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Abstract

We introduce methods for efficient and privacy-safe modeling of reach and the demographic com-
position of cross-media campaigns. Cross-media campaign traffic is composed of two parts: digital
and TV. Digital traffic is estimated based on event-level data available in server logs. TV traffic is
extrapolated from a combination of panel and set-top-box or smart-TV data. The Virtual-People
methodology introduced in [9] allows for efficient measurement of digital audiences. In this paper
we extend this methodology to work with the extrapolated data sources associated with TV data,
thus generalizing it for cross-media measurement.

1 Introduction

Koehler, Skvortsov, and Vos (2013) [4] (KSV) presents a method for measuring the reach and
frequency of online-ad campaigns by audience attributes for one device (or cookie) type. This
method combines ad server logs, publisher provided user data (PPD), census data, and a represen-
tative panel to produce corrected cookie and impression counts by these audience attributes. The
method corrects for cookie issues such as deletion and sharing, and for PPD issues such as non-
representativeness and poor quality of demographic labels. It also proposes a model that converts
cookie counts to user counts.

Koehler, Skvortsov, Ma, Liu (2016) [3] (KSML) extends the method to today’s world of multiple
device types such as desktop, smartphone, and tablet. A formulation for converting multiple cookie
counts to people counts is proposed. The article introduced the concept of an Activity Distribution
Function (ADF), which describes the probability of a person generating cookies of each type.
A theory relating ADFs to matching cross-device reach functions is presented and shows that
ADFs can be well approximated by a mixture of Dirac delta functions [1] which can be estimated
empirically using panel data. A natural extension of the demographic correction to multiple devices
is presented as well.

Skvortsov and Koehler (2019) [9] (KS) presents a technology that implements the methodologies
of [4] and [3] in a large scale production systems efficiently. The reach and demographic-correction
models are converted into assignments of virtual people to each of the events in the logs. Each
virtual person has demographic attributes (age and gender) assigned to them. The total reach of
an audience (ad campaign, web site, online video etc) can be estimated as a simple count of unique
virtual people assigned to the corresponding set of events. The demographic composition of an
audience is estimated as the demographic composition of the set of virtual people.
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Kreuter et al (2020) [5] describes a multi-party cryptographic protocol that adds differentially
private noise for calculating cross-publisher Virtual-People reach. The protocols are analyzed the-
oretically describing the level of user-privacy protection. These protocols work by data providers
exchanging so called Liquid Legions sketches. These are cardinality sketches, encoding sets of Vir-
tual People identifiers and are designed to be compatible with further processing in a multi-party
computation for the calculation of total reach in a way where workers have only a limited exposure
of the information about individual users.

Tsai, Skvortsov and Koehler (2021) [2] describe algorithms for efficiently creating HyperLogLog
sketches of Virtual People corresponding to panelists. The algorithm works by creating a so called
Deep HyperLogLog sketch of the audience. The size of the deep sketch is in practice an order mag-
nitude smaller than the size of the original population and this sketch allows creating HyperLogLog
sketches of random samples of the audience in time linear to the size of the deep sketch.

This paper extends the technologies of [9], [2] and [5] to allow efficient reporting of the reach of
cross-media, cross-publisher audiences in a way that preserves the privacy of individual users. The
main algorithmic contribution of this paper is an efficient method for encoding audience estimates
obtained by an extrapolation into LiquidLegions sketches of Virtual People. With this method,
reach estimates of TV audiences measured via an extrapolation from a panel or from partial set-
top-box data can be encoded in a sketch and serve as an input to the system described in [5]. The
system naturally deduplicates TV reach from the digital part of the audience via a simple sketch
merge.

The rest of the paper is organized as follows. In Section 2 we describe the methodological
approaches to measuring TV audiences with Virtual People: aggregate level that is compatible
with the arbitrary legacy currencies and the per-event approach, which has advantage of full self
consistency, but is more susceptible to noise if panel weights have high volatility. In Section 3 we
describe algorithms for encoding the reach measurement obtained from panel into Liquid Legions
sketches, which are compatible with the system described in [5].

2 Mapping Audiences to Sets of Virtual People

Server logs are the primary source of information when a digital audience is being measured. Server
logs record all of the individual events through which an audience is exposed to an ad campaign.
The Methodology described in [9] assigns Virtual Person identifiers to individual events. Reach for
a set of events can then be estimated by counting the number of unique Virtual People identifiers
assigned to these events.

On the other hand, TV audience measurement usually lacks comprehensive information about
individual view events. It is usually performed via extrapolation from panel data, or from data
collected from a subset of set-top-boxes and/or smart TVs. In this section we describe two ap-
proaches to how a measurement done from this sample can be encoded into sets of virtual people.
These two approaches are

1. Aggregate approach: A traditional panel-based measurement of a campaign consists of
aggregated reach estimates for each demographic bucket. The Aggregate approach then
samples an appropriate amount of virtual people from the total virtual population to approx-
imately match the aggregate estimates.

