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Modeling the effect of exposure notification and
non-pharmaceutical interventions on COVID-19
transmission in Washington state
Matthew Abueg 1,4, Robert Hinch 2,4, Neo Wu1, Luyang Liu1, William Probert2, Austin Wu1, Paul Eastham1, Yusef Shafi1,
Matt Rosencrantz1, Michael Dikovsky1, Zhao Cheng1, Anel Nurtay 2, Lucie Abeler-Dörner2, David Bonsall2, Michael V. McConnell1,3,
Shawn O’Banion 1✉ and Christophe Fraser 2✉

Contact tracing is increasingly used to combat COVID-19, and digital implementations are now being deployed, many based on
Apple and Google’s Exposure Notification System. These systems utilize non-traditional smartphone-based technology, presenting
challenges in understanding possible outcomes. In this work, we create individual-based models of three Washington state
counties to explore how digital exposure notifications combined with other non-pharmaceutical interventions influence COVID-19
disease spread under various adoption, compliance, and mobility scenarios. In a model with 15% participation, we found that
exposure notification could reduce infections and deaths by approximately 8% and 6% and could effectively complement
traditional contact tracing. We believe this can provide health authorities in Washington state and beyond with guidance on how
exposure notification can complement traditional interventions to suppress the spread of COVID-19.
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INTRODUCTION
The COVID-19 pandemic has brought about tremendous societal
and economic consequences across the globe, and many areas
remain deeply affected. Due to the urgency and severity of the
crisis, the poorly understood long-term consequences of the virus,
and the lack of certainty about which control measures will be
effective, many approaches to stopping or slowing the virus are
being explored. In seeking solutions to this problem, many
technology-based non-pharmaceutical interventions have been
considered and deployed1, including data aggregation to track
the spread of the disease, GPS-enabled quarantine enforcement,
AI-based clinical management, and many others.
Contact tracing, driven by interviews of infected persons to

reveal their interactions with others, has been a staple of
epidemiology and public health for the past two centuries2.
These human-driven methods have been brought to bear against
COVID-19 since its emergence, with some success3. Unfortunately,
owing in part to the rapid and often asymptomatic spread of the
virus, these efforts have not been successful in preventing a global
pandemic. Further, as infections have reached into the millions,
traditional contact tracing resources have been overwhelmed in
many areas4,5. Given these major challenges to traditional contact
tracing, it has been suggested that apps that make use of
Bluetooth technology can assist in detecting exposures to those
carrying the virus, and serve as a complementary tool to human
contact tracing initiatives6.
Technological solutions in this space have never been deployed

at scale before, and their effectiveness is unknown. There is an
acute need to understand their potential impact, to establish and
optimize their behavior as they are deployed, and to harmonize
them with traditional contact tracing efforts. Specifically, we will
examine these issues in the context of the Exposure Notification
System (ENS), developed by Apple and Google, which is currently

being adopted by many states and countries7. In this system, GPS
and location data are not used—instead, Bluetooth alone is
utilized to exchange anonymous, randomly-generated IDs which
can later be checked against a list of positive cases. In order to
protect user privacy and build user trust, ENS does not require
users and their contacts to be identified or located, and
recognition of each user’s exposure risk level can take place only
on the user’s smartphone8.
To improve our understanding of this new approach, we

employ individual-based computational models, also known as
agent-based models, which allow the exploration of disease
dynamics in the presence of complex human interactions, social
networks, and interventions9,10. This technique has been used to
successfully model the spread of Ebola in Africa11, malaria in
Kenya12, and influenza-like illness in several regions13,14, among
many others. In the case of COVID-19, the OpenABM-Covid19
model by Hinch et al.15 has been used to explore smartphone-
based interventions in the United Kingdom. Individual-based
models simulate individuals and their interactions in home, work,
and community contexts, using epidemiological parameters to
guide the compartments in an expanded SEIR model16 and
demographic parameters to simulate individuals and their
interactions. Although past work has studied disease transmis-
sion17–19, progression20, and social distancing interventions10,21,22,
we seek to understand the combined effect of exposure
notifications and non-pharmaceutical interventions in an environ-
ment calibrated to the demographics23, occupational structure,
and epidemic trend of that location.
In this work, we adapt the OpenABM-Covid19 model to

