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Abstract

Sampling-based Feedback Directed Optimization (FDO) meth-
ods like AutoFDO and BOLT that employ profiles collected

in live production environments, are commonly used in dat-
acenter applications to attain significant performance bene-
fits without the toil of maintaining representative load tests.
Sampled profiles rely on hardware facilities like Intel’s Last

Branch Record (LBR) which are not currently available even

on popular CPUs from ARM or AMD. Since not all archi-
tectures include a hardware LBR feature, we present an ar-
chitecture neutral approach to collect LBR-like data. We use

sampling and limited program tracing to capture LBR-like

data from optimized and unmodified applications binaries.
Since the implementation is in user space, we can collect ar-
bitrarily long LBR buffers, and by varying the sampling rate,
we can adjust the runtime overhead to arbitrarily low values.
We target runtime overheads of <2% when the profiler is on

and zero when it’s off. This amortizes to negligible fleet-wide

collection cost given the size of a modern production fleet.
We implemented a profiler that uses this method of soft-
ware branch tracing. We also analyzed its overhead and the

similarity of the data it collects to the Intel LBR hardware us-
ing the SPEC2006 benchmarks. Results demonstrate profile

quality and optimization efficacy at parity with LBR-based

AutoFDO and the target profiling overhead being achievable

even without implementing any advanced tuning.

CCS Concepts: + General and reference — Measurement;
Performance; » Computing methodologies — Simulation
tools.
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1 Introduction

Today’s datacenter workloads, as well as web browsers run-
ning on mobile devices, are large, control-flow heavy appli-
cations. Modern CPU front-ends try to keep CPU back-ends
busy by employing speculative execution, micro-operation
caches, and dedicated instruction caches and TLBs. However,
when the front-end makes incorrect guesses about the con-
trol flow, there is usually a large penalty as the execution
pipelines are flushed and instructions on the new path must
be fetched and executed. Often, due to the large application
code footprints and lack of code locality, the instructions
have to be fetched from the L2 cache or even from memory.

Using top-down analysis [20] previous studies [11] have
shown that datacenter workloads can be over 20% CPU front-
end bound. Feedback directed optimization (FDO) is effective
at improving application run-time performance. It can reduce
front-end stalls by improving the layout of hot code paths.
It also improves runtime back-end performance through
better code inlining decisions, which in turn enables other
compiler optimizations. Despite its benefits, FDO is not easy
to deploy. It requires a tedious dual-compilation model and
representative workloads on which the profiled binary can
be trained [13].

Sampling based FDO [5] has simplified the deployment
process, removing the need for building a profiling binary
and running synthetic workloads. In follow-up work on Aut-
oFDO [4], the authors have shown that using LBR based pro-
files increases profile accuracy and improves performance.
Panchenko et al. [14] proposed sampling-based profiling for
post-link optimizations and they also confirm that using LBR
profiles offers the best and most stable performance.

LBR [9] is a special Intel register that stores the last N taken
branches in format {from_pc, to_pc} in a circular buffer. The
value of N is microarchitecture dependent, but it is generally
between 8 and 32 for recent Intel microarchitectures. Linux
perf events can read the contents of the LBR buffer on a
hardware event and store it in the events ring buffer.

While Intel architectures are common in the data cen-
ters, other architectures, including AMD Epyc and ARM,
are gaining popularity. In addition, ARM architectures are
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most common for mobile platforms. Neither AMD nor ARM
have an equivalent LBR profiling feature at the time of this
writing. Both platforms have support for instruction tracing,
but these approaches come with a higher memory and CPU
overhead and the hardware support is usually turned off on
production machines.

In this paper, we present an architecture neutral software
branch tracing tool that leverages hardware breakpoints,
hardware counters and limited instruction decoding to sam-
ple short trace bursts of taken branches. Hardware perfor-
mance counters and debug registers are widely available
on all modern architectures. Both can be programmed in a
portable way through the Linux perf events APL

Debug registers [9] are privileged resources that can be
programmed to enable various debug conditions associated
with a set of addresses, such as setting program breakpoints
or watching reads and writes on a given memory address.
Unlike PMU interrupts that can suffer from instruction skew,
debug register interrupts are synchronous with respect to
the instruction that triggers a breakpoint condition.

Instruction decoding has no hardware restrictions, but
most decoding libraries have support for a limited number
of instruction set architectures (ISAs). The proposed tracing
tool can interface with multiple decoding libraries as needed.

The rest of this paper is organized as follows. Section 2
describes the architecture of the branch tracing profiler. Sec-
tion 3 analyzes the runtime overhead of having the pro-
filer turned on with the SPEC benchmarks. Section 4 com-
pares the similarity of the FDO profiles produced by our
profiler against hardware LBR based profiles, and computes
the speedups achieved with each profile type on the SPEC
benchmarks. Section 5 reviews existing control flow pro-
filing techniques and other sampling tools that use debug
registers to enable analyses not possible with the PMU alone.
Section 6 summarizes our findings and concludes the paper.

2 Software Based Branch Tracing

Modern production fleets are very large, so even small over-
heads can add up to significant infrastructure costs. A pri-
mary requirement of our software based profiler is to have
zero runtime overhead when the profiler is off. This excludes
the use of any type of program instrumentation, which has
a non-zero cost even when profiling is disabled. Instead, we
use sampling on perf events to select a random starting point
for tracing, and we use look-ahead instruction decoding and
hardware breakpoints to advance through the control flow
of the application for a short burst of taken branches.

2.1 High Level Design

Algorithm 1 shows the main steps of the profiler. The Sam-
plingHandler is invoked on a perf events sample. It repre-
sents the starting point of a profile trace. We configured perf
events to issue an interrupt on the first sample taken and
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Algorithm 1 Software branch tracing algorithm.

