
HLL-based TV panel audience extrapolation

compatible with online audience measurement from

Logs

Shen-fu Tsai, Evgeny Skvortsov, Jim Koehler

July 2021

1 Introduction

Advanced online audience measurement has come a long way. Koehler,
Skvortsov, and Vos (2013) [3] (KSV) presents a method for measuring reach
and frequency of online ad campaigns by audience attributes for one device
(or cookie) type by combining ad server logs, publisher provided user data
(PPD), census data, and a representative panel to produce corrected cookie
and impression counts by these audience attributes. Koehler, Skvortsov,
Ma, and Liu (2016) [2] (KSML) extends the method to today’s world of
multiple device types such as desktop, smartphone, and tablet with a for-
mulation for converting multiple cookie counts to people counts. Skvortsov
and Koehler (2019) [6] (KS) further presents a technology that implements
the measuring methodologies [3] and [2] in large scale production systems
efficiently, where reach and demographic correction models are converted
into assignments of Virtual People for each events in the logs. Each Virtual
Person has demographic attributes (age and gender) assigned to them. To-
tal reach of an audience (ad campaign, web site, online video etc) can be
estimated as a simple count of unique Virtual People assigned to the corre-
sponding set of events. The demographic composition of an audience is then
estimated as the demographic composition of the set of Virtual People.

HyperLogLog [4, 1], or HLL sketch, is a data structure that stores a
sketch of incoming objects to facilitate cardinality estimation. Let N and
M be the maximum number of distinct objects and number of registers of
an HLL sketch, respectively. The sketch takes O(M log logN) space, much
smaller than the naive approach that takes O(N logN) space to store all

1

distinct incoming objects. HyperReal [7], or HR sketch, is an extension to
HyperLogLog that enables cardinality slicing by object attribute.

This paper proposes an extension to [6] for cross-media audiences, where
TV audiences are measured via extrapolation from a panel or partial set-
top-box data. In essence, a set of TV Virtual People are exclusively asso-
ciated with, or represented by, a TV panelist q via an HR sketch s, which
is an extension to an HLL sketch. We extrapolate q’s TV activity to this
set of Virtual People, thus s serves as an input to the system and can be
deduplicated with the digital part of the audience via a simple sketch merge.

The main contribution of this paper is an efficient method that takes as
input Q panelists and P, the union of Virtual People they represent, and
assigns an HR sketch to each panelist. The efficiency-accuracy trade-off is
controlled by a depth parameter D, and to help decide D in practical sys-
tems we provide an upper bound on the accuracy loss due to a finite depth
D. For example, to have an error of no more than 1% we can set D to 9.
The size of the deep sketch is roughly proportional to the depth.

The rest of the paper is organized as follows. In Section 2 we briefly
introduce HyperLogLog and HyperReal to clarify notations and facilitate
the discussion. In Section 3 we give formal definition of the problem to be
solved, including the goals that we want to achieve. In Section 4 we describe
a naive algorithm that is correct but usually too slow in practice. In Section 5
we propose our solution: deep sketch sampling. In particular we prove
an upper bound on the error of cardinality estimation, thus showing its
effectiveness and giving guidance on how to select the parameter, i.e. depth
D.

2 HyperLogLog and HyperReal

2.1 HyperLogLog

An HLL sketch[4, 1] is initialized with a fixed number of registers. Each in-
coming object o is hashed to one of the registers, and then further mapped
to a uniform integer hash H(o) represented with m bits where m is fixed.
A register either stores a maximum number of leading zeros of all incoming
uniform integers, called register value, or could be empty if no object is
distributed to it. The more leading zeros the smaller H(o) is. Obviously,
duplicate incoming objects will go to the same register and then mapped

2

to the same number of leading zeros. Cardinality estimation is based on
these numbers of leading zeros across registers. If N is the maximum num-
ber of distinct objects, then we need m = Θ(log(N)) for hash H(·) to be
conflict-free. Since the number of leading zeros is at most m and it takes
O(log(m)) = O (log (log (N))) bits to store it, it is now clear where the name
HyperLogLog comes from.

