songs and Apps sets are created by
synthesizing sentences in each of these categories using a Parallel
WaveNet TTS model [28], The Songs test set contains 15K media
requests (e.g. play rihanna music) with phrases containing
popular songs and artist names in US English. The Apps test set
contains 16K requests to interact with an app (e.g. open trivia
game) with phrases containing popular app names. Noise is artifi-
cially added to the synthetic data, similar to [26]. .

3.1. Modeling

All experiments use 128-dimensional log-Mel features, computed
with a 32ms window and shifted every 10ms. Similar to [25], fea-
tures for each frame are stacked with 3 frames to the left and then
downsampled by three to a 30ms frame rate.

The encoder network follows [9], consisting of 8 LSTM lay-
ers, where each layer has 2,048 hidden units followed by a 640-
dimensional projection layer. We insert a time-reduction layer (by
a factor of 2) after the second encoder LSTM layer. The RNN-T
decoder contists of a prediction network and a joint network. The
prediction network has 2 LSTM layers of 2,048 hidden units and a
640-dimensional projection per layer as well as an embedding layer
of 128 units. The outputs of encoder and prediction network are fed
to a 640 hidden unit joint network. The additional LAS-specific AE
consists of 2 LSTM layers. The LAS decoder consists of multi-head
attention [29] with four attention heads, computing context vectors
which are fed into 2 LSTM layers of 2,048 hidden units with 640-
dimensional projection. It has an embedding layer of 96 units. Both
decoders are trained to predict 4,096 word pieces [23], which are
derived from a large corpus of text transcripts.

The total size of the RNN-T model is 114M parameters, and the
second-pass LAS decoder is 33M parameters. All models are trained
in Tensorflow [30] using the Lingvo [31] toolkit on a v2-128 Cloud
TPU slice with a global batch size of 4,096. Finally, during inference
the interpolation weight λ in Equation 1 is swept on each model to
optimize performance for SU and LU .

4. RESULTS

4.1. Model Analysis

In this section, we analyze the behavior of the JATD model with
respect to training and inference. Note that in the tables below,
boldface represents the model with the best overall performance.

4.1.1. Individual Log-Probability

First, we explore behavior when the training log-probability comes
from only the acoustic or text data, as in Eq. 2. Table 1 shows
performance as a function of α, which is the percentage of paired
data seen during each epoch of training. For example α = 0.75
means that 75% of the time paired data is seen in training, and 25%
of the time unpaired data is seen. α = 1.0 means that the model is
trained only on paired data, similar to [9], and therefore comprises a
baseline, B1. RNN-T only, without any rescoring, is also shown as
baseline B0. As expected, LAS rescoring B1 improves over RNN-T
only (B0). However, across all data-sets, including more unpaired
data in the JATD model (E0− E2) does not improve WER.

ID Model SU LU SxS Corr App Songs
B0 RNN-T 6.9 4.9 31.8 15.3 8.9 15.4
B1 α = 1.0 5.9 3.7 29.6 14.3 8.7 13.2
E0 α = 0.9 6.0 3.6 29.4 14.1 8.7 12.8
E1 α = 0.75 6.1 3.7 29.5 14.2 8.6 12.8
E2 α = 0.5 6.2 3.7 29.6 14.3 8.6 12.8

Table 1: LAS Rescoring WER, Individual Training Log-Prob.

4.1.2. Joint Log-Probability

Next, Table 2 shows performance when the training loss interpolates
between acoustic and text logits, as in Eq. 3. For inference λ = 0.05
was found to be optimal for all models. Decreasing α to 0.75 (E4)
results in between 3-10% relative improvement across the proper
noun sets, without degrading SU and LU. However, including too
much unpaired data (α < 0.75) naturally degrades WER. Comparing
the results to those in Table 1, it is clear that joint interpolation during
training (Eq. 3) is a better approach to training the JATD model
compared to using individual log-probs (Eq. 2).

ID Model SU LU SxS Corr App Songs
E3 α = 0.9 6.0 3.6 28.6 14.1 8.3 12.4
E4 α = 0.75 6.0 3.7 28.2 13.9 8.2 11.9
E5 α = 0.5 6.1 3.7 28.5 14 8.2 12.2
E6 α = 0.25 6.3 3.8 28.6 14.2 8.1 12.1

Table 2: LAS Rescoring WER, Joint Log-Prob.

4.1.3. Increasing Model Capacity

Because the LAS decoder is now used to model both paired and
unpaired data, we evaluate whether increasing the model capacity
can further improve performance. Table 3 shows the performance
when doubling the number of layers in the LAS decoder to 4 layers
(∼ 66M parameters). Baselines B1 and B2 compare performance
with α = 1.0 for both a small (S) and large (L) models respectively.
The table indicates that the larger model gives very little performance
improvement when only using paired data. However, when making
use of unpaired data, much larger improvements are seen, particularly
in the SXS and Songs test sets, compared to the best smaller model
(E4). In addition, much less degradation is seen now when training
with more unpaired data (α < 0.75) compared to smaller models in
Table 2. Overall E8 with α = 0.5 performs best, resulting in 3-10%
relative improvement over baseline B2.