simulate the ENS approach, and apply it to data from Washington
state in the United States to explore possible outcomes. We use
data at the county level to match the population, demographic,
and occupational structure of the region, and calibrate the model
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with epidemiological data from Washington state and Google’s
Community Mobility Reports for a time-varying infection rate24.
Similar to Hinch et al., we find that digital exposure notification
can effectively reduce infections, hospitalizations, and deaths from
COVID-19, even if just roughly 15% of the overall population
participates. We extend the findings by Hinch et al. to show how
digital exposure notification can be deployed concurrently with
traditional contact tracing and social distancing to suppress the
current epidemic and aid in various “reopening” scenarios. We
believe the demographic and occupational realism of the model
and its results have important implications for the public health of
Washington state and other health authorities around the world
working to combat COVID-19.

RESULTS
Digital exposure notification
We present forward-looking simulations for Washington state
counties by comparing multiple hypothetical scenarios with
combinations of digital exposure notification, manual contact
tracing, and social distancing. Each simulation uses the same
calibrated model up to July 11, 2020, at which point the
hypothetical interventions are implemented. Beyond this date,
each simulation uses the final calibration model parameters,
except where explicitly specified as part of the intervention. For
each simulated intervention we report the number of infections
(daily and cumulative), cumulative number of deaths, number of
hospitalizations, number of tests per day, and fraction of the
population in quarantine. The simulation runs for a consistent
300 days from the beginning of our mobility data, March 1, 2020,
through Dec 25, 2020, plus the additional calibrated seeding
period before March 1. Unless otherwise stated, the reported
result is the mean value over 10 runs with different random seeds
of infection.
Results may be affected by the end date of the simulation

because of the time it takes some interventions to have their full
effect. We believe that a time horizon of approximately 5 and a
half months is long enough to be practically useful for public
health agencies who are considering deploying such interven-
tions, but short enough to minimize the long-term uncertainty
and effects of externalities such as a vaccine becoming available.
We first study the effect of a digital exposure notification app at

different levels of app adoption (15%, 30%, 45%, 60%, and 75%) of
the population in each county. As a baseline, we compare those
results to the “default” scenario assuming no change in behavior
or interventions beyond July 11, 2020. The results show an overall
benefit of digital exposure notification at every level of app
adoption (Figs. 1, 2). When compared to the default scenario of
only self-isolation due to symptoms, each scenario results in lower
overall incidence, mortality, and hospitalizations. Unsurprisingly,
the effect on the epidemic is more significant at higher levels of
app adoption. An app with 75% adoption reduces the total
number of infections by 56–73%, 73–79%, and 67–81% and
deaths by 52–70%, 69–78%, and 63–78% for King, Pierce, and
Snohomish counties, respectively. However, even at a relatively
low level of adoption of 15%, there are meaningful reductions in
total infections of 3.9–5.8%, 8.1–9.6%, and 6.3–11.8% and total
deaths of 2.2–6.6%, 11.2–11.3%, and 8.2–15.0% for King, Pierce,
and Snohomish counties, respectively.
In addition to its ability to suppress the epidemic, we also

evaluate the effects of exposure notification adoption on the total
number of quarantine events. There is an incentive to minimize
the quarantine rate because of the perceived economic and social
consequences of stay-at-home orders. At 15% exposure notifica-
tion adoption the total number of quarantine events increases by
4.6–6.4%, 6.6–6.8%, and 5.8–10.2% for King, Pierce, and Snohom-
ish counties (Fig. 3). In general, the higher the level of exposure

notification adoption the greater the number of total quarantine
events, with the exception of very high levels of adoption (60%
and 75%) where this number plateaus or even decreases, likely
due to the significant effect of the intervention in suppressing the
overall epidemic in those scenarios.