: thread _local branch

: function STARTPROFILER(ucontext)

for all threads do
EnablePerfSampling(event, period)

end for

: end function

7: function STOPPROFILER

8: for all threads do

9: DisablePerfSamplingAndBreakpoints()
10: end for
11: end function
12: function SAMPLINGHANDLER(ucontext)
13: pc < GetPC(ucontext)
14: if FindNextUnresolvedBranch(pc, ucontext) then
15: SetBreakpoint(branch.Address())
16: else
17: EnablePerfSampling(event, period)
18: end if
19: end function
20: function BREAKPOINTHANDLER(ucontext)
21: [target, taken] «—

RecordBranchIf Taken(branch, ucontext)

22: if taken & LBRBufferFull() then
23: EnablePerfSampling(event, period)
24: return
25: end if
26: if FindNextUnresolvedBranch(target, ucontext) then
27: SetBreakpoint(branch.Address())
28: else
29: EnablePerfSampling(event, period)
30: end if
31: end function

32: function FINDNEXTUNRESOLVEDBRANCH(pc, ucontext)

33: repeat
34: [branch, ok] < decoder FindNextBranch(pc)
35: if !ok then return false end if
36: if branch.RequiresBreakpoint() then
37: return true
38: end if
39: [target, taken] «
RecordBranchlIf Taken(branch, ucontext)
40: if taken & LBRBufferFull() then
41: return false
42: end if
43: pc « target
44: until false
45: end function

46: function ENABLEPERFSAMPLING(event, period)

47: if buf fer.available() < maxLBRSize then
48: SwapBuffer()

49: end if

50: PerfEventsEnable(event, period)

51: end function




Break Dancing: Low Overhead, Architecture Neutral Software Branch Tracing

to not rearm itself. On the entrance to SamplingHandler,
perf events sampling is disabled. It is explicitly rearmed by
the profiler after the required number of taken branches is
collected.

We make no assumptions about the event used for sam-
pling, and there is no requirement to use precise events if
available. The PMU sampling is used purely to select uni-
formly distributed starting points for traces along the sam-
pled dimension. Once the profiler selects a starting address
for tracing, it calls FindNextUnresolvedBranch to look for
upcoming control transfer instructions, until it reaches a
branch instruction that it cannot fully resolve statically. In
the process, it may find zero or multiple control transfer in-
structions that it can resolve just by decoding the instruction,
such as unconditional relative branches and direct function
calls. We record all taken branches in the simulated LBR
buffer in the usual {from_pc, to_pc} format.

We implemented a limited instruction decoder on top of
the XED [10] x86 instruction decoding library. We also have
a partial implementation using DynamoRio [2], which has
support for more architectures. While iterating over instruc-
tions, the decoder only needs to look at the instructions’
opcodes to decide if they are control transfer instructions
and to determine their sizes, so that it can iterate through the
instruction stream. However, once it reaches a control trans-
fer instruction, it performs full decoding of the operands
and computes a machine independent representation of the
target address and any eventual condition code. The profiler
can evaluate the machine independent representation using
an arbitrary CPU context. This avoids the need to decode the
control transfer instruction again at evaluation time inside
the breakpoint handler.

When we reach a branch that we cannot resolve statically,
we set a breakpoint at its address and let the program execute
natively until we hit the breakpoint. Inside the breakpoint
handler, we evaluate the branch condition and target, and
we start looking again for upcoming branch instructions. We
repeat this process until we collect the specified number of
consecutive taken branches.

Figure 1 demonstrates how the profiler behaves on a sam-
ple code segment. Let’s assume we get a sampling interrupt
while the program is at address cc2461. The profiler starts
decoding instruction until it finds a control transfer instruc-
tion at address cc24ae. We determine that the instruction is
a conditional branch of type JZ and its target is a sum of two
constant values. While the branch target can be evaluated
statically, we need to set a breakpoint to understand if the
branch is taken or not. When it hits the breakpoint, the pro-
filer determines that the branch is taken and it starts parsing
instructions from its target address. It eventually finds a call
instruction at address cc2541 and computes its target as an
8-byte load from address REG13 + ©x128. The call instruc-
tion also requires a breakpoint to resolve its target. Register

124

LCTES ’21, June 22, 2021, Virtual, Canada

Type Target
cc2460: push  %rbp
= CCc2461: mov %rsp, %rbp
cc2464: push  %ri15
cc24ab: test  %rex,%rex
e ccldae: je cc24f8 COND (JZ)  0x48 + Oxcc24b0
cc24f8: mov (%r14,%r13,1),%rsi
cc24fc: movdga -0x8f7394(%rip) , %xmmeo
cc2532: movdga %xmm@,0x140(%rax)
cc2539:
cc253a: mov 0x120(%rax),%rdi
e cc2541: callg *0x128(%rax) CALL [REG13 + 0x128] (8B)

Figure 1. Branch tracing example. The figure presents a
code segment with control transfer instructions annotated
with the machine independent representation of their branch
types and targets. The red color denotes the branch attributes
that cannot be resolved statically.
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Thread buffer

Thread buffer

.............. App thread

H work queue

BB map queue
. >/ Writer thread
dedicated

Figure 2. The branch tracing profiler diagram

Output file

names in the machine independent representation don’t nec-
essarily match the architectural names. They correspond to
entries in the CPU context structure for an easier evaluation.

Once we collect the required number of consecutive taken
branches, or if we encounter any situation that we cannot
handle, we finalize the current LBR buffer and restart sam-
pling with the given event and interval. Section 2.3 describes
some of the cases when we abort an existing trace early. Ev-
ery time we enable sampling, we check that the local buffer
has enough free space to store the simulated LBR size num-
ber of entries. The buffer is swapped out for an empty buffer
if available space is insufficient. Checking for space here
eliminates the need for a check every time we record an
entry, and avoids ending a trace collection early due to a full
buffer. The profiler can also be turned off completely. In this
case, the code executes natively with no overhead.

