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ABSTRACT
We introduce a simple model for the human hand skeleton that is
geared toward estimating 3D hand poses from 2D keypoints. The
estimation problem arises in AR/VR scenarios where low-cost cam-
eras are used to generate 2D views through which rich interactions
with the world are desired. Starting with a noisy set of 2D hand
keypoints (camera-plane coordinates of detected joints of the hand),
the proposed algorithm generates 3D keypoints that are (i) compli-
ant with human hand skeleton constraints and (ii) perspective-project
down to the given 2D keypoints. Our work considers the 2D to 3D
lifting problem algebraically, identifies the parts of the hand that can
be lifted accurately, points out the parts that may lead to ambigui-
ties, and proposes remedies for ambiguous cases. Most importantly,
we show that the finger-tip localization errors are a good proxy for
the errors at other finger joints. This observation leads to a look-up-
table-based formulation that instantaneously determines finger poses
without solving constrained trigonometric problems. The result is a
fast algorithm running super real-time on a single core. When hand
bone-lengths are unknown our technique estimates these and allows
smooth AR/VR sessions where a user’s hand is automatically esti-
mated in the beginning and the rest of the session seamlessly con-
tinued. Our work provides accurate 3D results that are competitive
with the state-of-the-art without requiring any 3D training data.

Index Terms— Augmented-reality, virtual-reality, 3D hand
pose, 3D keypoints, lifting, monocular estimation.

1. INTRODUCTION

Many mobile AR/VR applications rely on world views generated
through low-cost 2D cameras [3, 4, 1, 2]. Through such systems
information about the user and the surrounding environment is gath-
ered, processed, and finally rendered in relation to the real/virtual
world (see Figure 1). Keeping track of the users’ hands can en-
able rich interactions that further extend the usability and benefits
of AR/VR [20, 5]. For example, menu or gesture-based interactions
allow the user to select options, input data, and point to interest-
ing objects for further processing. The rendering step can take ad-
vantage of detected hands, enabling use cases with tactile feedback
where menus are rendered in the palm of one hand while selections
are made with the other. The hand can also be used as a secondary
controller extending user interaction in cases where the primary con-
troller is inadequate or awkward. Most of these applications benefit
from knowing the 3D coordinates of users’ hands, in particular the
palm and finger tips, to acceptable accuracy levels.

Recent years have seen substantial progress in machine learning
algorithms’ ability to locate objects in monocular images with high
precision [18, 7]. It is now a given that 2D keypoints of the hand
(typically the labeled camera-plane coordinates of five finger joints
on the palm, two joints per finger, five finger-tips, and a wrist center;
see Figure 2 (a)) can be located accurately with moderately complex
deep learning algorithms based on conv-nets [23, 21, 16]. Bound-
ing boxes [10] that locate the hand (which can then be augmented
with less accurate but noticeably quicker vision-based keypoint de-
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Fig. 1. Example poses in 3D estimated by the proposed work from a
monocular camera. The hand is imaged from an egocentric view, 2D
keypoints detected, then lifted to obtain 3D world coordinates. 3D
poses are rendered from a perspective facing the camera for clarity.

tectors) can also be computed reliably. 3D versions of these tech-
niques, that is machine learning algorithms that provide 3D world
coordinates of keypoints from a monocular image, are in active re-
search [15, 14, 12, 9, 11]. 3D keypoint detectors still face an uphill
climb since (i) one needs abundant data to learn the many constraints
of the hand but 3D data is scarce, (ii) self occlusions of the hand
widely observed in typical poses make learning and inference from
monocular images difficult1, (iii) the speed required in enabling rich
interactions with naturally fast moving hands/fingers is hard to main-
tain with computationally complex deep-nets especially within the
complexity/power envelopes of mobile AR/VR platforms.

Techniques that try to circumvent the difficulties of direct 3D
inference concentrate on lifting 2D keypoints to 3D. This category of
methods include nearest neighbor matchers [6], techniques that infer
3D pairwise distances between joints from 2D pairwise distances
[13], and methods like [27] that apply deep learning to determine 3D
keypoints based on 2D keypoint heat-maps. Researchers have also
considered linear expansions of the 3D pose (concatenated into a
vector of coordinates) by learning PCA basis and, as an improvement
to PCA, sparse approximating dictionaries [22, 17, 26].

From a computational standpoint it can be seen that most avail-
able techniques are too complex for incorporation into mobile plat-

(a) (b)
Fig. 2. Hand keypoints. (a) 20 keypoints marked on the hand. (b) A
finger skeleton and the palm/thumb triangles used in our model.