Manual contact tracing
Next, we study the potential impact of manual contact tracing in
suppressing the epidemic as a function of the contact tracing
workforce size. We refer to guidance by the Office of the Governor
of WA State with a minimum recommendation of 15 tracers per
100,000 people as well as the staffing rates for King County
including all available staffers (105 FTE for 2.253 million people, or
4.7 per 100,000) and the National Association of County & City
Health Officials (NACCHO) recommended staffing levels during
epidemics of 30 staff per 100,000 people25. We set the tracing
delay to one day, which is the optimistic estimate for time to
contact trace, as the goal for Washington state is to notify 80% of
contacts within 48 hours26. We similarly use the King County
Phase 2 Application to compute the expected number of initial
contact tracing interviews as well as follow-up notifications. Over a
two-week period, 22 staff members contacted 336 individuals for
initial interviews and 941 for close contact notifications, or
approximately 1 initial interview and 3 notifications per day per
staff member.
Manual tracing with the full desired staffing levels of 15 workers

per 100,000 people is able to affect the epidemic trend in all three
counties, but has a significantly smaller effect at current staffing
levels (Fig. 4). Unsurprisingly, the impact for a given level of
staffing is dependent upon the current epidemic trend, reinforcing
the need for concurrent interventions to effectively manage the
epidemic.
Additionally, we compare the performance of exposure

notification to manual contact tracing to (1) establish similarities
between relative staffing level and exposure notification adoption
and (2) to verify an additive effect of concurrent manual tracing
and exposure notification.
We see improvements in all cases when combining interven-

tions (Fig. 5). In all three counties, exposure notification has a
stronger effect at the given staffing and adoption levels, but
adding either intervention to the other results in reduced
infections, albeit to different extents based on the trend of the
epidemic. This suggests that both methods are useful separately
and combined, and that the trend affects the relative utility of the
interventions.

Concurrent interventions under behavioral changes
While the results shown above suggest that the interventions are
effective in suppressing the COVID-19 epidemic to various
degrees, in practice, health organizations will implement multiple
intervention strategies simultaneously to try to curb the spread of
the virus while also allowing controlled reopenings. Therefore, we
also study the combined effect of concurrent interventions
including digital exposure notification, manual contact tracing,
and network interaction changes. We explore changes to social
distancing in Supplementary Figs. 1, 2.
We examine the effects of combined NPIs under various

“reopening” scenarios by increasing the number of interactions in
every interaction network, including households, workplaces,
schools, and random networks. Specifically, we increase these
interactions by a given percentage from the levels as of July 11,
2020 (0% reopen) up to the levels at the very start of the epidemic
before broad-based mobility reductions (100% reopen). Given the
average number of interactions i for network n at the end of the
baseline as ib,n and before the lockdown as i0,n, the network
reopening percentage p (in 0–100%) defines the current relative
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Fig. 1 Simulation time series. Simulation results for various levels of exposure notification app uptake (among the total population) during
2020, with the app being implemented on July 11, 2020 in King County (a–f), Pierce County (g–l), and Snohomish County (m–r). The shaded
areas represent one standard deviation. Plots (a, g,m) are the new infections on the given day, which consistently decrease with EN adoption,
although the largest variances occur in the mid-range of adoption changes. Plots (b, h, n) are the total infected percentage, Plots (c, i, o) are
the total deaths, Plots (d, j, p) are the total in hospital, all of which naturally vary by new infections given the natural progression through the
compartmental model. Plots (e, k, q) are the total number of tests performed per day, which also varies by new infections as tests are only
performed on symptoms, not on trace, so they correlate with the proportion of newly infected individuals who eventually show symptoms.
Plots (f, l, r) are the percent of people in quarantine at that time step, which varies non-linearly with the infection rates due to increased
quarantines from increased contact tracing but decreased quarantines with decreasing infection rates.
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interactions under reopening ic,n as

ic;n ¼ p
100

1� ib;n
� �þ ib;n: (1)