2.2 Implementation Details

Figure 2 shows a high level diagram of the profiler architec-
ture. The profiler may be turned on and off from an applica-
tion thread or from a dedicated control thread, depending on
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how the profiler is integrated with the application. On pro-
filer start, one or more worker threads and a writer thread
are created. The StartProfiler routine discovers all the
application threads and opens perf events file descriptors for
each thread, to use for sampling and setting breakpoints.

As seen in Algorithm 1, most of the thread profiling work
is done inside signal handlers. To avoid deadlocks, this code
must be async-signal safe. In other words, it must avoid
calling any library routines that acquire locks that can also
be acquired by the application code that is being profiled.
For example, it should avoid allocating memory using the
system allocator, which may acquire a lock on the slow path.
On profile start, the control thread preallocates a pool of
memory buffers where threads can write collected branch
tracing data, preallocates thread specific state, and initializes
the instruction decoder.

During profiling, application threads write branch data to
their assigned buffers without locking. When a buffer gets
full, its thread adds it to a queue of filled buffers and then
grabs a free buffer from a different queue. Only the buffer
swap requires synchronization with the other application
threads. Buffers can be sized to accommodate an arbitrary
number of LBR traces. In our experiments, we allocated two
16KB buffers for each application thread. One buffer is as-
signed to the thread and the second one is placed in the global
free buffers pool. Each buffer can hold about one thousand
branch entries with two {from_pc, to_pc} 64-bit addresses
per entry, and lock contention has not been an issue even
with hundreds of threads.

The worker threads grab filled buffers from the work
queue, aggregate the branch traces into basic blocks, and post
the processed buffers to the free queue. To reduce the size
of the resulting profile, instead of saving individual traces,
each worker thread maintains a map of executed application
basic blocks and frequency counts. When this data structure
grows above a certain threshold, it is passed on to the writer
thread via a different queue. The writer thread annotates
each basic block with information about the load module of
origin, and writes the data out to an output profile file.

The profiler handles only application threads that exist
at the time a profiling session is started. It ignores any new
application threads created during the profiling session. The
typical use case for profiling production applications, either
inside data centers or on mobile devices in the field, is to
enable the profiler for a few seconds every once is a while
using an external trigger. Another approach is to use a dedi-
cated control thread that periodically turns the profiler on
and off, to collect data from new application threads.

In StopProfiler, at profiling session end, worker threads
process the partially filled buffers assigned to the application
threads. Thus, traces from partially filled buffers, including
data from terminated threads, are still accounted for.
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2.3 Limitations

The profiler can observe and capture all user space control
flow transfers, including C++ exception handling. However,
because the profiler runs in user space, it has inherent lim-
itations in understanding control flow changes triggered
from kernel space. As a result, it won’t follow execution
inside asynchronous signal handlers and it cannot use break-
points to trace execution inside restartable sequences [15],
since any context switch off the CPU or an interrupt inside
a restartable sequence region causes it to be aborted and
possibly restarted.

We handle restartable sequences by parsing the defined
critical section ranges from the special ELF section where
they are described. Before setting a breakpoint, we check
if the breakpoint address is inside one of the restartable se-
quences. If it is, we end the current LBR trace early, and
enable sampling to get a new trace start address. This ap-
proach causes a small blind spot behind rseq regions, which
end up getting traced less frequently. A better approach is
to analyze the control flow inside a restartable sequence,
find its exit point, and restart tracing the thread’s control
flow from that point. While we would still miss capturing
the control flow inside restartable sequences, this omission
has little impact on FDO builds. Restartable sequences are
generally short, hand crafted and optimized code sequences.

Signal handlers are invoked on asynchronous events. Their
execution is not deterministic with respect to surrounding
code. We don’t aim to trace code execution inside signal han-
dlers or include them in FDO profiles. Most signal handlers
return to the point where the handler interrupted the main
program and the profiler will continue tracing as if nothing
happened. However, sometimes, signal handlers can interact
badly with the profiler. Assume that the profiler is tracing
inside libc with a breakpoint set inside a commonly used
function. If an asynchronous signal handler calls the same
function, it can trigger the breakpoint we’ve set. Depending
on what signals are masked during the handler execution,
the breakpoint handler can interrupt the original handler, or
its execution is delayed until we return from the first signal
handler. In the first case, a check of the stack pointer can tell
us if we are at the expected stack frame or if the breakpoint
was triggered by a different control flow path. If the stack
pointers don’t match, we end the current LBR trace early
and restart sampling, to avoid an infinite loop.

In the second case, when the signal used by the breakpoint
handler is masked, the breakpoint handler is invoked after we
return from the first signal, but the program context points to
the instruction where the main program was interrupted by
the original signal. We can catch such situations by verifying
that the pc where the program was interrupted matches the
breakpoint address we have set. If they don’t match, we can
either return from the breakpoint handler without taking
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any action to have the breakpoint triggered again, or we can
end the current LBR trace and restart sampling.

Finally, there may be situations where a signal handler
doesn’t return to the point where the main program was
interrupted. In such cases, the profiler loses access to the
respective application thread temporarily, as the breakpoint
that the profiler set before the signal fired will not be reached.
As mentioned in the previous section, the common use case
in production environments is to enable the profiler for a
few seconds at a time. This avoids disturbing the application
execution for too long, and ensures that the profiler sees any
new application threads that may be dynamically created.
In StopProfiler, after a profiling session, we close all perf
events file descriptors, which disables sampling and any
active breakpoints. Next time StartProfiler is called, it
enables tracing for all the active application threads at that
time.

