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Abstract

Parrotron is an end-to-end personalizable model that en-
ables many-to-one voice conversion (VC) and automated
speech recognition (ASR) simultaneously for atypical speech.
In this work, we present the next-generation Parrotron model
with improvements in overall accuracy, training and infer-
ence speeds. The proposed architecture builds on the recent
Conformer encoder comprising of convolution and attention
layer based blocks used in ASR. We introduce architectural
modifications that subsamples encoder activations to achieve
speed-ups in training and inference. In order to jointly improve
ASR and voice conversion quality, we show that this requires a
corresponding upsampling after the Conformer encoder blocks.
We provide an in-depth analysis on how the proposed approach
can maximize the efficiency of a speech-to-speech conversion
model in the context of atypical speech. Experiments on both
many-to-one and one-to-one dysarthric speech conversion tasks
show that we can achieve up to 7X speedup and 35% relative
reduction in WER over the previous best Transformer Parrotron.
Index Terms: voice conversion, speech impairments,
sequence-to-sequence model, speech recognition

1. Introduction
There is growing interest to develop more inclusive speech
technologies, particular those that can help people with speech
impairments be better understood by other people and speech
recognition interfaces. Recognition of dysarthric speech is an
active area of research [2]. Recently, a joint voice-conversion
and ASR model [3] has shown how Voice Conversion (VC)
networks can be trained to normalize atypical speech into a
predetermined voice, one more easily understood by humans
and machines. Building on the extensive research on ASR ar-
chitectures [4], the use of Transformers and speaker adaptation
was proven to be effective for the joint optimization of voice
conversion and speech recognition of atypical speech [5].

It is well-known that matched training and test data distri-
butions yield the best performance for statistical models. How-
ever, when very little training data is available from speakers
with speech impairments. Speaker adaptation (a.k.a. model
personalization) helps bridge the gap under such conditions.
As shown in [5], adaptation can reduce WERs by as much as
50% relative in severe cases of dysarthria. Users with speech
impairments also find it strenuous to record enough data to
maximize benefits from speaker adaptation. Therefore, it is
essential to develop newer architectures and strategies that not
only rely on less adaptation data but are fast to train, scale to
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a large set of users, and are robust to a wide range of atypical
speech.

In this work, we show that the recently proposed
convolution-augmented Conformer encoder architecture [6] can
be enhanced for jointly training and personalizing voice conver-
sion and recognition systems. Our main contributions highlight
the following:

1. Conformer architectures for joint voice-conversion and
recognition can yield WER reductions between 24% and
32% relative on normal speech from Librispeech [7] and in-
house Google Voice Search traffic data sets and up to 53%
relative for dysarthric speech, while halving the training time.

2. Novel mixed-rate sampling strategy can further reduce train-
ing time by an additional factor of 3.5 times with no degra-
dation in accuracy.

3. Reduction in inference real-time factor of 22% relative over
Transformer encoders can be achieved with the mixed-rate
Conformer design.

4. Mixed-rate bounds can be related to the rank of the weight
matrices in the Conformer blocks in determining trade-offs
between accuracy and speed.

5. Listening test based voice conversion comparisons show
Conformer encoders can result in better VC quality compared
to Transformer encoders.

2. Related work
There is a rich literature of work attempting to fine-tune ASR
models on speaker-dependent datasets, particularly to assist
users with dysarthric speech. Voice conversion has been
successfully applied to improve the intelligibility of speakers
with speech impairments, particularly those with mild to severe
dysarthria that impacts voice, articulation, and prosody. [8, 9,
10]. Recent works have leveraged cycle-consistent adversarial
training [11], detection of dysarthria and reconstruction [12],
generative adversarial networks [13], cross-modal knowledge
distillation [14], and linear regression-based frequency warp-
ing predictions [15]. Meanwhile, there is growing interest
in personalizing ASR systems for atypical speech. As their
speech deteriorates with time, dysarthric speakers typically rely
on pre-programmed messages available on commercial speech
generating devices [16] to communicate. The role of speaker-
dependent personalization is explored in [2, 17].