The infectious rate increases due to a 10–20% reopening are
balanced by decreases due to a 22-37% exposure notification app
adoption, although the effect varies by county (Fig. 6). This shows
that limited additional reopenings may be possible after introdu-
cing exposure notification alongside existing fully staffed manual
tracing (15 staff per 100,000 people), but that social distancing
remains an important measure under these circumstances.
Additionally, there is an increased effect to adding exposure
notification under greater reopening scenarios.
As part of the Washington State Department of Health’s “Safe

Start” plan, a key target metric to reopen Washington is to reach
fewer than 25 new cases per 100,000 inhabitants over the prior
two weeks26. We examine how many days it would take to reach
that target under the combined NPIs. With the spike in cases at
the end of the baseline, the trajectory for reaching these targets
without renewed lockdowns is out of the range of the simulations.
Therefore, to show the relative benefits of the NPIs, we introduce
an artificial renewed lockdown at the mobility levels averaged
over the month before the Phase 2 reopenings (Phase 1.5 for King
County) that occurred on June 5th. Using this averaged mobility
from May 6 to June 5, we model the relative effects of manual

tracing and exposure notification on the Washington Safe Start
key metric.
We find that, for all three counties, the recommended staffing

levels of manual tracing and moderate exposure notification
adoption rates can provide a meaningful reduction in the amount
of time it takes to achieve this metric (Fig. 7). Under the
recommended standard for manual tracing, adding exposure
notification at 30% adoption results in reaching the target in 92%,
87%, and 85% of the time versus no exposure notification for King,
Pierce, and Snohomish counties respectively. At the reduced levels
of 4.7 tracers per 100,000 population, the target is reached in less
than 83% and 88% of the time for King and Snohomish,
respectively, although the exact ratio can not be calculated as
the metric is not achieved in the baseline simulation.

DISCUSSION
We conducted a model-based estimation of the potential impact
of a digital ENS in Washington state by extending the OpenABM-
Covid19 simulation framework. We calibrated our model using
real-world data on human mobility and accurately matched
epidemiological data in Washington state’s three largest counties.
Similar to Hinch et al.’s report on digital contact tracing in the

UK15, we found that exposure notification can meaningfully
reduce infections, deaths, and hospitalizations in these Washing-
ton state counties at all levels of app uptake, even if a small

Fig. 2 Peak metrics vs exposure notification adoption rates. Estimated total infected percentage (a–c), total deaths (d–f), and peak in
hospital (g–i) (y-axes) of King (a, d, g), Pierce (b, e, h), and Snohomish (c, f, i) counties for various levels of exposure notification (EN) app uptake
among the population (x-axis) between July 11, 2020 and December 25, 2020. The boxes represent the Q1 to Q3 quartile values with a line at
the median. The whiskers show the range of the data (1.5 * (Q3–Q1)) and any outlier points are past the end of the whiskers.
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fraction of the population participates. We showed how exposure
notification can be combined with manual contact tracing to
further suppress the epidemic, even if the two interventions do
not explicitly coordinate. Our simulations showed that the
simultaneous deployment of both interventions can help these
counties meet a key incidence metric defined by the Safe Start
Washington plan. The potential overall effect of exposure
notification seems to be greater than even optimal levels of

manual contact tracing, likely because of its ability to scale and
better identify random interactions.
We found that quarantine rates, which contribute to the social

and economic cost of these interventions, do not strictly increase
with exposure notification adoption. In some cases, fewer people
are quarantined even though a greater fraction of the population
participates in the app, which we attribute to successful
suppression of the epidemic at high levels of exposure notification

Fig. 3 Quarantine events vs exposure notification adoption. Estimated total quarantine events of King (a), Pierce (b), and Snohomish (c)
counties for various levels of exposure notification app uptake among the population from July 11, 2020 to December 25, 2020. Note that
even for the “default” (0% exposure notification app uptake) scenario there is a non-zero number of quarantine events because this assumes
that symptomatic and confirmed COVID-19 positive individuals will self-quarantine at a rate of 80%, even in the absence of an app.