2. Per event extrapolation approach: Each event is hashed to a set of Virtual People.
Audience reports are then the union of all virtual people that were assigned to the collection
of events associated with the campaign/report. Reach is the sum of these virtual people.
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In both approaches the Virtual People can be stored in a sketch and transmitted into the cross
media measurement system’s secure cardinality estimation framework to be unionized with the
digital reach.

The advantage of the Aggregate approach is its compatibility with an arbitrary TV audience
measurement methodology in that it simply encodes it for deduplication with its associated digital
reach. It can thus be used for blending existing currency TV numbers with the state-of-the-art
digital reach estimates. This approach is appropriate for a system that produces reach estimates at
the end of a campaign as it cannot guarantee consistency at different times during the campaign.

On the other hand, the per-event approach guarantees consistency for TV measurement and
can also be implemented with a simpler engineering infrastructure. While it may not provide exact
agreement with existing TV numbers, we encourage considering it when developing new TV reach
measurement systems.

From a modeling point of view, in both approaches the overlap between digital and TV audiences
is determined by collisions of Virtual People identifiers sampled from pre-defined population pools.
The population can be broken into these pools by using census categories, such as demographic
age/gender buckets, or geography regions. In addition to categories important for reporting this
partition could be using activity-based characteristics, such as light/heavy TV viewership. The
sub-division of census based pools into pools of activity-based characteristics can be done with the
goal of optimising resulting overlap model accuracy.

Next we formally define these two approaches.

2.1 Aggregate Virtual People Mapping

Let C be the set of people categories for which reach reports are being computed. For instance C
can be the set of demographics, i.e. each c ∈ C could be a pair of gender and a 10 year age bucket.
Geography, or interests could also be part of the people category definition.

A reach report is then defined as a function that maps each people category to the number of
people reached in this category. Formally as a map R : C 7→ Z. The Aggregate mapping approach
is to map this report to the set of virtual people. Algorithm 1 presented below shows how to build
this map in time linear with respect to the total number of virtual people.

input : Set of Virtual People broken by category V =
⋃
c∈C Vc, reach report

R : C 7→ Z
output : A set of virtual people identifiers A ⊆ V representing report R
let A = ∅;
for c ∈ C do

for p ∈ Vc do

with probability R(c)
|Vc| add p to A

end

end

Algorithm 1: Mapping aggregate reach report to a set of Virtual People

Observation 1 If a set A is built by Algorithm 1 for report R, then we have |A ∩ Vc| ≈ R(c).

Observation 2 Runtime complexity of the Algorithm 1 is O(|V|).
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2.2 Per-event Virtual People assignment

Aggregate methods of measuring reach from a panel are not necessarily consistent. As an example,
consider the situation where a subset of panelists are exposed to a campaign during its initial phase
and no other panelists are exposed subsequently. If the weights for these exposed panelists decrease
over the campaign time-interval, then the campaign reach estimates will also decrease over that
time.

Assigning virtual people to individual events of the panel or to set-top-box data ensures that
reach estimates are internally consistent. This is highly desirable for reach planning scenarios and
also allows continuous tracking and adjustment of campaign performance.

It is not always possible to implement an aggregate approach with per-event assignment. For
example, most aggregate approaches use panelist’s weights for an given period - usually the interval
of the campaign. As the set of panelists changes over time their respective weights will also change.
This means that the contribution of a given event to reach depends on the time interval being
considered and hence such a method is not equivalent to any per-event assignment.

There many measurement techniques that can be implemented with the assignment of virtual
people to panel events. Below we describe one of these approaches, which we find to be reasonable.

input : An item i, a list of options ` and an assignment of weights of the options ω.
output : A consistent hash h ∈ ` of the item i
let r = null;
let h =∞;
for j ∈ ` do

let x be a float valued fingerprint of pair (i, j) from interval (0, 1);
let h′ = −ω(j) · log x;
if h′ < h then

update r = j;
update h = h′;

end
return h;

Algorithm 2: AffinityHash(i, `, ω)

To handle any changes in panel weights, we use the affinity hashing described in [6]. Algorithm 2
is the fundamental building block for the mapping of panel events to Virtual People. Algorithm 3
uses affinity hashing to assign each Virtual Person to a panelist within the same category represented
by that Virtual Person. Thus each panelist is allocated a set of Virtual People.

Observation 3 The runtime complexity of Algorithm 3 is O(
∑

c |Vc| · |Pc|).

Algorithm 4 applies Algorithm 3 for each day, thus minimizing the change in Virtual People
assigned to any panelists, as the set of panelists, or the weights of panelists change from day to
day.