Parrotron attempts to combine both ASR and VC in a
unified model by jointly decoding both speech and text during
inference using a shared encoder architecture for these tasks [3,
5]. Transformer architectures, built upon the self-attention
mechanism, have enjoyed greater adoption in ASR, largely
due to their ability to learn long-range interactions [4, 18].



Figure 1: Proposed architecture.

Convolution-augment Transformers for ASR (aka Conformers)
have attempted to combine the best of Transformers and CNNs,
often out-performing Transformer-based architectures [6] and
achieving state-of-the-art performance on the LibriSpeech ASR
task. In this paper, we propose the use of a Conformer encoder
for the Parrotron model to capture the fine-grained spectral pat-
terns in incoming atypical speech. Frame stacking and reduced
frame rate based approaches [19, 20] are commonly used to
speed up ASR training and inference. In this work, we propose
to combine similar subsampling with specific upsampling to
speed up Parrotron while maintaining accuracy.

3. Proposed model
3.1. Model architecture
The Parrotron model proposed in [5] includes a Transformer-
based speech encoder, a spectrogram decoder, a word-piece
(text) decoder, and a phoneme decoder, all jointly trained using
a multi-task learning objective. Parrotron employs a 2-step
training recipe. First, it is pre-trained on typical speech from
a large pool of speakers to obtain a many-to-one speech con-
version, resulting in speaker-independent ASR/conversion base
model. The target speech used for training is always speech syn-
thesized from the reference transcripts in a predetermined voice
that is reflective of typical speech. To achieve personalization,
all parameters of the base model are fine-tuned to the speech
from a single input speaker (e.g., a deaf speaker) obtaining a
one-to-one speech conversion from atypical to typical speech
(and a speaker-dependent ASR) model.

3.2. Conformer encoders in voice conversion and ASR

The proposed Conformer encoder based Parrotron is illustrated
in Figure 1. The Conformer encoder described in [6] comprises
of convolution layers following the multi-headed self-attention
layer. This architecture promotes the ability to extract local
features through local receptive fields of CNNs and model
long distance interactions with the self-attention mechanism.
We replace the existing Transformer and LSTM layers in Par-
rotron’s encoder with Conformer blocks. Different from ASR,
we do not use Exponential Moving Average (EMA) [21]. Our
initial experiments showed that EMA results in convergence to a
higher loss and WER1. We hypothesize that this could be related
to the dropout design, during prediction in the spectrogram
decoder, similar to the Tacotron model [22]. Meanwhile, we
lower the learning rate by 5x as speech-to-speech conversion
takes longer to converge. In the next section, we describe the
proposed modifications to the Conformer encoder to speec up
training and inference of the Parrotron model.

1The interaction of EMA with dropout in spectrogram prediction
needs further investigation and is not the subject of this paper.

3.3. Mixed frame rate speedup

In this section, we first motivate the need for mixed-frame rate
processing from a memory consumption and training speed
perspective within the encoder. Unlike ASR and TTS, where
either the predicted target or input sequences are text, a speech
to speech conversion model uses acoustic frames as input
sequences and also predicts a sequence of acoustic frames. This
renders the model complexity to be a quadratic function of the
number of input frames, due to the self attention mechanisms, in
the encoder. Given that the output number of acoustic frames is
much larger than that of text sequences, voice conversion mod-
els require increased computations overall over ASR and TTS
models. Moreover, the memory usage is directly proportional
to the length of the acoustic sequence, which results in smaller
batch size and slower training speed.