Fig. 4 Infections under manual contact tracing. Estimated effect of manual contact tracing on new infections (a–c) and total infected
percentage (d–f) at various staffing levels per 100k people in King (a, d), Pierce (b, e), and Snohomish (c, f) counties between July 11, 2020 and
December 25, 2020.

Fig. 5 Combined effects of manual contact tracing and exposure notification system. Comparison between manual contact tracing (CT) at
the recommended staffing level and exposure notification (EN) at 30% adoption in King (a), Pierce (b), and Snohomish (c) counties. In all three
counties, the combined effect is greater than individual contributions by either system.
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app adoption. Given a longer simulation time horizon we may see
a similar effect even at the lower levels of exposure notification
adoption.
Finally, we looked at the combined effects of exposure

notification and manual tracing in the context of different
reopening scenarios, where mobility and interaction levels
increase to the pre-epidemic levels. Our results suggest that both
interventions are helpful in counterbalancing the effect of
reopening, but are not sufficient to offset new cases except at
very high levels of adoption and manual tracing staffing. As a
result, we believe that continued social distancing and limiting
person-to-person interactions is essential. Future work is needed
to study targeted reopening strategies, such as reopening specific
occupation sectors or schools, or more stringent social distancing
interventions in places that do reopen.
While we have attempted to add realistic elements and

calibrate it with the best available data, choices and simplifications
made surrounding the behavior of the individuals, their move-
ments in the world, in particular a lack of cross-county movement,
disease dynamics, and many others, mean that the results should
be viewed as an exploration of possible outcomes, not a
prediction27. We plan to explore the effects of cross-county
movement in our future work.
We simulate a two-day wait from symptom onset to COVID-19

test result receipt and acknowledge this as a key assumption
underlying our findings. Ferretti et al.28 showed that such delays
have a significant impact on the intervention’s efficacy. Rapid
testing protocols can shorten this delay and are essential for
epidemic control15.
We use a high RT-PCR test specificity of 0.999, which limits

the effects of removing individuals from the network due to false
positives rather than actual infections and provides a conservative
estimate of the effects of contact tracing. Lowering this value could
have a small effect on the epidemic trajectory, but possibly a
greater effect on the perception of utility and efficacy of the system.

For future modeling work studying a more accurate overall
characterization of quarantine rates, predictive value, or public
perception, specificity should be set closer to an average of the
most recent findings in the range of 0.97–0.99229,30.
We used published COVID-19 mortality data to calibrate model

parameters. While arguably a good proxy for true infection
numbers, the published mortality data can be scarce and noisy,
especially in small counties, resulting in potential difficulties of
modeling with accuracy.
The synthetic occupation networks are based on the latest

employment data corresponding to the fourth quarter in 201931.
Since the beginning of the pandemic, the size and structure of
occupation networks may have significantly changed compared to
the latest available data.
In our work, we used the mobility data along with a

changepoint to model time-varying infection rates. While the
changepoint vector models the net effect of various latent factors,
it may be limited when multiple change points or more complex
latent factors exist. The changepoint rate is homogeneously
distributed to the random network and occupational networks,
which may vary heterogeneously in reality.
For future work, we consider coordination between different

regions when deploying exposure notification as part of a suite of
non-pharmaceutical interventions. The United States has seen a
highly spatially varied response to the COVID-19 pandemic, with
significant consequences to epidemic control32. Under varying
cross-county and cross-state flows, we seek to quantify the
empirical efficiency gap between coordinated and uncoordinated
deployments and policies around testing, tracing, and isolation in
which exposure notification can aid. The beginning of such
collaborations is evident in the consortia of state governments
such as the Western States Pact and a multi-state council in the
northeast, both working together to coordinate their responses.
We expect that coordinated deployments of digital exposure
notification applications and public policies may lead to more

Fig. 6 Simulated reopenings under varied exposure notification adoption rates. Estimated total infected percentage as of December 25,
2020 as a function of simultaneous network reopening and exposure notification app adoption rates, assuming fully staffed manual contact
tracing (15 workers per 100,000 people), in King (a), Pierce (b), and Snohomish (c) counties. The infectious rate increases due to a 10–20%
reopening are balanced by decreases due to a 22–37% exposure notification app adoption, although the effect varies by county.