To simplify notation, for the rest of the paper we assume there
is only one register unless stated otherwise, and our approaches and
analyses extend naturally to multiple registers. Algorithm 1 illustrates how
to generate an HLL sketch for a set of objects O. To merge two HLL
sketches, we take the maximum of the sketch values as described in Algo-
rithm 2.

Algorithm 1: GenerateHLL(O) computes an HLL sketch for a
set of objects O

input : Set of objects O
output: HLL sketch GenerateHLL(O)

1 r ← NULL
2 for o ∈ O do
3 if r is NULL or r < m− blog2H(o)c then
4 r ← m− blog2H(o)c
5 end

6 end
7 return r

2.2 HyperReal

HyperLogLog estimates cardinality, but what if we also want to know how
it is sliced by certain attributes, say demographic buckets that take z val-
ues, without creating z HLL sketches? In [7] an extension to HyperLogLog
was proposed to address it. That paper also presented an algorithm called
HyperReal, which was aimed to give a better intuition about HyperLogLog.
Here we observe that extra data stored in HyperLogLog for sampling pur-
poses can be interpreted as amounting to a real number value, and thus
the extended HyperLogLog can be intuitively interpreted as an efficient rep-
resentation of HyperReal. We will also use this real value for sampling

3

Algorithm 2: MergeHLL(r1, r2) computes the merge of HLL
sketches r1 and r2

input : HLL sketches r1 and r2
output: HLL sketch MergeHLL(r1, r2)

1 if r1 is NULL then
2 return r2
3 end
4 if r2 is NULL then
5 return r1
6 end
7 return max(r1, r2)

sub-sketches efficiently.

The method leverages registers that far outnumber z to store the dis-
tribution of attributes at the same time. To better understand it, we first
note that the register value of HyperLogLog described in Section 2.1 is
equivalent to the number of leading zeros after the decimal point of a uni-
form hash h(·) ≡ H(·)

2m ∈ (0, 1), and the expression of leading zero count
becomes −blog2 h(·)c. From the perspective of HyperLogLog, each register
also stores the attribute of the object whose hash has the most leading zeros,
and to break a tie we compare another uniform hash g which thus has to
be stored as well. Note that because h(·)

2blog2 h(·)c is uniform in [1, 2), we can

set g = h(·)
2blog2 h(·)c , which together with the number of leading zeros repre-

sent nothing other than h(·), the original uniform hash. This explains the
name HyperReal: a floating number approximating a uniform hash in (0, 1)
is stored per register. HyperReal brings intuition about how HyperLogLog
works, and reasoning about h(·) is much easier than the number of leading
zeros. In practice, rather than full 4-byte floating numbers, the exponent
and significand of h(·) take one byte each so we store h(·) in a total of two
bytes. In the example illustrated in Figure 1, we use 214 = 16384 registers,
each represented by a vertical bar.

Since slicing cardinality by demographic buckets is essential in our ap-
plication, for the rest of the paper we base our discussion on HyperReal
rather than HyperLogLog. It is then straightforward to visualize each reg-
ister as a vertical bar storing a minimum uniform hash as illustrated in
Figure 1. Moreover, distributing objects across registers is straightforward.

4

Algorithm 3 and Algorithm 4 summarize the generation and merge of Hy-
perReal, respectively.

objects 1, 3, 14...

register 0

objects 2, 6, 9...

register 1

objects 4, 5, 10...

register 2

objects 7, 8...

register 16383

......

Figure 1: Distinct objects are distributed across registers to form an HR
sketch, and each register stores the minimum of uniform hashes of the objects
it receives. The circle in each vertical bar denotes the smallest uniform hash
of the objects falling into that register.