In order to mitigate these effects, we propose a mixed
frame-rate strategy that allows us to reduce the number of
computes by roughly 8 times, i.e., from a 10 msec rate to an
80 msec hidden activations rate for most encoder layers. This is
similar to Time Delay Neural Networks (a.k.a TDNNs), where
subsampling was done in a hierarchical fashion as data flows
through the network in order to reduce computation during
training. [23]. Following a similar approach, we integrate the
convolutional subsampling layer before the Conformer blocks
proposed in [6] for ASR. This subsampling uses a CNN layer,
followed by pooling in time to reduce the number of frames be-
ing processed by the subsequent Conformer block. We continue
to subsample the input sequence in the subsequent Conformer
blocks in the encoder as shown in Figure 2. We determined
the degree of subsampling or reduction in number of hidden
states passing through the network empirically. However, in
Section 4.5, we attempt to draw a parallel to the sparsityrank of
the feed-forward matrix in the Conformer block. Similarly, the
spectrogram decoder predicts multiple frames at each decoding
step [22] to reduce the number of output decoding steps.

Nevertheless, pure subsampling can hurt model accuracy
shown in Section 4.5, as has been observed in previous speech
recognition research [24, 20]. Motivated by the vocoder design
in speech synthesis [22], we introduce a similar upsampling
idea with convolution layers before the cross-attention between
the encoder and decoder to alleviate this problem. This helps to
interpolate to the same number of frames as the original number
of hidden states in the baseline Conformer encoder architecture.

Figure 2 illustrates an instance of the proposed mixed
frame rate design. CNN layers subsample the input speech
features with 10ms frame shift (FS). This is followed by 4
Conformer blocks that process the representations with 40ms
FS. The resulting representations are further subsampled by a
factor of two and the resulting representations with 80ms FS
are processed by the remaining Conformer blocks. At the end
of the final Conformer block, we upsample the representations
with the transposed convolutional network [25]. The resulting
representations, now with 40 ms FS form part of the cross-
attention with the output features.

Figure 2: Mixed frame rate design for Conformer Parrotron
Speedup



4. Experiments
4.1. Data
We train the speaker-independent Parrotron base model using
both the publicly available Librispeech [26] corpus comprising
of 960 hours of speech from over 2000 speakers and an in-
house training corpus comprising of 20,000 hours derived
from anonymized, human-transcribed utterances that are rep-
resentative of Google’s voice search traffic [27]. The speech
impairment data [1] for speaker-dependent adaptation contains
10 speakers, 8 with ALS spanning and another 2 speakers each
with distinct etiologies [5]. The average number of utterances
per speaker is 4131, the equivalent of 3.4 hours of atypical
speech. The data for each speaker is split into train, dev, and test
splits using a 80/10/10 partition. As described in Section 3.1,
we adapt the base speaker-independent model trained from in-
house training corpus using above atypical speech corpora for
each speaker separately. It is important to recall that train-
ing Parrotron’s speech-to-speech conversion model requires a
parallel corpus of real speech mapped to target speech of a
predetermined voice. Specifically, similar to [5], we take each
input source utterance from the above corpora and synthesize
its reference transcript to generate the target utterance. We use
Google’s Parallel WaveNet-based TTS [28].

4.2. Model Setup
The decoder architectures for the spectrogram, phoneme and
word-piece (text) decoders are unchanged from [5]. However,
we replace the 15-layer Transformer (1024 dimensions) encoder
in the baseline model [5] with 17 Conformer blocks each with
512 states, 8 attention heads and 32x1 convolutional kernel
size. We introduce mixed-rate speedup between Conformer
blocks, illustrated in Figure 2. The design uses convolutional
subsampling module with 3x3 kernel size with a by 2x2
stride resulting a subsampling factor of 4. The transposed
convolutional network includes one layer of CNN with 512
channels, filter size 4 and 2 strides in time. The total number
of parameters is 168M similar to the Transformer Parrotron [5].