3 Efficient LiquidLegions sampling

In this section we discuss more efficient alternatives to Algorithms 1 and 3. The runtime complexity
of these algorithms are O(|V|) and O(

∑
c |Vc| · |Pc|), respectively, and have a multiplier of the total

number of virtual people |V|. Rather that running over the whole set of Virtual People we can
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input : Set of Virtual People labeled by category V =
⋃
c∈C Vc, a set of panelists

labeled by the same categories P =
⋃
c∈C Pc, a set of panelist weights

ω : P 7→ R
output : A mapping from panelists to sets of virtual people Ṽ : P 7→ 2V .
let Ṽ (p) = ∅ for all p ∈ P ;
for c ∈ C do

for v ∈ V do
let p = AffinityHash(v, Pc);

update Ṽ (p) = Ṽ (p) ∪ v;

end

end

Algorithm 3: Association of Panelists with Virtual People.

input : Set of Virtual People broken by category V =
⋃
c∈C Vc, a set of panelists

broken by the same categories P =
⋃
c∈C Pc, a set of events broken by date

E =
⋃
d∈D Ed, correspondence of events to panelists p : E 7→ P and panel

weights for each day ω : P ×D 7→ R
output : A mapping from events to sets of virtual people V : E 7→ 2V .
let Ṽd be obtained by Algorithm 3 from weights of panelists on day d;
for d ∈ D do

for e ∈ E do

let V (e) = Ṽd(p(e))
end

end

Algorithm 4: Mapping panel events to sets of Virtual People

5



use an auxiliary structure that we call Deep Liquid Legions sketch. This bring downs the runtime
complexity of Algorithms 1 and 3 to O(|S|) and O(

∑
c |Sc| × |Pc|) respectively, where |S| is the

size of the Deep Liquid Legions sketch. The size of the sketch depends on the desired relative error
of the approximate cardinality estimation. By using simulation we observe that a sketch size of
around 100K adds less than 2% relative error. For the United States, demographic buckets usually
contains tens of millions of Virtual People, which means that using Deep Liquid Legion sketches of
size 100K speed up the algorithms by roughly hundred times.

As it was described in [5], LiquidLegions sketch with parameters (m,α) is a Bloom Filter over
m registers, which uses a truncated exponential distribution with decay α for allocating items to
these registers.

Definition 1 Depth of the LiquidLegions sketch, δ, is the index of the first position of the sketch
that is occupied by 0.

Definition 2 Deep Liquid Legions sketch of the set S, with parameters m,α, is a triple S =
(L, φ, ψ), where L is the LiquidLegions sketch with parameters m and α, of the set S with two
additional functions:

• Map φ : [δ + 1, . . . ,m− 1] 7→ 2S, where φ(i) is the set of objects from S that got assigned to
position i.

• Map ψ : [0, . . . , δ − 1] 7→ S, where ψ(i) is one of the objects that got assigned to position i.

Where δ is the depth of the sketch L.

We use notation |S| for the total number of elements in the values of functions φ and ψ, i.e.
|S| = δ +

∑
i |φ(i)|. We call this value size of the sketch S. Indeed to store Deep LiquidLegions

sketch we need to store the maps φ and ψ. Therefore amount of memory required for storing the
sketch is proportional to |S|.

Algorithm 5 shows how to construct the deep sketch of a set of Virtual People. This algorithm
runs in time that is linear with respect to the total number of Virtual People.

Deep sketch of a set V can be used for efficient creation of sketches for subsets of V. In
the next subsections we describe how the deep sketch can be used for the aggregate and the
per-event modeling approaches. For simplicity, we will describe them under the assumption of a
single set V to subdivide. This corresponds to deduping TV and digital measurement via a full
independence assumption. To dedupe via independence conditional on categories we need to apply
these algorithms separately to Vc for each category c, e.g. for every age/gender demographic bucket.

3.1 Sketch for the aggregate approach

For the aggregate approach, a TV reach measurement that is computed via a panel needs to be
encoded into a set of Virtual People and then passed to a secure cardinality aggregation protocol
to be deduplicated with its companion digital measurement of the campaign.

Algorithm 6 describes how the set of Virtual People of cardinality n can be built from the deep
sketch of the audience. Note that the deep sketch of the population can be built once and can be
re-used for all queries over the given population. Algorithm 6 is to be applied each time a cross
media reach report needs to be generated.