1Self occlusions can cause severe problems even in stereo views neces-
sitating multi-view setups in some applications [19].
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Fig. 3. Parts of the model used in this paper. (a) The palm triangle,
TP . (b) The plane embedding of the j-th finger attached to TP .

forms. Beyond their main operation, many techniques require post-
processing and further complexity since their output is not compliant
with human hand skeleton constraints and bone-lengths. Further-
more much of existing work either ignores perspective projection
constraints or, like the techniques using linear expansions, approx-
imate them using weak perspective projection. Weak perspective
projection is not an adequate placeholder for perspective projection
especially for egocentric views in VR/AR, where the various hand
joints’ distance to the camera is often quite significantly disparate.

In this paper we propose a simple model for the human hand
skeleton that is conveniently parametrized for quick estimation. We
provide a lifting algorithm that predicts 3D world coordinates of in-
put 2D camera-plane keypoints2. The 3D hand poses generated by
our algorithm are compliant with human hand skeletal constraints
and with perspective projection constraints. We show that ambigui-
ties related to lifting [8] do not significantly impact the palm under
typical poses and likewise affect the finger keypoints in application-
wise less consequential poses. We further show that localization er-
rors for finger-tips serve as a convenient proxy for localization errors
for other joints. This allows us to further simplify our formulation
to use look-up-tables that can instantaneously determine entire fin-
ger poses given only the locations of the palm and finger-tips. The
end result is a fast algorithm that can be used for lifting as well
as keypoint denoising (e.g., making the output of other algorithms
skeletal and/or perspective projection compliant). When desired our
work also incorporates bone-length variations by rapidly estimating
skeleton-constrained bone-lengths with quadratic programming.

Section 2 introduces our model with sections 2.2 and 2.3 devoted
to the lookup table formulation and bone-length estimation. Section
2.4 considers the impact of perspective projection on lifting and dis-
cusses ambiguous cases. Section 2.5 provides our lifting algorithm.
Section 3 includes simulation results and concludes the paper.

2. HAND SKELETON MODEL
2.1. Two-Triangle Model for the Hand

The proposed model represents the palm and the portion of the
thumb that includes the thumb’s metacarpal bone using two trian-
gles TP and TT (see Figure 2 (b)). All sides and angles of TP are
user specific with its pose (location and orientation in 3D space) to
be determined at each time instant. For TT only two side-lengths
(toward the index finger and the thumb knuckles) are fixed with the
remaining length and angles varying with its pose, all determined at
each time instant. The thumb is considered attached to TT and the
remaining fingers to TP . Note that the position of the index finger
couples the poses of the triangles. In addition to the finger-tips and

2The predictions of the algorithm are up to an overall scale parameter.
Such a scale parameter is needed by all monocular 3D estimation methods
since an object at depth z from the camera and a similar but twice as large
object at 2z will yield similar 2D keypoints under similar poses.

the finger-related joints on the triangles, the thumb has a single joint
and the other fingers have two joints.
3D finger keypoints embedded in two dimensions: The main mo-
tivation of the triangle formulation is to enable easily-parametrized
surfaces that constrain the relevant joints on each triangle and, as
importantly, to constrain the relative positions of the fingers. For the
latter purpose each triangle is equipped with a unit vector (vP for TP
and vT for TT ) that constrains the movement of the attached fingers.
(The relative poses of vP /vT to TP /TT are fixed as hyper-parameters
but can also be estimated per-user if desired.) As illustrated in Fig-
ure 3 (a) for TP , we assume all 3D keypoints of each finger lie in a
plane, i.e., each 3D keypoint of the finger can be parametrized using
two coordinates given the triangles and the finger related joints on
the triangles. For finger j the associated plane passes through the
finger-joint, xj , on the respective triangle, with the 2D plane sub-
space spanned by vP /vT and a finger-specific direction vector vj
(estimated at each time instant). Referring to Figure 3, the k-th 3D
keypoint on finger-j, fj,k (3× 1), is then located at,

fj,k = xj + vj

k∑
l=1

δj,lcos(φj,l) + vP

k∑
l=1

δj,lsin(φj,l), (1)

where δj,l are the finger bone-lengths and φj,l =
∑l
m=1 θj,m. Note

that (1) holds with k = 1, . . . , 3 for the index through little finger,
and with k = 1, 2 and vP replaced by vT for the thumb.
Skeletal constraints: In addition to constraints imposed by the trian-
gles and plane embeddings, our model has the following constraints.
(i) Middle and ring fingers are between index and little fingers, i.e.,

x3 = λx2 + (1− λ)x5,

x4 = ρx2 + (1− ρ)x5, (2)
where 1 > λ > ρ > 0 are parameters specific to a user’s hand. Let
U (3 × 3) contain unit vectors in the direction of the three edges
emanating from o so that the first column of U points toward the
metacarpal bone of the thumb, second and third columns to the index
and little finger joints on the palm respectively. We have,