We extract 128-dim log-mel spectrogram features from
input speech using a 30 ms window and 10 ms frame shift.
These are input to the first block in the encoder. The spec-
trogram decoder targets comprise 1025-dim STFT magnitudes,
computed with a 50 ms frame length, 12.5 ms shift, and a 2048-
point FFT. The generated spectrogram from the spectrogram
decoder can be converted to speech using the Griffin-Lim
algorithm [29] or WaveRNN neural vocoder [30]; we use the
former in this paper. We use SpecAugment [31] primarily
proposed for ASR in training the baseline Parrotron models.

We evaluate the voice conversion accuracy of Parrotron
model, using spectrogram WERs obtained by applying a state-
of-the-art speaker-independent ASR system trained on the cor-
responding corpus to the spectrogram outputs of the Parrotron
model. We use the WER of the ASR system as a proxy for
the speech conversion task. We have previously found a strong
correlation between WER on the vocoded predicted model
output and the MOS scores measuring the quality of the voice
conversion model [3]. We also conduct A/B listening tests [32]
to support this hypothesis. We also compute WERs directly on
the word-piece outputs, henceforth referred to as text WERs.
To evaluate the training speed of the model, we report the
number of processed examples per second, examples/sec and
the adaptation time (Wall time) of a speaker-dependent model
in hours. We also report the real-time factor (RTF) for inference
using Parrotron computed against the length of the input audio.

LibriSpeech Google voice search
Model S. WER Ex./sec S. WER Ex./sec
Transformer 12.0 160 9.8 180
Conformer 8.2 280 8.0 310

+ Mixed rate 8.2 1200 7.5 1300

Table 1: Speed and accuracy improvement of many-to-one
conversion on Librispeech and Google voice search corpora.

4.3. Many-to-one Speaker Independent Parrotron
Table 1 shows the speed and Spectrogram WER (denoted by
S. WER) reductions seen with speaker-independent Parrotron.
As described in Section 3.1, we train baseline models with two
different corpora and corresponding target syntheszied speech.
The Librispeech evaluation is done on the test-clean subset.
After replacing the encoder with Conformer blocks, we observe
an average 32% relative reduction in spectrogram WER The
mixed frame rate strategy described in Section 3.3 is applied
on the Conformer Parrotron and obtains a 4X speedup over the
base Conformer Parrotron and 7x speedup over the Transformer
Parrotron. The former results in the 8 times length reduction
of the Conformer representation and 2 times reduction in the
number of decoder steps It should be noted that the base Con-
former architecture itself provides speed improvements over the
Transformer architectures as reported in ASR tasks [6].

Similar speedups and accuracy improvements can also be
seen on Google voice search corpora (20x larger than Lib-
rispeech) which is more reflective of commands and searches
that users need to accomplish daily tasks (See Table 1). Com-
paring Row 3 to Row 1, we see 24% relative spectrogram
WER reduction and 7X speedup over the baseline Transformer
Parrotron. Interestingly, comparing Rows 2 and 3, we observe
a small WER reduction (6% relative) with the mixed rate
sampling. We analyze this further Section 4.5.

4.4. Speaker-dependent Parrotron
In this Section, we present results on speaker-dependent (i.e.,
one-to-one VC) models obtained by adapting the base speaker-
independent model to each dysarthric speaker. Table 2 illus-
trates the accuracy improvements obtained when Parrotron is
customized to each speaker. The proposed Conformer Par-
rotron consistently outperforms the Transformer model across
all speakers with different types of speech impairments. We
obtain an average 21% and 19% relative reduction in both
spectrogram WER and text WER respectively.. In speakers with
severe speech impediments, WER improvements of up to 53%
relative can be achieved. These results are further supported by
an A/B listening test between voice samples from Conformer
and Transformer Parrotron models on all 10 speakers with 100
utterances each (Figure 3).

Figure 3: A/B Listening on voice samples from Transformer and
Conformer architectures.

Table 3 provides an example comparison of the speed-
ups seen in overall adaptation time (Wall time) and inference
speed (Real Time Factor) between the two architectures. We
hypothesize that the Transformer Parrotron could get more
competitive in speed if the proposed ideas in Section 3.3 are
applied there as well.