In the following sections, we evaluate the collection over-
head and the quality of the FDO profiles produced by our
profiler using the SPEC CPU2006 benchmark suite [8]. We
used the SPEC benchmark suite because it provides a broad
set of applications with coverage of various code patterns,
without overfitting any particular ones.

3 Collection Overhead

We evaluated the runtime overhead of the branch tracing
profiler on two systems, a workstation with dual socket
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz (Broadwell mi-
croarchitecture), and a server with dual socket AMD EPYC
7B12 processors (Rome microarchitecture). We disabled the
Turbo Boost feature to eliminate one potential source of
noise. We compiled the SPEC benchmark suite using 11vm
12.0.0-rc1, and optimization flags -fno-strict-aliasing
-03. We added flag -march=zenver2 when compiling the bi-
naries executed on the AMD Rome system.

The published AutoFDO tools [7] use the frequency of
control flow transitions between consecutive basic blocks
only. LBR buffer length has little impact on current FDO
profile precision. The number of sampled basic blocks is
more important for accuracy and is the main determinant
of profiling overhead. We can control the volume of data by
adjusting either the sampling frequency or the simulated LBR
size. For these experiments, we simulated an LBR buffer of
size 16, sampled on the branches taken event, and varied the
sampling period from 500,000 to 5,000,000 taken branches.

We hooked the profiler into each SPEC benchmark at link
time, using a custom wrapper for the main symbol. The
wrapper starts the profiler and registers an exit handler to
stop the profiling session. Our experiments are limited to
the SPEC benchmarks written in C.

We used the reference input sets for all SPEC benchmarks.
Table 1 shows the runtime overhead of each benchmark
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measured over 5 iterations. We observe that a few bench-
marks, including 433.milc, 47@. 1bm and 429.mcf have low
overheads even at higher sampling rates, on both microar-
chitectures. We will look at the application characteristics
that impact tracing runtime overhead in Section 3.1. For all
the other benchmarks, the overhead scales almost linearly
with the sampling rate, the inverse of the sampling interval,
as we are expecting. With a sampling interval of 5 million
taken branches, the entire suite’s runtime overhead is under
2% on both systems, matching our initial target.

When we look at individual benchmarks, we notice that
400.perlbench, 462.libquantumand 483 . xalancbmk, have
large tracing overheads, and their overheads stay above 2%
even at our largest tested sampling interval. We would need
to increase the sampling interval by an up to 3x factor to get
to our overhead target for these benchmarks, especially on
the Broadwell system. For all benchmarks, but especially for
the high overhead benchmarks, the AMD system shows a
smaller overhead at the same sampling frequency, which we
explain in Section 3.2.

3.1 Overhead Analysis

Figure 3 shows a breakdown of the running time of each
benchmark on the Broadwell system, at every sampling inter-
val. We decompose the running time of profiled application
threads into application time, cost of setting up and trig-
gering breakpoints, instruction decoding time, and cost of
setting up perf events sampling. Sampling costs are negligible
in all runs. In all cases, the cost of setting up and triggering
breakpoints accounts for most of the overhead. Instruction
decoding cost is usually much lower. These two costs are
of similar magnitude only for benchmarks 433.milc and
470.1bm.

Breakpoint overhead is the ratio between the cost of han-
dling breakpoints and the cost of executing the application
natively. Breakpoint cost is determined by the number of
branches that must be evaluated dynamically. Branch tracing
is enabled while we fill in one simulated LBR length worth
of entries, and then it’s disabled until we get another sample.

The number of branches that must be evaluated to fill an
LBR buffer is determined by the ratio of taken branches (t)
and the fraction of branches that can be resolved statically (s).
Since the branch tracing profiler records only taken branches,
branches that are not taken increase the overhead. In order to
fill a simulated LBR buffer of size N, the profiler needs to an-
alyze % branches, where ¢ is the fraction of taken branches.
As described in Section 2, some of the branches can be stati-
cally resolved at decode time. A branch that can be resolved
statically doesn’t contribute to the breakpoint cost.

Figure 4 plots the fraction of taken branches (¢) and the
fraction of static branches in the binary (s) for each of the
SPEC benchmarks and for the entire SPEC 2006 benchmark
suite. Currently, the statically resolved branches are either
unconditional relative branches or direct function calls. They
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Table 1. Branch tracing runtime overhead with different sampling intervals. Results averaged over 5 iterations.

Benchmark Intel Xeon(R) E5-2690 - Sampling Interval AMD EPYC 7B12 - Sampling Interval