U = Rhand
[
Rrel uT uI uL

]
(3)

where uT , uI , and uL (3 × 1) correspond to a fixed, coplanar pose
of the two triangles, the rotation Rrel (3 × 3) poses TT relative to
TP , and Rhand determines the overall orientation. This leads to,

Xt =


κT 0 0
0 κI 0
0 λκI (1− λ)κL
0 ρκI (1− ρ)κL
0 0 κL

U t +


1
1
1
1
1

 ot, (4)

whereX has xj , j = 1, ..., 5, in its columns, κT , κI , κL are the side
lengths of the triangles, o is the wrist center, and (.)t is transpose.
(ii) Finger joints have bending limits, i.e.,

Θj,min < θj,k < Θj,max, (5)

where the bounds are hyper-parameters set as 0 and π/2 respectively.
(iii) Finger embedding planes have directional bounds, i.e.,

Γj,min < γj < Γj,max, (6)

where γj is as shown in Figure 3 (b) and the bounds are again hyper-
parameters, set as −π/15 and π/15 respectively.
(iv) Triangles’ relative pose cannot be arbitrary, i.e.,

τmin ≤ 6 (⊥TP ,⊥TT ) ≤ τmax, (7)

where 6 (⊥TP ,⊥TT ) is the angle between the surface normals of
the two triangles (measured starting from ⊥TP ) and the hyper-
parameters τmin and τmax set to 0 and π/2 respectively.
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Fig. 4. Possible locations of the finger-tip assuming a unit length
finger-j on the right hand palm that is pointing left (δj,1 =
.50, δj,2 = .25, δj,3 = .25). (a) Finger-tip locations and exam-
ple points. (b) Finger poses that correspond to the example points.

(v) Embedding vectors enforce realistic finger movement, i.e.,
vP =⊥TP , 6 (⊥TT , vT ) = π/8 with the incremental correction
for vT enabling more natural thumb movement.
Fixed and time varying parameters: The user-specific parameters
are the triangle sides κT , κI , and κL, the multipliers λ and ρ (see
(4)), the TP angle 6 (uI , uL) (see (3)), and the finger bone lengths
δj,l (see (1)). These parameters are set/estimated per user. The re-
maining parameters (other than the hyper parameters as mentioned
above) are estimated at each time instant to produce the 3d pose.
Fitting the model: Let Fn be the matrix that contains the finger key-
points in (1) at time instant n and let F in contain the input keypoints.
The model is fit to minimize the squared sum of Frobenius norms,

Mn = ||F in − Fn||22 + ||Xi
n −Xn||22 + ||oin − on||22. (8)

Time varying parameters are determined for every n and, when de-
sired, the user-specific parameters for the sum,

∑
nMn.

2.2. Loci of Finger Tips and the Finger Pose Lookup Table
The 3D locations of finger keypoints in (1) looks complicated espe-
cially under joint angle constraints. Nevertheless, there is consider-
able structure on the possible locations of the finger-tip with respect
to that finger’s joint location on the associated triangle. Our method
takes advantage of this structure which is illustrated in Figure 4 for
the j-th finger on the palm of the right hand. All locations inside
the green zone in Figure 4 (a) are locations for the finger-tip through
skeletal-compliant poses of the finger. As illustrated in Figure 4 (b),
at location (i) the finger is straight, pointing left. At (ii) the last seg-
ment of the finger is maximally bent. At (iii) the last two segments,
and finally at (iv) all segments of the finger are maximally bent. (v)
illustrates an almost straight finger maximally bent at the palm joint3.

A small neighborhood of a given finger-tip location will contain
different poses that lead to close-by finger-tips. Suppose xj , i.e., the
intercept of the finger on TP , is known. Assume that one knows the
location of the j-th finger-tip, fj,3, approximately via f̂j,3 such that,

||fj,3 − f̂j,3||2 < εj,3. (9)
It is then interesting to see what can be said about the errors of the
remaining joints, εj,1 and εj,2, conditioned on (9) . Suppose the joint
approximations f̂j,1 and f̂j,2 are taken as the means of the respective
neighborhoods that result from (9) and skeletal constraints. Figure 5
shows εj,1 and εj,2 calculated for the finger in Figure 4 over all pos-
sible finger-tip locations. Note first that when the finger-tip location
is very finely known joint location errors are small but relatively sig-
nificant. This is because multiple close-by poses can result in similar

3The thumb-tip loci is likewise structured albeit with a different shape.