4.2. Rescoring vs. Beam Search

Using the JATD model as a rescorer handicaps the model, as it is
only able to rescore hypotheses emitted by the first-pass RNN-T
decoder, which is not trained with the unpaired data. To further study
the potential benefit of the unpaired data with the JATD model, we
explore running the second-pass LAS model within the beam search.
Table 4 shows the results for JATD as a function of α. Baseline B4
uses no unpaired data. As α decreases the WER continues to improve
in the proper noun sets. Overall the best performing model uses
α = 0.5 (E11), which gives the best tradeoff between proper-noun
WER without hurting performance on LU and SU. Overall, E11
results in 3-12% relative improvement over baseline B4.

4.3. Analysis

4.3.1. Comparison to Other Techniques

Finally, we compare JATD to other techniques that incorporate un-
paired training data without increasing model size in Table 5. Shallow-
fusion results are not reported as this increases model size. We ex-
plored training the LAS decoder with paired and unpaired data from
scratch (B5) with a 50%-50% mix, just as in JADT, rather than using
multiple training stages as in [14]. When training in this manner,
the WER degrades significantly as is expected since the unpaired
data has a mistmatch between the audio and text. A similar trend

ID Model SU LU SxS Corr App Songs
B1 α = 1.0, S 5.9 3.7 29.6 14.3 8.7 13.2
B2 α = 1.0, L 5.8 3.6 29.2 14.3 8.7 13.2
E4 α = 0.75, S 6.0 3.7 28.2 13.9 8.2 11.9
E7 α = 0.75, L 5.8 3.7 27.3 13.9 8.1 11.9
E8 α = 0.5, L 5.8 3.6 27.4 13.8 8.0 11.9
E9 α = 0.25, L 6.0 3.6 27.4 14.1 8.1 11.9

Table 3: LAS Rescoring WER, Joint Log-Prob, larger model size.

ID Model SU LU SxS Corr App Songs
B0 RNN-T 6.9 4.9 31.8 15.3 8.9 15.4
B4 α = 1.0, L 5.6 3.5 26.5 14.4 8.6 12.5
E10 α = 0.75, L 5.7 3.5 24.3 14.0 8.1 11.3
E11 α = 0.5, L 5.6 3.5 23.2 14.0 7.9 11.1
E12 α = 0.25, L 5.8 3.7 22.8 14.0 7.9 11.3

Table 4: LAS Beam Search WER, Joint Log-Prob, larger model size.

was seen with cycle-consistency (CC). Overall, JADT offers the best
tradeoff between WER improvements without increasing training
time or model size.

ID Model SU LU SxS Corr App Songs
B4 LAS, only [9] 5.6 3.5 26.5 14.4 8.6 12.5
B5 Unsup [14] 6.5 6.3 26.4 15 8.9 14.7
E11 JATD 5.6 3.5 23.2 14.0 7.9 11.1

Table 5: LAS Beam Search Baselines

4.3.2. Proper Noun Analysis

Table 6 shows some example decodes from the JATD model (E8)
which improve over the baseline LAS decoder (B1). The top two
rows show language-modeling errors which are be corrected by the
JATD model, and the bottom two rows demonstrate corrections to
proper noun errors are.

LAS JATD

How do you bake a hook for How do you bait a hook for
bass fishing bass fishing

peanut butter cookies and scratch peanut butter cookies from scratch
Houston Astro cap Houston Astros cap
What is ligonberry What is lingonberry

Table 6: JATD wins. LAS errors indicated in red.

To be a bit more quantitative, we also explore the errors to due
rare words across the sets sets. Here a word is defined as rare if it
has less than a count of 10 in the training data. Table 7 shows that
by including unsupervised data, the % of errors due to rare-words
decreases by more than 20% relative.

ID Model SU LU SxS Corr App Songs
B2 LAS 6.4 4.9 7.6 17.6 10.0 6.3
E8 JATD 4.5 3.9 5.0 11.7 4.7 5.1

Table 7: % of Errors due to Rare Words

5. ACKNOWLEDGEMENTS

The authors would like to thank Rohit Prabhavalkar for helpful dis-
cussions and comments regarding this work.

6. REFERENCES

[1] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez,
D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang,
D. Bhatia, Y. Shangguan, B. Li, G. Pundak, K. Sim, T. Bagby,
S. Chang, K. Rao, and A. Gruenstein, “Streaming End-to-end
Speech Recognition For Mobile Devices,” in Proc. ICASSP,
2019.

[2] C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, N. Jaitly, B. Li,
and J. Chorowski, “State-of-the-art speech recognition with
sequence-to-sequence models,” in Proc. ICASSP, 2018.

[3] A. Graves, “Sequence transduction with recurrent neural net-
works,” CoRR, vol. abs/1211.3711, 2012.

[4] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recogni-
tion with deep neural networks,” in Proc. ICASSP, 2012.

[5] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures,
data and units for streaming end-to-end speech recognition with
rnn-transducer,” in Proc. ASRU, 2017, pp. 193–199.