Spectrogram WER Text WER
Speaker Etiology (Severity) Utts Generic ASR Transformer Conformer ∆ Transformer Conformer ∆
ALS-1 ALS (Severe) 1913 83.8 19.2 13.8 -28% 13.3 8.5 -36%
ALS-2 ALS (Moderate) 2618 59.1 12.8 9.7 -24% 11.2 8 -29%

O-1 Other (Severe) 3928 92.1 30.9 24 -22% 23.2 20 -14%
ALS-3 ALS (Severe) 3453 90.3 19.8 14.2 -28% 13.3 12.2 -8%
ALS-4 ALS (Mild) 1629 35 8.3 4.8 -42% 6.1 3.6 -41%
ALS-5 ALS (Typical) 1464 10.5 6.3 4.1 -35% 4.7 2.2 -53%
MS-1 Multiple Sclerosis (Moderate) 2434 66 26.3 23.4 -11% 20.4 19 -7%
ALS-6 ALS (Severe) 3389 88 13.6 10.1 -26% 10.1 7.9 -22%
ALS-8 ALS (Moderate) 7792 54.7 14.9 13.8 -7% 7.3 5.6 -23%

D-1 Deaf (Severe) 12685 85.4 23.6 21.7 -8% 11.7 11.6 -1%
Average 4131 66.5 17.6 14.0 -21% 12.1 9.9 -19%

Table 2: Accuracy improvement of the proposed Conformer Parrotron across 10 speakers with different types of speech impairments.

Atypical Speech
Model Spec. WER Adapt time RTF
Transformer 23.6 10h 0.45
Mixed rate Conformer 21.7 2h 0.35

Table 3: Speed improvement of speaker-dependent Parrotron on
D-1 dysarthric speaker.

4.5. Analysis: trade-off between speed and accuracy

We first empirically investigate different frame shift (FS) com-
binations of the encoder and decoder as shown in Figure 4.
The experiment is done on Librispeech comparable to Table 1.
Spectrogram WER is used as y-axis to evaluate the accuracy of
the modeling. Take the red line as an example. In this setup,
we predict 2 frames at a step of the decoder resulting in 25ms
frame shift per step. We always first subsample the encoder by
8 times in total as Figure 2, followed by upsampling with 2, 3
or 4 times, which results in 40ms, 27ms or 20ms encoder FS
correspondingly. As denoted by the yellow star in the figure,
40ms FS with 2X upsampling gets the best accuracy. Similarly,
we found another combination, 20ms encoder FS and 12.5ms
decoder FS also yields the best accuracy (denoted by the green
star). Given similar accuracy, we chose the former setup as it
operates in a larger FS which gets more speedups.

Figure 4: Frameshift and Spec. WER in mixed-rate design.

Given the same encoder frame shift, the mixed-rate design
enables different realizations by different subsampling and up-
sampling setups. Generally speaking, more subsampling results
in increased speedups but causes regressions in spectrogram
WERs that are harder to be recover through upsamplingMoti-
vated by previous matrix decomposition based neural network
compression research [33, 34], we try to assess the information
loss by the sparsity of the feed-forward neural network weight
matrices in the last Conformer block of the encoder 2. We
factorize the weight matrix using singular value decomposition
(SVD) to obtain the singular values. By treating the singular

2Our preliminary experiment found that lower Conformer layers
follow similar trend while less sensitive to subsampling.