Name 500k | 1000k | 2000k | 4000k | 5000k || 500k | 1000k | 2000k | 4000k | 5000k
400.perlbench || 27.17% | 15.08% | 7.17% | 3.64% | 3.03% || 21.60% | 10.80% | 5.82% | 3.21% | 3.55%
401.bzip2 15.01% | 9.07% | 3.42% | 1.80% | 1.48% || 13.14% | 6.60% | 3.33% | 1.69% | 1.28%
403.gcc 20.23% | 11.88% | 5.64% | 4.18% | 3.08% || 17.39% | 7.47% | 4.41% | 1.90% | 0.98%
429.mcf 6.24% | 5.46% | 0.84% | 3.37% | 0.44% || 5.26% | 2.48% | 2.03% | 1.04% | 1.11%
433.milc 2.70% | 2.38% | 1.60% | 3.36% | 2.00% || 3.79% | 1.99% | 1.47% | 1.29% | 0.52%
444.namd 8.69% | 4.40% | 230% | 1.13% | 0.96% || 9.37% | 4.63% | 2.75% | 1.39% | 1.10%
445.gobmk 15.89% | 8.13% | 3.94% | 2.23% | 1.90% || 13.51% | 6.96% | 4.17% | 2.11% | 1.67%
447.dealll 19.95% | 10.62% | 5.35% | 2.90% | 2.37% || 15.60% | 9.04% | 4.22% | 2.08% | 1.52%
450.soplex 11.93% | 5.54% | 242% | 2.61% | 0.49% || 10.53% | 6.20% | 3.62% | 2.06% | 1.76%
453.povray 23.48% | 13.75% | 8.69% | 3.82% | 2.90% || 17.18% | 8.58% | 6.17% | 2.26% | 1.60%
456.hmmer 13.91% | 5.40% | 1.46% | -0.41% | -0.76% || 10.24% | 571% | 2.75% | 1.40% | 1.38%
458.sjeng 21.13% | 10.48% | 532% | 2.80% | 2.38% || 14.11% | 7.14% | 5.48% | 2.35% | 1.54%
462.libquantum || 25.58% | 15.79% | 11.62% | 8.38% | 5.16% || 20.19% | 10.85% | 6.42% | 3.38% | 2.81%
464.h264ref 16.23% | 8.52% | 4.75% | 2.10% | 1.84% || 13.93% | 7.46% | 4.02% | 2.45% | 1.90%
470.1bm 235% | 0.74% | 0.61% | 2.27% | 0.16% || 3.83% | 2.02% | 1.02% | 0.52% | 0.38%
471.omnetpp 13.66% | 7.93% | 4.65% | 3.25% | 2.39% || 9.08% | 6.16% | 5.44% | 2.94% | 2.84%
473.astar 11.49% | 633% | 5.11% | 1.86% | 1.03% || 9.04% | 4.80% | 3.02% | 1.73% | 1.11%
482.sphinx3 1532% | 833% | 4.12% | 2.81% | 2.26% || 16.13% | 8.10% | 4.48% | 2.95% | 1.94%
483.xalancbmk || 50.09% | 25.82% | 13.86% | 7.97% | 5.71% || 30.90% | 15.88% | 8.96% | 4.78% | 3.70%
Geomean || 13.65% | 7.45% | 3.71% | 2.98% | 1.65% || 11.78% | 6.17% | 3.73% | 1.97% | 1.49%
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Figure 3. Breakdown of application threads running time during tracing into application time and overheads, including
breakpoint handling, instruction decoding, and sampling costs. Data collected on the Intel(R) Xeon(R) CPU E5-2690 system.

are always taken. The ratio of taken branches shown in
Figure 4 is computed only for branches that require dynamic
evaluation. The profiler needs to evaluate m branches
dynamically to fill an LBR buffer of size N.

We call 1= the breakpoint usefulness factor. It represents
the number of taken branches that can be recorded for each
used breakpoint, and is shown in Figure 4 for each bench-
mark and for the entire benchmark suite. The higher the
fraction of taken branches or the fraction of branches that
can be statically resolved, the higher the breakpoint useful-
ness factor and the less breakpoints we need to handle.
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The three metrics shown in Figure 4 are characteristics
of the application binary. They are machine independent,
but may be affected by compiler optimizations. They also
don’t change with the sampling rate. The sampling rate only
impacts the absolute number of branches that we trace and
record, and breakpoint cost scales linearly with it. We see its
effect on the metrics shown in Table 1 and Figure 3.

If we sample on the taken branches event, a small ratio of
taken branches reduces the frequency of the tracing by the
same factor the breakpoint usefulness metric is reduced. This
effectively cancels the effect of this metric on the overhead.
However, we cannot always sample on the taken branches
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Figure 4. Fractions of taken branches (¢) and statically resolved branches (s), and the breakpoint usefulness factor ( ﬁ) for

each benchmark.

event. Some microarchitectures don’t provide such a perfor-
mance monitoring event.

Compiler optimizations that reduce the number of taken
branches still impact the shape of the data collected even if
the profiling overhead is not impacted. A high fraction of
taken branches results in many small basic blocks, while a
small fraction of taken branches results in fewer larger basic
blocks being collected. Here, we use basic block to mean a
sequence of fall-through code between two taken branches.

The application execution cost, which is the denomina-
tor in the breakpoint overhead formula, is impacted by the
fraction of non-branch instructions in the application or the
average basic block size, and by the application IPC rate. Long
basic blocks and low application IPC rates reduce the execu-
tion frequency of control transfer instructions, and therefore
the observed slowdown during profiling.

Based on the metrics in Figure 4, the SPEC 2006 benchmark
suite has a breakpoint usefulness factor of 0.6. Looking at in-
dividual benchmarks, 433.milc is the only benchmark with
a breakpoint usefulness factor above 1.0. This means that
433.milc can record 16 consecutive taken branches using
only 13.8 breakpoints on average. Benchmark 433.milc has
both a high ratio of taken branches, 86%, and a relatively high
fraction of branches that can be resolved statically, at 25%,
and these metrics explain in part why it has a low runtime
overhead with branch tracing even at higher sampling rates.
At the other end of the spectrum is benchmark 429.mcf,
which has the lowest breakpoint usefulness factor at 0.33. It
needs to set three breakpoints in order to record one taken
branch. While 429.mcf doesn’t have a particularly large
overhead in absolute terms, see Table 1, breakpoint costs are
a higher fraction of its total runtime overhead than for any
other benchmark except 483. xalancbmk. The explanation
for 429.mcf’s low runtime overhead under branch tracing
is that it has a low rate of branches retired per second due
to a low IPC [21].
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Figure 5. Cost per breakpoint and instruction decode cost
per basic block, in microseconds, on the Broadwell system.