Fig. 7 Days to key metric under varied intervention levels. Estimated number of days from July 11, 2020 for King, Pierce, and Snohomish
counties to reach the Washington state goal of fewer than 25 new cases per 100,000 people over the trailing 14 days, as a function of manual
tracing workforce capacity and exposure notification app adoption, given a renewed lockdown to the average level over the month before
June 5th. Simulated results shown for King (a), Pierce (b), and Snohomish (c) counties show the ability of the interventions to suppress the
epidemic by the primary reopening metric.
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effective epidemic control as well as more efficient use of limited
testing and isolation resources.

METHODS
Modeling individual interactions and COVID-19 epidemiology
To model the combined effect of digital exposure notification and other
non-pharmaceutical interventions (NPIs) in Washington state, we use a
model first proposed by Hinch et al.15, who have also made their code
available as open source on GitHub33. OpenABM-Covid19 is an individual-
based model that models interactions of synthetic individuals in different
types of networks based on the expected type of interaction (Fig. 8).
Workplaces, schools, and social environments are modeled as
Watts–Strogatz small-world networks, households are modeled as separate
fully connected networks, and random interactions, such as those on
public transportation, are modeled in a random network. The networks are
parameterized such that the average number of interactions matches the
age-stratified data in ref. 34. Contacts between synthetic individuals in
those interaction networks have the potential for transmission of the virus
that causes COVID-19 and are later recalled for contact tracing and
possible quarantine.
While the original model by Hinch et al.33 included a single occupation

network for working adults, we extend this to support multiple networks
for workplace heterogeneity. This is motivated by increasing evidence that
workplace characteristics play an important role in the spread of SARS-
CoV-2, such as having to work in close physical proximity to other
coworkers and interacting with the public. Baker et al. found that certain
U.S. working sectors experience a high rate of SARS-CoV-2 exposure,
including healthcare workers, protective services (e.g., police officers),
personal care and services (e.g., child care workers), community, and social
services (e.g., probation officers)35. As another example, the Centers for
Disease Control and Prevention (CDC) has issued specific guidance to meat
and poultry processing workers due to the possible increased exposure risk
in those environments36. As a result, we model individual industry sectors
separately so that each sector has its own small-world network and is
parameterized with real-world data on its size and interaction levels.
In OpenABM-Covid19, transmission between infected and susceptible

individuals through a contact is determined by several factors, including
the duration since infection, susceptibility of the recipient (a function of
age), and the type of network where it occurred (home networks assume a
higher risk of transmission due to the longer duration and close proximity
of the exposure). Individuals progress through stages of susceptible,
infected, recovered, or deceased. In this model, the dynamics of
progression through these stages are governed by several epidemiological
parameters, such as the incubation period, disease severity by age,
asymptomatic rate, and hospitalization rate, and are based on the current
literature of COVID-19 epidemiology. We reference the complete list of the
epidemiological parameters37 and any modifications to those are
described in the subsequent sections and listed in Supplementary Table 1.

Modeling Washington state
In this work, we model the three largest counties in Washington state—
King, Pierce, and Snohomish—with separate and representative synthetic
populations. The demographic and household structure were based on
data from the 2010 U.S. Census of Population and Housing38 and the

2012–2016 ACS Public Use Microdata Sample39. We combined Census and
Public Use Microdata Sample (PUMS) data using a method inspired by40.
For each Census block in Washington state, we took distributions over age,
sex, and housing type from several marginal tables (called Census
Summary tables) and from the PUMS, and combined them into a multiway
table using the iterative proportional fitting (IPF) algorithm. We then
resampled the households from the PUMS to match the probabilities in the
multiway table. The resulting synthetic population in each Census block
respects the household structure given by PUMS and matches marginals
from the Census Summary tables.
Our synthetic working population was drawn to match the county-level