value as the knowledge learnt by the neural network, we calcu-
late the cumulative proportion of variance (CPV) by: CPV[k] =∑k

i=1

s2i∑D
d=1

s2
d

where si is the i-th singular value of the matrix,

k is the number of singular values we consider, and D is the
size of the feed-forward matrix (D = 512). For any given k, a
larger CPV shows that the network is able to learn the structure
of the data with a sparsity index of k. A smaller value of k
indicates a sparser matrix structure. By plotting CPV v.s. the
number of singular values in Figure 5, we can see that pure
subsampling (blue curve) leads to a sparser matrix and worse
performance (spectrogram WER increased to 20.0 in Figure 4)
compared to the vanilla model trained with no subsampling or
upsampling (red curve). Using mixed-rate design in Figure 2 we
can bring 8x subsampling with 2x upsampling (green curve in
Figure 5 and yellow star in Figure 4) closer to the performance
achieved by vanilla training (red curve). If we double both
subsampling and upsampling blocks (black curve), the CPV
is much higher than the green and red curves, which results
in WER degradation from 8.2 to 9.5. In future, we plan to
analyze these matrices at different points in the Conformer
network to help design an operating point that best matches the
application and better understand the interplay between these
sampling techniques and the best performance for a give amount
of adaptation data per dysarthric speaker.

Figure 5: Mixed-rate design and its effect on cumulative propor-
tion variance of weight matrix singular value decomposition.

5. Conclusion
In this work, we show that the Conformer encoder architec-
ture [6] can be enhanced for jointly training voice conversion
and recognition systems. The proposed method yields WER
reductions between 24% and 32% relative on normal speech
and up to 53% relative for dysarthric speech. Moreover
novel mixed-rate sampling strategy can reduce total training
time by 7x and 22% relative reduction in inference RTF over
Transformer Parrotron.



6. References
[1] J. Shor, D. Emanuel, O. Lang, O. Tuval, M. Brenner, J. Cattiau,

F. Vieira, M. McNally, T. Charbonneau, M. Nollstadt, A. Has-
sidim, and Y. Matias, “Personalizing ASR for Dysarthric and
Accented Speech with Limited Data,” in Interspeech, 2019, pp.
784–788.

[2] K. T. Mengistu and F. Rudzicz, “Adapting acoustic and lexical
models to dysarthric speech,” in ICASSP. IEEE, 2011, pp. 4924–
4927.

[3] F. Biadsy, R. J. Weiss, P. J. Moreno, D. Kanvesky, and Y. Jia, “Par-
rotron: An end-to-end speech-to-speech conversion model and its
applications to hearing-impaired speech and speech separation,”
in Interspeech, 2019, pp. 4115–4119.

[4] N. Moritz, T. Hori, and J. Le, “Streaming automatic speech
recognition with the transformer model,” in ICASSP. IEEE,
2020, pp. 6074–6078.

[5] R. Doshi, Y. Chen, J. Liyang, X. Zhang, B. Fadi, R. Bhuvana,
C. Fang, A. Rosenberg, and P. J. Moreno, “Extending parrotron:
An end-to-end, speech conversion andspeech recognition model
for atypical speech,” in ICASSP. IEEE, 2020.

[6] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” arXiv preprint
arXiv:2005.08100, 2020.

[7] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in ICASSP. IEEE, 2015, pp. 5206–5210.

[8] J. Yamagishi, C. Veaux, S. King, and S. Renals, “Speech synthesis
technologies for individuals with vocal disabilities: Voice banking
and reconstruction,” Acoustical Science and Technology, vol. 33,
pp. 1–5, 2012.

[9] A. B. Kainand, J. Hosom, X. Niu, V. Santen, P. H. Jan, M. Fried-
Oken, and J. Staehely, “Improving the intelligibility of dysarthric
speech,” Speech Communication, vol. 49, no. 9, pp. 743–759,
2007.

[10] C. Lee, W. Chang, and Y. Chiang, “Spectral and prosodic
transformations of hearing-impaired mandarin speech,” Speech
Communication, vol. 48, no. 2, pp. 207–219, 2006.

[11] S. H. Yang and M. Chung, “Improving dysarthric speech intelligi-
bility using cycle-consistent adversarial training,” arXiv preprint
arXiv:2001.04260, 2020.

[12] D. Korzekwa, R. Barra-Chicote, B. Kostek, T. Drugman, and
M. Lajszczak, “Interpretable deep learning model for the de-
tection and reconstruction of dysarthric speech,” in Interspeech,
2019, pp. 3890–3894.