3 Problem definition

We are given Q panelists numbered 1, 2, . . . , Q with non-negative weights
w = (w1, w2, . . . , wQ) and a set of Virtual People P. All panelists and
Virtual People have the same attributes like geo location, age, gender, etc.
For simplicity of notation, assume w1 + . . .+wQ = 1. We want to associate
panelists with Virtual People such that

• Each Virtual Person p is associated with exactly one panelist chosen
by PickPanelist(h(p), w) that takes uniform hash h(p) ∈ (0, 1) of p
as input. In other words, we are seeking a partitioning of P into Q
disjoint sets. This is because we want to make each panelist represent

5

Algorithm 3: GenerateHR(O) computes an HR sketch for a set
of objects O

input : Set of objects O
output: HR sketch GenerateHR(O)

1 r ←∞
2 for o ∈ O do
3 r ← min(r, h(o))
4 end
5 return r

Algorithm 4: MergeHR(r1, r2) computes the merge of HR
sketches r1 and r2

input : HR sketches r1 and r2
output: HR sketch MergeHR(r1, r2)

1 return min(r1, r2)

a subset of Virtual People, and naturally these subsets should not
overlap and should union to the whole set P.

• Each panelist is associated with Virtual People proportional to their
weight. Specifically, Prob(PickPanelist(h(p), w) = q) ≈ wq when p is
picked uniformly at random from P. Although the requirement seems
vague, obviously it is natural when we interpret wq|P| as the rough
number of Virtual People panelist q represents.

• Stability requirement. The association is relatively stable with re-
spect to panelist weights, i.e. a small change to w1, w2, . . . , wQ should
keep PickPanelist(h(p), w) the same for most p ∈ P. Though we
are again being a bit vague here, in practice since panelist weights
could fluctuate and panelists would come and go (modeled by weights
switching between zero and non-zero values) over time this is also a de-
sired property to avoid assigning Virtual People to different panelists
more often than necessary. We will further discuss how our algorithms
address the requirement in Section 4.

• Joinability requirement. Once the first two requirements are met
by certain association, we will be able to project a subset of the Q
panelists to a subset P1 of P. For P1 to properly interact with any
other independent subset P2 of P, naturally we would like the cardi-

6

nality estimate of P1 ∪ P2 based on their HR sketches to be as close
to the expected value |P1|+ |P2| − |P1||P2|

|P| as possible, whether or not
P2 is obtained through the association.

Finally, for practical purpose we do not store all Virtual People associ-
ated with a given panelist. Instead, we want to have an HR sketch rq for
panelist q that represent his or her associated Virtual People.

4 Naive association

Were it not for the stability requirement described above, we could just
assign roughly wq|P| to panelist q for 1 ≤ q ≤ Q and be done. We present
affinity hashing algorithm [5] below that satisfies the stability requirement.

Algorithm 5: PickPanelist(h(p), w) samples a panelist from
multinomial distribution w1, w2, . . . , wQ

input : Panelist weights w = (w1, . . . , wQ) and Virtual Person p
output: Panelist PickPanelist(h(p), w)

1 return arg min1≤q≤Q
− lnh′(h(p),q)

wq

In Algorithm 5, h′(h(p), q) is a hash function that maps Virtual Person
p’s uniform hash h(p) and panelist index q to a number uniformly distributed
in (0, 1), and therefore − lnh′(h(p), q) is exponentially distributed.

Conceptually, each Virtual Person p generates Q independent exponen-
tial random variables with rates w1, w2, . . . , wQ respectively, and associates
with the panelist corresponding to the minimum of those exponential ran-
dom variables. Because with probability

wq∑Q
q=1 wq

panelist q is the index of

the variable that achieves the minimum [8], we have

Prob(PickPanelist(h(p), w) = q) =
wq∑Q
i=1wq

= wq.

Moreover, it could be seen that as weights change a bit so do the exponen-
tial random variables since the hashing function h′(·) is fixed, therefore the
assignment would mostly stay the same.

Once each Virtual Person picks a panelist, we can generate an HR sketch
for every panelist based on the set of Virtual People that picks them, as

7

shown in Algorithm 6. It should be clear that the resulting HR sketches
meet all requirements listed in Section 3.