Fig. 5. Errors εj,1 and εj,2 for the finger joint locations as a function
of the finger-tip error εj,3 using the unit-length finger of Figure 4.
εj,3 serves as a convenient proxy for the remaining errors.

finger-tip locations. Regardless, when the finger-tip location incurs
more realistic errors the joint errors closely track the finger-tip error.
For example when εj,3 = 0.04 (4mm assuming a 10cm finger) both
joints’ errors are within 0.045 (4.5mm).

We use this observation to construct finger-specific lookup tables
(LUT). After projecting a noisy finger tip estimate on its embedding
plane, the relevant LUT is consulted for (i) the location of the closest
skeletal-compliant finger-tip and (ii) the most probable locations of
finger joints that result in that finger-tip location. The LUT can be
considered as Figure 4 discretized on a rectangular grid with each
cell storing three angles that can be used in (1) to recover the finger
poses. Cells that correspond to non-skeletal-compliant points refer
to the skeletal-compliant pose that results in the closest location in
Euclidean distance (i.e., cells that correspond to the white regions in
the figure refer to the closest cell in the green region.) Within each
cell we assumed the pose that minimized the `1 norm,

∑k
l=1 |θj,l|,

to be the most probable (see Figure 3 (b)).

2.3. Estimating Lengths
Using (1) one can see that the finger keypoint locations vary lin-
early with respect to the finger bone lengths. Hence, given the other
length and pose-related parameters and using (8),

∑
nMn leads to

a quadratic program for the bone-lengths of each finger with posi-
tivity and relative size constraints incorporated. Equation (4) indi-
cates linear variation with triangle side length κT , but a nonlinear
coupling of κI , κL with the multipliers λ and ρ. Given the narrow
ranges for the multipliers, a joint solution can be accomplished by
sweeping the λ, ρ pair and solving a simple quadratic program for
the side lengths for each potential pair. During length estimation, we
minimized

∑
nMn by iterating between solving for the lengths and

lifting the pose (see Algorithm 1).

2.4. Perspective Projection and Lifting
Assume the camera’s pose is known and adjustments to coordinates
in terms of camera parameters are done so that the world coordinate
q projects to the camera-plane coordinate p = P(q) via,

p = P(q) = (q1/q3, q2/q3, 1)t, (10)

so that the vanishing point is at (0, 0, 0) and the camera is at (0, 0, 1)
oriented toward the positive z-direction.

Let the matrix Q (3 × N ) contain N world coordinates in its
columns. Suppose Q is rotated using R (3 × 3), translated with
w (3 × 1), and finally perspective-projected to obtain the matrix P
(3×N ). Let s (N × 1) be the vector of all ones. We have,

RQ+ wst = PD, (11)
whereD is diagonal,D(i, i) = di, for some depth vector d (N×1).

Definition 2.1 Q can be unambiguously lifted from P if

R∗, w∗ = arg min
R′,w′

{
min
D′≥0

||R′Q+ w′st − PD′||2
}
, (12)

results in a unique pose, R∗Q+ w∗st of Q.



Fig. 6. Ambiguous (top row) and unambiguous (bottom row) poses.
In (i) all camera-plane keypoints coalesce at one point resulting in
an ambiguity in the locations of the finger joints on TP . This is
an extreme, singular pose for the hand. Typical poses as shown in
(ii) can be unambiguously lifted. Assuming known x2, . . . , x5, (iii)
shows the circle that must contain o when the projection constraint
line for o is within the plane of the circle. (iv) illustrates the typical
case where the line intercepts the circle’s plane at a single point.
(v) is similar to (iii) in that the ambiguity is caused by the constraint
line being within the finger embedding plane. (vi) is the more typical
case of the line intercepting the plane at a single point.

Proposition 2.2 Three or more points on a line can be unambigu-
ously lifted whenever the line does not project to a single point4.

With known hand lengths, the finger joint locations on TP can
be unambiguously lifted except when they project to a single point.
One hence expects correct lifting of x2, ..., x5 for most poses. Fig-
ure 6 shows ambiguous and unambiguous poses for TP 5, ignoring
noise for clarity. Observe that detecting ambiguous poses is straight-
forward under noise. One can, for example, calculate deviation of
P(xj), j = 2, . . . , 5 for (i), obtain the depicted constraint circle
and calculate an appropriate distance to the line passing through the
vanishing point and P(o) for (iii), and check the plane embedding
finger-j against the projection constraint passing through the finger-
tip. With such measures ambiguous cases can be detected and coun-
termeasures taken (e.g., by resolving using temporally nearby poses,
giving feedback to the user, using image features, etc.) .