Figure 5 shows two normalized runtime costs for each
benchmark: (1) the average cost of setting up and triggering
a breakpoint, and (2) the instruction decoding cost per traced
branch, including both taken and not taken branches. Both
metrics were collected on the Intel Broadwell system and are
shown in microseconds. Breakpoint cost is more a measure
of system performance. We expect the breakpoint costs to
be similar for every application, and Figure 5 confirms this
expectation. On our Broadwell system, it takes about 9us to
set up and trigger one breakpoint. Our measurement calipers
for breakpoint cost include the time from setting up a break-
point and until we receive the signal handler. This interval
also includes the time taken by the processor to execute the
instructions up to the breakpoint address, and this time is
larger for applications with larger basic blocks and a higher
fraction of static branches, which explains the slightly larger
values measured for benchmarks 433.milc and 470. 1bm.

The normalized instruction decode cost is a measure of
average basic block size for each benchmark. The larger the
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block size, the more time we spend in instruction decod-
ing before we find a control transfer instruction. We notice
that benchmarks 470. 1bm and 433.milc have significantly
larger basic blocks, which contributes to their low runtime
overhead under branch tracing.

Benchmark 483. xalancbmk has short basic blocks as seen
in Figure 5, a small fraction of branches that can be resolved
statically as seen in Figure 4, and a 52% fraction of taken
branches. Unlike 429.mcf, it has a high branch retirement
rate, the highest of all the benchmarks, and all these factors
contribute to it having the highest runtime overhead under
branch trace profiling, on both test machines.

3.2 Breakpoint Performance Considerations

Breakpoint costs dominate the profiler’s runtime overhead.
In this section, we try to understand how these costs change
and scale on different architectures. For this, we wrote a mi-
crobenchmark that repeatedly sets program breakpoints and
triggers them, using a variable number of program threads.
Results are aggregated in Figure 6.

The two charts show the cost of setting up a breakpoint,
which includes updating the breakpoint address and enabling
the breakpoint, and the total cost of using a breakpoint,
which includes the cost of triggering a breakpoint in ad-
dition to the previous costs. All costs are shown in microsec-
onds and measured using CPU thread timers and all axes
are shown on a logarithmic scale. The cost of triggering
breakpoints was measured using an empty signal handler.

Table 2. Experimental platforms for breakpoint cost results.

Microarchitecture ‘ ISA ‘ sockets ‘ hardware threads
Intel Broadwell x86-64 2 56
Intel Cascade Lake x86-64 2 112
AMD Rome x86-64 1 128
AMD Rome x86-64 2 256
Intel Skylake x86-64 2 112
Marvell Thunder X2 | ARM64 2 256

We measured breakpoint costs on six platforms based on
five different microarchitectures with different numbers of
hardware threads, as seen in Table 2.

Figure 6a shows that the cost of setting up a breakpoint
goes up slightly with the number of threads. In the single
threaded case, the breakpoint setting cost ranges from 0.9us
on the single socket AMD Rome machine up to 3.3us on the
Thunder X2. With 400 threads, this cost goes up to 1.3us on
the two AMD Rome machines and 7.1us on the Thunder X2.

The total breakpoint cost, shown in Figure 6b, which in-
cludes the cost of triggering the breakpoint, shows a very
different behavior under contention. For one to four threads,
total breakpoint cost goes up only slightly. After that, as we
increase the number of threads, the CPU time of setting and
triggering a breakpoint goes up linearly with the number
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of threads up to the total number of hardware threads on
the machine, after which it plateaus. The linear cost increase
with the number of threads, suggest the presence of lock
contention in the kernel code dealing with signal delivery.

Table 3. Profiler overhead for different sampling periods
with datacenter application with 400+ threads.

Saml:?ling Appl'ication Breakpoints Decoding Sampling
period time cost

500k 53.77% 44.64% 1.46% 0.12%

1000k 87.62% 11.00% 1.27% 0.11%

2000k 97.06% 2.22% 0.66% 0.06%

5000k 98.88% 0.81% 0.28% 0.03%

The total breakpoint cost is relevant for the branch trac-
ing profiler, as the profiler needs to both setup and trigger
a breakpoint on each branch evaluation. We observed the
effect of breakpoint contention on a datacenter application
with several hundred threads, where the profiler’s runtime
overhead scales super linearly with the sampling rate. The
data in Table 3 was measured on a dual socket Intel Skylake
server with 112 hardware threads.

Figure 6b shows that in a low threading environment, the
two socket Rome system has lower total breakpoint cost
than the Broadwell system, which explains the lower branch
tracing profiling overheads observed on the Rome system
with the single threaded SPEC benchmarks.

3.3 Profiler Optimizations

The profiler achieves a runtime overhead of < 2% on the
SPEC 2006 benchmark suite as a whole when we sample
every 5 million taken branches. These results were achieved
with a rather naive implementation. Several high level opti-
mizations are possible that can drastically reduce the profiler
overhead in many cases.

The analysis in Section 3.1 shows that most of the run-
time overhead is caused by the use of breakpoints to resolve
the direction and the target of control transfer instructions,
while the instruction decode cost is one order of magnitude
lower on average. To lessen the frequency at which we need
to set breakpoints, we can employ data flow analysis to pre-
dict the direction and target of several branches at a time,
using the CPU state and memory content available inside
the breakpoint handler. Such improvements can be imple-
mented incrementally. The profiler can fall back to dynamic
evaluation via breakpoints when the evaluation requires un-
safe assumptions. This optimization would help especially
with applications that have tight, frequently executed loops,
where the loop exit condition can be reasoned about using
data flow analysis.

Second, the profiler currently doesn’t cache the results
of instruction decoding. It decodes every instruction each
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Figure 6. Breakpoint costs under contention on different microarchitectures

time it executes a basic block, even when these instruc-
tions are in a tight loop. An instruction cache needs to save
only the machine independent representation of branches
and the start addresses of their basic blocks. The call to
decoder . FindNextBranch(pc) atline 34 in Algorithm 1 will
first query the cache for a basic block that includes the pc
address and return the machine independent representation
of the branch from the cache on a hit.