Algorithm 6: NaiveAssociate(w,P) produces a sketch rq for each
panelist q

input : Panelist weights w = (w1, . . . , wQ), and set of Virtual
People P

output: NaiveAssociate(w,P), association consisting of Q HR
sketches of which the q-th approximates the HR sketch of
Virtual People represented by panelist q.

1 for q ← 1 to Q do
2 sq ← ∅
3 end
4 for p ∈ P do
5 q ← PickPanelist(h(p), w)
6 sq ← sq ∪ p

7 end
8 return GenerateHR(s1), . . . , GenerateHR(sQ)

5 Fast association by deep sketch sampling

The naive association algorithm described above includes an expensive step
where for each of the Q|P| panelist-Virutal-Person pairs a score is computed
before associating the Virtual Person with the panelist with maximum pair
score. To speed things up in exchange of slight accuracy degradation, we
would like to avoid this Q|P| score computations. In other words, we want
to approximate each panelist’s sketch reasonably well without going through
every panelist-Virtual-Person pair.

5.1 Algorithm

Please refer to Section 2 for a quick starter on HLL sketch and its extension
HR sketch. In essence, an HR sketch consists of a predefined number of
registers, and incoming objects are distributed to registers. Each object has
a uniform hash, and each register stores the minimum of the uniform hashes
of its incoming objects. For the purpose of our analysis we can focus on just

8

one register.

Since in an HR sketch each register only stores the minimum uniform
hash which cardinality estimation is based upon, intuitively only the Vir-
tual Person that generates this minimum are important.

Definition 1. The deep sketch of depth D of P consists of the D smallest
uniform hashes S(1) ≤ S(2) ≤ . . . ≤ S(D) from P. In other words, they are
the D smallest values in {h(p)}p∈P where h(·) ∈ (0, 1) is a uniform hash.

We describe our algorithm deep sketch sampling in Algorithm 7. Fig-
ure 2 illustrates the algorithm.

Allocate this fingerprint to a set A, B or C with probability 0.2, 0.3
or 0.5 respecively.

Creating samples of 3 disjoint subsets A, B, C of size
20%, 30% and 50% respectively.
Depth = 3

If none of the minimal fingerprints was picked for a
subset, then sample the minimum of b uniformly
hashes in (S(3), 1) where b is the size of the
subset

Allocate this fingerprint to a set A, B or C with probability 0.2, 0.3
or 0.5 respecively.

Allocate this fingerprint to a set A, B or C with probability 0.2, 0.3
or 0.5 respecively.S(1)

S(2)

S(3)

Figure 2: Deep sketch sampling. The three circles denote the deep sketch of
depth 3, i.e. three smallest uniform hashes S(1), S(2), and S(3) drawn from
Virtual People set P

Consider a panelist q. With probability wq this panelist gets S(1) as
register value and his or her sketch is finalized. Otherwise with probability

9

Algorithm 7: FastAssociate(w,P, D) produces a sketch rq for
each panelist q

input : Panelist weights w = (w1, . . . , wQ), set of virtual people P,
and depth D

output: FastAssociate(w,P, D), association consisting of Q HR
sketches of which the q-th approximates the HR sketch of
Virtual People represented by panelist q

1 S(1), . . . , S(D)← deep sketch of depth D
2 b1, . . . , bQ ←MultinomialSampling(|P| −D;w1, . . . , wQ)
3 for q ← 1 to Q do
4 rq ← NULL
5 end
6 for d← D to 1 do
7 q ← PickPanelist(S(d), w)
8 rq ← S(d)

9 end
10 for q ← 1 to Q do
11 if rq is NULL then

12 rq ← S(D) + (1− S(D))
(

1− u
1
bq

)
13 end

14 end
15 return r1, . . . , rQ

wq they gets S(2) as register value to finalize the sketch, and so on. If none
of S(1), . . . , S(D) is taken by q, suppose in reality q represent bq Virtual
People out of the remaining |P| − D. We can sample the minimum of bq
uniform random variables within (S(D), 1). To see how it works, first we
notice that the conditional distribution of a uniform random variable above
S(D) ≤ 1 is also uniform.