2.5. Algorithm
Algorithm 1 outlines our lifting algorithm which iteratively applies
skeleton fitting and perspective projection constraints. When track-
ing a single hand, an unoptimized implementation exceeds 300 fps
on a single desktop CPU core with minimal memory/cache impact
(an optimized version is expected to be significantly faster).

3. SIMULATION RESULTS AND CONCLUSION
We used Algorithm 1 to lift 2D keypoints to 3D using the dataset
provided in [24]. Following the observations of Section 2.2 we re-
stricted the algorithm input to 11 keypoints (the keypoints on the tri-
angles and finger tips) but obtained output and compared results on
all 20 keypoints. This disadvantages our technique over others that
utilize the full keypoint set, yet validates Section 2.2, and showcases
the efficacy of our LUT formulation. As we are not proposing a 2D
keypoint detector we emulated detector errors by adding Gaussian
noise of standard deviation σ to the input pixel domain keypoints6.

4We skip the proof to preserve space.
5TT is similar except that the keypoint at the metacarpal bone of the

thumb is approximately constrained to lie on a disc with respect to TP .
6Note that for a palm depicted within ∼ 80 × 80 pixel regions in input

RGB, especially σ = 5 emulates a less than stellar 2D key-point detector.

Algorithm 1 FL - Fast Lifting

1: m← 1, τ ←∞, ε0 ← 0, [X1, F 1, o1]← [Xi, F i, oi].
2: Initialize o,Rh, Rr, vj , θj,k//j = 1, ...5, k = 1, ..., 2 or 3
3: while τ > tol do
4: //fit skeleton
5: [Rh, Rr]← arg minRh,Rr

||Fm − F ||22 + ||Xm −X||22
6: update(X, F ) //Eq. (3), (4), (1)
7: o← arg mino ||Fm − F ||22 + ||Xm −X||22 + ||om − o||22
8: update(X, F )
9: [v1, ..., v5]← arg minv1,...,v5 ||F

m − F ||22
10: θj,k ← consult LUT(fmj − xj , vj , vP/T )
11: update(F )
12: //perspective projection constraint
13: [Xm+1, Fm+1, om+1]←
14: apply pp constraint(X,F, o,Xi, F i, oi)
15: εm = ||Fm+1−Fm||22+||Xm+1−Xm||22+||om+1−om||22
16: τ ← εm − εm−1, m← m+ 1

17: return Xm+1, Fm+1, om+1, Rh, Rr, vj , θj,k

[27] [24] [25] FLa FLa,e FLaσ=3 FLaσ=5 FL
0.95 0.84 0.77 0.96 0.94 0.92 0.88 0.93

Table 1. AUC for different methods. Our aligned results under FLa

columns are competitive with, or exceed, others even under signif-
icant camera-plane keypoint noise. Our completely unaligned re-
sult under the FL column is likewise competitive and shows that the
method can predict depth and lift accurately.

We report results using PCK (percentage of correct keypoints)
over thresholds from 20mm to 50mm errors, in 2mm increments.
In Table 1 we compare AUC results (area under curve - evaluated us-
ing the PCK curves) to [27] and to [24, 25] (as tabulated in [27]). The
work in [27] translates its output to match the ground-truth 3D loca-
tion by aligning to a root 3D key-point. For FLa we likewise aligned
to the root keypoint to enable comparisons. FLa,e corresponds to
results when our algorithm also estimates lengths (using only the 2D
projected data with known κI providing the overall scale). FL results
are not aligned and showcase true lifting performance. As shown in
Figure 7, more than 80% of keypoints have under 20mm error for
our unaligned FL results. Our technique, which requires no 3D data
to train or learn from, is clearly accurate in guessing 3D poses over
a large majority of the time and over a myriad of hand poses.

Fig. 7. PCK curves for FLa and FL.

We proposed a simple model for the hand skeleton and an asso-
ciated 3D fitting algorithm that can be used in lifting and denoising.
Our lookup-table-based fast algorithm can lift most poses accurately
without requiring any 3D data even while estimating bone-lengths.
We showed that lifting can be accomplished accurately except for
singular poses which can be detected and remedied. As indicated
by the FL results, in addition to lifting in mobile AR/VR scenarios,
our work can also be used to lift the bulk of the poses in 2D datasets
to 3D in order to generate 3D datasets. Our work can be improved
by adding finer details to the model and taking advantage of finger
joints during fitting. We leave such extensions to another article.
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