industry sector statistics reported by the U.S. Bureau of Labor Statistics in
their Quarterly Census of Employment and Wages for the fourth quarter of
201931. We also used a report by the Washington State Department of
Health (DOH) containing the employment information of lab-confirmed
COVID-19 cases among Washington residents as of May 27, 2020 to
parameterize each occupation sector network41 (See Supplementary Fig. 3
for the breakdown of cases by occupation sector). For each sector, we use
its lab-confirmed case number weighted by the total employment size as a
multiplier factor to adjust the number of work interactions of that
occupational network. While the DOH report does not explicitly measure
exposure risk for different industries, it is, to the best of our knowledge, the
best source of data for confirmed COVID-19 cases and occupations to date.
Our model should be refined with better data from future work that
studies the causal effect of workplace characteristics on COVID-19
transmission. A complete list of the occupation sectors and interaction
multipliers can be found in Supplementary Tables 2, 3.

Modeling interventions
In the OpenABM-Covid19 model, if an individual presents with COVID-19
symptoms, they receive a test and are 80% likely to enter a voluntary 7-day
isolation with a 2% drop out rate each day for noncompliance. If the
individual receives a positive test result, they isolate for a full 14 days from
initial exposure with a daily drop out rate of 1%. Prior to confirmation of
the COVID-19 case via a test result, the household members of the
voluntarily self-isolating symptomatic individual do not isolate, which is in
line with current recommendations by the CDC42. Household quarantines
may still occur through digital exposure notification or manual contact
tracing, described in the following sections. We set the test sensitivity at
80% for tests taken at least three days after infection, which is on the
conservative end of the range reported by a systematic review of false-
negative rates of RT-PCR tests for COVID-1943. Test specificity was set to
99.9%, which is also inline with real-world studies of RT-PCR false-positive
rates29,44. Both sensitivity and specificity are set conservatively for the
purposes of the interventions, which trigger exposure notifications and
contact tracing on positive results. A higher specificity is therefore a more
conservative estimate, since lower values would cause more people to be
isolated from their network.
We simulate digital exposure notification in OpenABM-Covid19 by

broadcasting exposure notifications to other users as soon as an app user
either tests positive or is clinically diagnosed with COVID-19 during
hospitalization. The model recalls the interaction networks of this app user,
known as the “index case”, to determine their first-order contacts within
the previous 10 days. Those notified contacts are then 90% likely to begin
a quarantine until 14 days from initial exposure with a 2% drop out rate

Fig. 8 Example interaction networks. Examples of fully connected (a), Watts–Strogatz small-world (b), and random (c) networks that define
interactions among synthetic agents in households (a), workplaces, schools, social circles (b), and random (c) settings.
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each day for noncompliance. See the repository33 for a more comprehen-
sive description of the model.
While the actual ENS allows health authorities to configure notifications

as a function of exposure distance and duration, our model does not have
the required level of resolution and instead assumes that 80% of all “too
close for too long” interactions are captured between users that have the
app. (See Supplementary Figs. 4, 5 for a sensitivity analysis of this
parameter).
The overall effect of digital exposure notification depends on a number

of factors that we explore in this work, including the fraction of the
population that adopts the app and the delay between infection and
exposure notification. As an upper bound on app adoption, we configure
the age-stratified smartphone population using data on smartphone
ownership from the U.S. from the Pew Research Center45 for ages 20+ and
Common Sense Media46 for ages 0–19. Since this data was not available for
Washington state specifically we assumed that the U.S. distribution was
representative of Washington state residents.
We introduce to OpenABM a new type of active intervention, which is

traditional or “manual” contact tracing. In contrast to digital exposure
notification, human tracers work directly with index cases to recall their
contact history without the proximity detection of a digital app. Those
contacts are then given the same quarantine instructions as those traced
through the digital app. We configure the simulation such that manual
contact tracers have a higher likelihood of tracing contacts in the
household and workplace/school networks (100% and 80%, respectively)
than for the additional random daily contacts (5%), based on the
assumption that people will have better memory of and ability to identify
contacts in the former (e.g., involving family members or coworkers)
compared to the latter (e.g., a random contact at a restaurant).
Additionally, we configure the capacity of the contact tracing workforce
with parameters for workforce size, maximum number of index-case
interviews per day, and maximum number of tracing notification calls
per day following those interviews. Tracing is initiated on an index case after
either a positive test or hospitalization, subject to the capacity in that area.