Observation 4 The runtime complexity of Algorithm 6 is O(|S|).
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input : A set of Virtual People V, truncated exponential allocation of Virtual People
to LiquidLegions registers r(v)

output : Deep LiquidLegions sketch for the set V
let S = bit array of length m pre-populated with 0;
let φ(i) = ∅ for all i ∈ [0, . . . ,m− 1];
for v ∈ V do

let i = r(v);
update S[i] = 1;
update φ(i) = φ(i) ∪ v;

end
let δ = min

φ(i)=∅
i;

for i ∈ [0, . . . , δ − 1] do
let v be a randomly sampled element from φ(i);
let ψ(i) = v

end
restrict domain of φ to [δ + 1, . . . ,m− 1];
return (S, φ, ψ)

Algorithm 5: Building Deep LiquidLegions sketch for a set of Virtual People

input : A Deep LiquidLegins sketch S = (S0, φ, ψ) with parameters (m,α) of a set V
of depth δ, and cardinality n < |V|

output : A sketch S representing a random subset of V of cardinality close to n
let f = n

|V| ;

let S be empty sketch of length m;
for i ∈ [δ + 1, . . . ,m− 1] do

for v ∈ ψ(i) do
with probability f set S[i] = 1;

end

end
let h = |V| − |{x|∃i x ∈ φ(i)}|;
for i ∈ [0, . . . , δ − 1] do

let x = i/m;

with probability
(

1− a·e−ax

(1−e−a)·m

)h·f
set S[i] = 1;

end
return S

Algorithm 6: Using Deep LiquidLegions sketch to create a sketch for a random subset of
given cardinality.
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3.2 Sketch for the per-event approach

To apply efficient sketching for the per-event approach we need to implement splitting the audience
deep sketch into sketches of disjoint sets, which corresponds to the Algorithm 3. Algorithm 7
performs this split operation on the sketches.

Observation 5 The runtime complexity of Algorithm 7 is O(|S| × |P |).

input : A Deep LiquidLegins sketch (S0, φ, ψ) with parameters (m,α) of a set V of
depth δ, cardinalities n1, . . . , nK ,

∑K
k=1 nk = |V|.

output : Sketches S1, . . . , Sk, representing partition of V into subsets of cardinalities
n1, . . . , nK .

let fk = nk
|V| for k ∈ 1, . . . ,K;

let Sk be empty sketch of length m for k ∈ 1, . . . ,K;
for i ∈ [δ + 1, . . . ,m− 1] do

for v ∈ φ(i) do
let k = AffinityHash(v, {1, . . . , k}, {f1, . . . , fk});
update Sk[i] = 1;

end

end
for i ∈ [0, . . . , δ − 1] do

let k = AffinityHash(ψ(i), {1, . . . , k}, {f1, . . . , fk});
update Sk[i] = 1;

end
let h = |V| − |{x|∃i x ∈ φ(i)}| − δ;
for i ∈ [0, . . . , δ − 1] do

let x = i/m;
for k ∈ [1, . . . ,K] do

let ρ =
(

1− a·e−ax

(1−e−a)·m

)h·fk
;

let z = AffinityHash(k, {1, 0}, {ρ, 1− ρ});
if z = 1 then

update Sk[i] = 1;

end

end
return {S1, . . . , SK}

Algorithm 7: Using Deep LiquidLegions sketch to create sketches for a random disjoint
partition of given cardinalities.

4 Conclusion

We presented approaches to modeling cross-media reach within the Virtual People framework. The
digital part of the audience is measured with the standard approach proposed in [9]. For the TV
part of the audience, we explored Aggregate and Event-level extrapolation approaches, both using
panel data as the source of information, which is then encoded as sets of Virtual People.
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The Aggregate approach provides flexibility for TV modeling and allows for encoding arbitrary
TV estimates into Virtual People, and therefore, it is compatible with any existing TV measurement
methodology. If the TV modeling pipeline has no access to campaign-level digital measurement,
then the overlap between TV and digital audiences is estimated via a conditional dependence
statistical model. However, when digital measurement results can be routed to the TV modeling
pipeline, the system can incorporate arbitrary correlations between the TV and digital audience,
which could be learned, for instance, from panel data at the campaign level. Arbitrary correlation
modeling techniques can be implemented, as long as they are using digital measurement as an
immutable input.

The Event-level extrapolation assignment approach is novel for the measurement space and is
yet to be deeply studied in practical circumstances. Its benefit is that is guarantees full consistency
for the measurement of the TV audience, which is a desirable property for real-time estimation and
optimization.

We have performed simulations [8], illustrating both the Aggregate and Event-level extrapolation
approaches and showing that they produce results that closely replicate the underlying aggregate
measurement model.

The set of Virtual People is large and a naive assignment algorithm of Virtual People to panelists
is quadratic in runtime, which could have large computational costs. For the aggregate approach
the assignment has to happen at the report request time, which is likely to be latency sensitive. We
have presented a Deep LiquidLegions sketch data structure and an associated algorithm that runs
over it and efficiently creates sketches of samples of Virtual People. This algorithm can be used
for creating sketches of panelists, as well as for building the sketches for the aggregate approach.
Simulations [7] confirm that the resulting sketches produce results that are very close to the guiding
aggregate level model.
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