[13] L. Chen, H. Lee, and Y. Tsao, “Generative adversarial networks
for unpaired voice transformation on impaired speech,” in Inter-
speech, 2019, pp. 719–723.

[14] D. Wang, J. Yu, X. Wu, S. Liu, L. Sun, X. Liu, and H. Meng,
“End-to-end voice conversion via cross-modal knowledge distil-
lation for dysarthric speech reconstruction,” in ICASSP. IEEE,
2020, pp. 7744–7748.

[15] Y. Zhao, M. Kuruvilla-Dugdale, and M. Song, “Voice conversion
for persons with amyotrophic lateral sclerosis,” IEEE Journal of
Biomedical and Health Informatics, vol. 24, no. 10, pp. 2942–
2949, 2020.

[16] M. S. Hawley, S. P. Cunningham, P. D. Green, P. Enderby,
R. Palmer, S. Sehgal, and P. O’Neill, “A voice-input voice-output
communication aid for people with severe speech impairment,”
IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 21, no. 1, pp. 23–31, 2013.

[17] K. Sim, P. Zadrazil, and F. Beaufays, “An Investigation into On-
Device Personalization of End-to-End Automatic Speech Recog-
nition Models,” in Interspeech, 2019, pp. 774–778.

[18] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo,
and S. Kumar, “Transformer transducer: A streamable speech
recognition model with transformer encoders and rnn-t loss,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 7829–
7833.

[19] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate
recurrent neural network acoustic models for speech recognition,”
arXiv preprint arXiv:1507.06947, 2015.

[20] S. Zhang, E. Loweimi, Y. Xu, P. Bell, and S. Renals, “Trainable
dynamic subsampling for end-to-end speech recognition.” in IN-
TERSPEECH, 2019, pp. 1413–1417.

[21] M. Tham, “Dealing with measurement noise-a gentle introduction
to noise filtering. 1998.”

[22] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan, R. A. Saurous,
Y. Agiomvrgiannakis, and Y. Wu, “Natural tts synthesis by con-
ditioning wavenet on mel spectrogram predictions,” in ICASSP.
IEEE, 2018, pp. 4779–4783.

[23] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal
contexts,” in Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[24] G. Pundak and T. Sainath, “Lower frame rate neural network
acoustic models,” 2016.

[25] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for
deep learning,” arXiv preprint arXiv:1603.07285, 2016.

[26] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in 2015 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[27] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez,
D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang,
D. Bhatia, Y. Shangguan, B. Li, G. Pundak, K. C. Sim, T. Bagby,
S. Chang, K. Rao, and A. Gruenstein, “Streaming end-to-end
speech recognition for mobile devices,” in ICASSP. IEEE, 2019,
pp. 6381–6385.

[28] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[29] D. Griffin and J. Lim, “Signal estimation from modified short-
time fourier transform,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 32, no. 2, pp. 236–243, 1984.

[30] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. Oord, S. Dieleman,
and K. Kavukcuoglu, “Efficient neural audio synthesis,” in
International Conference on Machine Learning. PMLR, 2018,
pp. 2410–2419.

[31] D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, B. Li, Y. Wu, and
Q. V. Le, “Improved noisy student training for automatic speech
recognition,” arXiv preprint arXiv:2005.09629, 2020.

[32] W. Munson and M. B. Gardner, “Standardizing auditory tests,”
The Journal of the Acoustical Society of America, vol. 22, no. 5,
pp. 675–675, 1950.

[33] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural
network acoustic models with singular value decomposition.” in
Interspeech, 2013, pp. 2365–2369.

[34] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and
B. Ramabhadran, “Low-rank matrix factorization for deep neural
network training with high-dimensional output targets,” in 2013
IEEE international conference on acoustics, speech and signal
processing. IEEE, 2013, pp. 6655–6659.