Finally, we add a delay parameter between initiation of manual tracing and
finally contacting the traced individuals to account for the processing and
interview time of manual tracing.

Model calibration
Model calibration is the process of adjusting selected model parameters
such that the model’s outputs closely match real-world epidemiological
data. To calibrate OpenABM-Covid19 for Washington state we use
components of a Bayesian SEIR model by Liu et al.47 for modeling
COVID-19. They extend the classic SEIR model by allowing the infection
rate to vary as a function of human mobility and a latent changepoint to
account for unobserved changes in human behavior. We fit that model to
Washington state county-level mortality data from The New York Times48

and mobility data from the Community Mobility Reports published by
Google and made publicly available24. The Community Mobility Reports
are created with aggregated, anonymized sets of data from users who
have turned on the Location History setting, which is off by default. No
personally identifiable information, such as an individual’s location,
contacts, or movement, is ever made available49. The reports chart
movement trends over time by geography, across different categories of
places such as retail and recreation, groceries and pharmacies, parks,
transit stations, workplaces, and residential. We note that, because of the
opt-in nature of this dataset, it may not be representative of the overall
population.
We extend the methodology in Liu et al. to model calibration in

OpenABM-Covid19 by applying the time-varying infection rate coefficients
to the relevant county-specific parameters that guide user interaction
levels and disease transmission likelihood. More specifically, the number of
daily interactions in the random and occupation networks, Ri(t) and Wi(t),
are scaled by the mobility coefficient, m(t) at time step t, which is
calculated based on the aggregated and anonymized location visits from
the Community Mobility Reports. The time-dependent infectious rate, β(t),
is scaled by a weighting term, σ(t), which depends on how far time step t is

Fig. 9 Calibrated simulation vs observed epidemic dynamics. Daily reported and predicted COVID-19 deaths in King County, WA
(Correlation: 0.75) (a), Pierce County, WA (Correlation: 0.78) (c), and Snohomish County, WA (Correlation: 0.56) (e) and daily reported and
predicted COVID-19 cases for King County, WA (RMSE: 2.06, Correlation: 0.79) (b), Pierce County, WA (RMSE: 0.65, Correlation: 0.80) (d), and
Snohomish County, WA (RMSE: 0.35, Correlation: 0.78) (f).
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from a learned changepoint, which is modeled as a negative sigmoid. Both
σ(t) and m(t) are learned functions and are described in more detail in Liu
et al.47 Supplementary Figs. 6–8 show the learned functions that are used
to calibrate OpenABM-Covid19.
Finally, we use an exhaustive grid search to compute two OpenABM-

Covid19 parameters for each county: its initial infectious rate and the
infection seed date (from 3.0 to 7.0 for the infectious rate parameter and
35 day period for the infection seed date). The infectious rate is the mean
number of individuals infected by each infectious individual with
moderate-to-severe symptoms, and can be considered a function of
population density and social mixing. The infection seed date is the date at
which the county reaches 30 total infections, possibly before the first
official cases due to asymptomatic and unreported cases. We pick the
parameters where the simulated mortality best matches the actual COVID-
19 mortality from epidemiological data, as measured by root-mean-square
error (RMSE). See Supplementary Table 4 for the calibrated parameter
values that were used for this study.
The results of the calibrated models for King, Snohomish, and Pierce

counties are shown in Fig. 9. Note that while there is a strong correlation in
the predicted and reported incidence, the absolute predicted counts are
approximately 6X higher than those that were officially reported. We
attribute this difference to the fact that OpenABM-Covid19 is counting all
asymptomatic and mild symptomatic cases that may not be recorded in
reality. This is approximately consistent with the results of a seroprevalence
study by the CDC that estimated that there were 6–24 times more
infections than official case report data50.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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