The impact from caching on overhead would be small
with the current implementation where breakpoints account
for the bulk of the overhead. However, with the first op-
timization in place, caching the decoded instructions and
the results of the data flow analysis would become much
more important. We believe that these two high level opti-
mizations have the potential to lower the profiler’s runtime
overhead by integer factors.

4 Profile Similarity

To evaluate the representativeness of the LBR data collected
by our software based branch tracer and to understand its
robustness with respect to the sampling interval, we used the
published AutoFDO tools [7] to generate FDO profiles using
the data collected at each sampling interval. We compare
the resulting profiles against a profile generated from data
collected using the perf tool and the hardware LBR available
on the Intel system. We used sampling on the taken branches
event and a sampling interval of 1 million taken branches to
collect the Intel LBR data with perf.

We used the profile_diff tool at [7] to compare the soft-
ware based profiles collected at each sampling rate against
the hardware based profile for each benchmark. profile_-
diff computes the overlap between two profiles taking into
account the relative contribution of each symbol in the pro-
file, with scores in the range [0, 1]. Results for the Intel
system are aggregated in Table 4 and results for the AMD
system are shown in Table 5.

First, we notice the profile similarity scores are insensitive
to the sampling period. This bodes well for our approach.
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Table 4. AutoFDO profile similarity between Intel LBR and
software tracing with different sampling intervals on Intel.

Benchmark | 500k | 1000k | 2000k | 4000k | 5000k
400.perlbench | 85.91% | 85.90% | 86.33% | 85.77% | 86.32%
401.bzip2 99.31% | 99.47% | 99.55% | 99.38% | 99.55%
403.gcc 99.50% | 99.49% | 99.44% | 99.45% | 99.52%
429.mef 96.30% | 96.33% | 96.48% | 96.78% | 96.17%
433 milc 98.49% | 98.41% | 98.46% | 98.65% | 98.78%
444.namd 99.29% | 98.93% | 99.12% | 98.96% | 99.24%
445.gobmk 95.56% | 95.41% | 95.25% | 95.22% | 95.25%
447 dealll 97.00% | 97.44% | 97.11% | 97.14% | 96.89%
450.soplex 99.05% | 99.16% | 99.15% | 98.89% | 98.48%
453 povray 92.84% | 92.82% | 92.83% | 92.84% | 92.88%
456.hmmer 99.73% | 99.76% | 99.73% | 99.76% | 99.77%
458.sjeng 95.36% | 95.38% | 95.34% | 95.30% | 95.44%
462 libquantum | 99.65% | 99.72% | 99.72% | 99.67% | 99.66%
464.h264ref 97.23% | 97.09% | 97.20% | 97.20% | 97.29%
470.Ibm 99.88% | 99.88% | 99.88% | 99.80%

471.omnetpp | 91.11% | 91.05% | 91.01% | 90.98% | 91.00%
473 astar 97.84% | 97.79% | 97.75% | 97.56% | 97.62%
482.sphinx3 98.01% | 98.00% | 98.02% | 98.18% | 97.52%
483 xalancbmk | 95.03% | 95.20% | 95.18% | 95.10% | 95.17%
Geomean | 96.62% | 96.63% | 96.65% | 96.60% | 96.41%

It means that lowering the sampling rate by a factor of 10
doesn’t lower the representativeness of the profile. The lack
of sensitivity may be due to the large amount of data avail-
able. For each profile, we used the sampling data from five
iterations of the ref input size. This volume of data is not
difficult to collect for a datacenter application running on a
production fleet, or for an application running on a fleet of
mobile devices, even at much lower sampling rates.

Second, similarity scores with the hardware based profiles
are high for both systems, with a geometric mean of 96.6% for
the software based profiles collected on the Intel system, and
a geometric mean of 91.2% for the software based profiles
collected in the AMD system.
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Figure 8. Speedup of FDO compiled binaries on the AMD Rome system. Results averaged over 5 iterations.

Third, similarity scores between the hardware LBR pro-
files and the software LBR profiles collected on the AMD
system are lower than the similarity scores computed for the
software based profiles collected on the Intel system. This
shows that there are some runtime differences between the
executions on the two systems, even for a benchmark suite
like SPEC CPU. Out of all the profiles, we notice that the
software based profiles for 453.povray and 471.omnetpp
collected on the AMD system have the lowest similarity with
the hardware LBR profiles collected on the Intel system.

These profile differences may not necessarily translate into
performance differences. We know that the relative ranking
of symbols and their contribution being over or under a
certain threshold is more important to compiler decisions
than the precise number of sample or the exact fraction of
samples attributed to a symbol. As a result, an important
validation test is to compare the speedups achieved by FDO
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compilation using the software based profiles relative to the
speedups obtained using the hardware based profiles.

Figure 7 shows the average speedups of the FDO compiled
benchmarks on the Intel system. Figure 8 shows the corre-
sponding speedups observed on the AMD Rome system. For
each system, we compare the hardware based profile from
the Intel system and the software based profiles collected on
the same system where the speedups are measured. Results
are averaged over 5 iterations with the ref input size.

Not all benchmarks benefit from FDO compilation. FDO
helps the most to reduce front-end stalls, but not all the
benchmarks have a significant front-end bottleneck. Bench-
marks that benefit the most are 400 . perlbench, 453. povray
and 483.xalancbmk. Other benchmarks, 403.gcc, 429.mcf,
445 . gobmk, 471.omnetpp, 473.astar, also benefit to some
degree from FDO compilation. The remaining benchmarks
show more runtime noise, and some, like 401.bzip2 seem
to be negatively impacted by FDO.