[6] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend
and spell,” CoRR, vol. abs/1508.01211, 2015.

[7] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based
end-to-end speech recognition using multi-task learning,” in
Proc. ICASSP, 2017, pp. 4835–4839.

[8] C.-C. Chiu and C. Raffel, “Monotonic chunkwise alignments,”
in Proc. ICLR, 2017.

[9] T.N. Sainath, R. Pang, D. Rybach, Y. He, R. Prabhavalkar, W. Li,
M. Visontai, Q. Liang, T. Strohman, Y. Wu, I. McGraw, and
C.C Chiu, “Two-Pass End-to-End Speech Recognition,” in
Proc. Interspeech, 2019.

[10] J. Chorowski and N. Jaitly, “Towards Better Decoding and
Language Model Integration in Sequence to Sequence Models,”
in Proc. Interspeech, 2017.

[11] A. Sriram, H. Jun, S. Sateesh, and A. Coates, “Cold fu-
sion: Training seq2seq models together with language models,”
CoRR, vol. abs/1708.06426, 2017.

[12] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and
R. Prabhavalkar, “An analysis of incorporating an external
language model into a sequence-to-sequence model,” in Proc.
ICASSP, 2018.

[13] Ye Bai, Jiangyan Yi, Jianhua Tao, Zhengkun Tian, and Zhengqi
Wen, “Learn Spelling from Teachers: Transferring Knowl-
edge from Language Models to Sequence-to-Sequence Speech
Recognition,” in Proc. Interspeech 2019, 2019, pp. 3795–3799.

[14] B. Li, T.N. Sainath, R. Pang, and Z. Wu, “Semi-supervised
Training for End-to-End Models Via Weak Distillation,” in
Proc. ICASSP, 2019.

[15] R. Sennrich, B. Haddow, and A. Birch, “Improving Neural
Machine Translation Models with Monolingual Data,” in ACL,
2016.

[16] D. Zhao, T. N. Sainath, D. Rybach, D. Bhatia, B. Li, and
R. Pang, “Shallow-Fusion End-to-End Contextual Biasing,”
in submitted to Proc. Interspeech, 2019.

[17] T. Hori, R. Astudillo, T. Hayashi, Y. Zhang, S. Watanabe,
and J. Le Roux, “Cycle-Consistency Training for End-to-End
Speech Recognition,” in Proc. ICASSP, May 2019, pp. 6271–
6275.

[18] Yi Ren, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-
Yan Liu, “Almost unsupervised text to speech and automatic
speech recognition,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, 2019, pp. 5410–5419.

[19] B. Li, T. N. Sainath, K. Chai Sim, M. Bacchiani, E. Weinstein,
P. Nguyen, Z. Chen, Y. Wu, and K. Rao, “Multi-Dialect Speech
Recognition With A Single Sequence-To-Sequence Model,” in
ICASSP, 2018.

[20] S. Toshniwal, T. Sainath, R. Weiss, B. Li, P. Moreno, E. We-
instein, and K. Rao, “Multilingual Speech Recognition with a
Single End-to-End Model,” in ICASSP, 2018.

[21] S. Kim and M. Seltzer, “Towards Language-Universal End-
to-End Speech Recognition, booktitle = Proc. ICASSP, year =
2018,,” .

[22] A. Renduchintala, S. Ding, M. Wiesner, and S. Watanabe,
“Multi-Modal Data Augmentation for End-to-end ASR,” in
Proc. Interspeech, 2018.

[23] M. Schuster and K. Nakajima, “Japanese and Korean voice
search,” in Proc. ICASSP, 2012.

[24] J. K. Chorowski and N. Jaitly, “Towards Better Decoding and
Language Model Integration in Sequence to Sequence Models,”
in Proc. Interspeech, 2017.

[25] A. Narayanan, R. Prabhavalkar, C.C. Chiu, D. Rybach, T.N.
Sainath, and T. Strohman, “Recognizing Long-Form Speech
Using Streaming End-to-End Models,” in to appear in Proc.
ASRU, 2019.

[26] C. Kim, A. Misra, K. Chin, T. Hughes, A. Narayanan, T. N.
Sainath, and M. Bacchiani, “Generated of large-scale simulated
utterances in virtual rooms to train deep-neural networks for far-
field speech recognition in Google Home,” in Proc. Interspeech,
2017.

[27] G. Pundak and T. N. Sainath, “Lower frame rate neural network
acoustic models,” in Proc. Interspeech, 2016.

[28] A. van den Oord, Y. Li, and I. Babuschkin et. al., “Paral-
lel wavenet: Fast high-fidelity speech synthesis,” Tech. Rep.,
Google Deepmind, 2017.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You
Need,” CoRR, vol. abs/1706.03762, 2017.

[30] M. Abadi et al., “Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems,” Available on-
line: http://download.tensorflow.org/paper/whitepaper2015.pdf,
2015.

[31] Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen,
et al., “Lingvo: a modular and scalable framework for sequence-
to-sequence modeling,” 2019.