Break Dancing: Low Overhead, Architecture Neutral Software Branch Tracing

Table 5. AutoFDO profile similarity between Intel LBR and
software tracing with different sampling intervals on AMD.

Benchmark | 500k | 1000k | 2000k | 4000k | 5000k
400.perlbench | 87.71% | 87.67% | 87.70% | 87.32% | 86.98%
401.bzip2 97.91% | 97.98% | 97.66% | 97.98% | 97.98%
403.gcc 98.90% | 98.84% | 98.96% | 98.97% | 99.13%
429.mcf 90.60% | 90.43% | 90.07% | 91.55% | 90.55%
433.milc 98.72% | 98.57% | 98.49% | 98.61% | 98.64%
444namd 95.91% | 95.64% | 95.71% | 95.68% | 95.78%
445 gobmk 85.68% | 86.04% | 85.62% | 85.86% | 85.26%
447 dealll 92.27% | 92.40% | 92.57% | 92.88% | 92.56%
450.soplex 98.32% | 98.12% | 98.24% | 98.27% | 97.79%
453 povray 74.00% | 74.30% | 74.46% | 73.65% | 74.19%
456 hmmer 99.84% | 99.82% | 99.81% | 99.80% | 99.84%
458 sjeng 88.67% | 88.84% | 88.45% | 88.77% | 88.76%
462 libquantum | 98.03% | 98.05% | 98.09% | 98.12% | 98.04%
464.h264ref 90.57% | 90.54% | 90.57% | 90.51% | 90.38%
470.1bm 99.74% | 99.76% | 99.70% | 99.77% | 99.55%
471.omnetpp | 73.22% | 73.54% | 72.73% | 72.95% | 73.05%
473.astar 95.84% | 95.69% | 96.17% | 96.22% | 96.10%
482.sphinx3 92.53% | 92.74% | 92.48% | 92.09% | 92.52%
483.xalancbmk | 81.85% | 82.00% | 82.06% | 82.08% | 81.99%
Geomean | 91.22% | 91.27% | 91.18% | 91.26% | 91.16%

We notice that the software based profiles achieve a simi-
lar speedup as the hardware based profile across the entire
benchmark suite, but there is some variability when we look
at individual benchmarks, especially the ones that don’t ben-
efit from FDO that much.

The two benchmarks with the lowest similarity scores on
the AMD system, 453.povray and 471.omnetpp, achieve
marginally better speedups with the software based profiles,
but the difference is very small and may very well be in
the noise. For all intents and purposes, the software based
profiles seem no worse than the hardware based ones for the
SPEC CPU 2006 benchmarks.

5 Related Work

There is a long history of control flow profiling tools in
the research literature. Ball and Larus [1] propose an effi-
cient instrumentation based path profiler that minimizes
runtime overhead by carefully placing counters on select
CFG edges. Despite the optimal counter placement, instru-
mentation based methods still have a high runtime overhead,
31% for path profiling and 16% for edge profiling. Traub et
al. [18] use sampling and program instrumentation hooks
that they can use to turn instrumentation on and off, to cap-
ture a small and fixed number of branch executions with
relatively low overhead. Their approach is not that dissimi-
lar to ours, but we avoid instrumentation and code rewriting
at runtime, by using instruction decoding and breakpoints
instead, which provide more reliability, better platform porta-
bility, and generally a lower overhead.
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Program sampling and debug registers have been pre-
viously used to implement low overhead correctness and
profiling tools with good results. Pesterev et al. [16] use de-
bug registers to report code locations responsible for cache
misses on the same data, Erickson et al. [6] use sampling
and debug registers to find data races with low overhead.
DoubleTake [12] uses debug registers to watch for accesses
to memory locations that were found to have been unexpect-
edly modified, for precise error reporting. WITCH [19] uses
sampling and debug registers to find software inefficiencies
such as dead writes and redundant loads. The authors use
similar techniques to detect false sharing [3] with low over-
head. Pengfei et al. [17] use sampling on function calls and
breakpoints on return addresses for precise monitoring and
variance profiling at procedure boundaries.

6 Conclusions

Sampling-based FDO methods are commonly used in data-
center applications to attain significant performance savings.
These methods rely on hardware facilities like Intel’s LBR
to profile applications’ control flows with low overhead in
production environments. Sampling FDO can also benefit
large mobile applications. However, LBR based profiling is
not yet available on popular mobile CPUs, which limits the
use of sampling-based FDO methods on these systems.

In this paper, we present a software based branch tracing
profiler that collects LBR-like data from unmodified appli-
cation binaries. The profiler uses hardware counters based
sampling to select random starting addresses for tracing in
application threads, uses look-ahead instruction decoding
to identify upcoming control transfer instructions, and uses
program breakpoints to stop application threads at branches
that require dynamic evaluation of their directions or targets.
We’ve performed a detailed analysis of the profiler’s runtime
overhead with the SPEC CPU 2006 benchmarks. The profiler
has zero overhead when it is off. When enabled, we’ve shown
that we can reduce its runtime overhead to arbitrarily low
values by varying the sampling rate, achieving a < 2% over-
head across the entire SPEC benchmark suite. Most of the
overhead can be attributed to the use of breakpoints to stop
application threads on branches that require dynamic evalu-
ation. We have identified additional high level optimizations
that can lower the profiler overhead further, by reducing the
frequency with which breakpoints are used.

We’ve shown that software based FDO profiles perform
equally well to FDO profiles generated from hardware LBR
data when optimizing the SPEC benchmarks on two different
systems. This work enables the collection of sampling-based
FDO profiles in live production environments from fleets of
non-Intel devices, such as mobile devices.

Finally, software branch tracing is not bound to a fixed
LBR hardware size. In future work, we will explore if longer
traces can enable additional FDO optimizations.
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