Lemma 1. Let U be a uniform random variable and S(D) ≤ 1. Then for
any t ∈ (S(D), 1)

Pr(t ≤ U |S(D) ≤ U) =
1− t

1− S(D)
.

With this, the conditional distribution of the minimum of bq independent
uniform random variables above S(D) ≤ 1 has a closed form.

10

Corollary 1. Let Uk be the minimum of k independent uniform random
variables and S(D) ≤ 1. Then for any t ∈ (S(D), 1)

Pr(t ≤ Uk|S(D) ≤ Uk) = Pr (t ≤ U |S(D) ≤ U)k =

(
1− t

1− S(D)

)k

.

The first equality follows from the facts that t ≤ Uk implies all k uniform
random variables are greater than or equal to t, S(D) ≤ Uk implies all k
uniform random variables are greater than or equal to S(D), and these k
random variables are independent. By applying Inverse transform sampling1

we arrive at the expression at Line 12 of Algorithm 7.

Finally, we perform a multinomial sampling to decide {bq}1≤q≤Q, i.e.
how |P| −D Virtual People distribute across the Q disjoint subsets.

The depth parameter D provides another way of viewing NaiveAssociate.

Lemma 2. For D ≥ |P|, FastAssociate and NaiveAssociate produce the
same output.

Proof. The deep sketch S(1), . . . , S(D) covers the HR sketch of all Virtual
People from P, so the loop starting at Line 6 of FastAssociate is equivalent
to NaiveAssociate. Moreover because bq = 0 for every q, the remaining of
FastAssociate after that loop does not execute.

5.2 Deciding on depth D

It is not hard to see that FastAssociate and NaiveAssociate generate HR
sketches with identical distribution even for D = 0 where we could set
S(0) = 0. Hence if all we wanted was for the output of deep sketch sam-
pling to provide reasonable cardinality estimate for some subset P ′ ⊂ P,
then zero depth would suffice. In practice, as indicated by the joinability
requirement in Section 3, we may have to merge it with the HR sketch for
an independent subset P ′′ ⊂ P produced by either normal HR generation,
naive association, or even fast association. For example P is census, P ′
is traditional TV audience, P ′′ is online audience, and without any further
knowledge P ′ and P ′′ are assumed to be independent. In that case we would
need the merged HR sketch to give the accurate cardinality of the union of
two independent sets, so the result of FastAssociate should in some sense
interact with the other HR sketch. In this subsection, we formally bound

1https://en.wikipedia.org/wiki/Inverse transform sampling

11

the error of the union’s cardinality introduced by finite depth D, i.e. we
assume cardinality estimate is otherwise perfect. Based on that we
are then able to decide an appropriate value of depth to achieve a target
error.

First, we establish a simple fact that, for the analysis in the next subsec-
tion we can treat the merged HR sketches from multiple panelists the same
way as any single panelist’s HR sketch.

Lemma 3. Let q be an integer not greater than Q. Let r be obtained by merg-
ing the first q HR sketches produced by FastAssociate(w,P, D). Transform
w to w′ by merging the first q probabilities and let r′ be the first sketch gener-
ated by FastAssociate(w′,P, D). Then r and r′ have the same distribution.

Proof. Let r1, . . . , rq be the first q HR sketches generated by procedure
FastAssociate(w,P, D). By definition r = min(r1, . . . , rq). For a fixed
1 ≤ d ≤ D, r = S(d) with probability

Pr (r = S(d))

=

q∑
i=1

Pr (ri = S(d) ∧ (rj > S(d) ∀j 6= i, j ≤ q))

=

q∑
i=1

Pr
(
PickPanelist (S(d), w) = i ∧

(
q < PickPanelist

(
S(d′), w

)
∀d′ < d

))

=

q∑
i=1

wi

1−
q∑

j=1

wj

d−1

=w′1
(
1− w′1

)d−1
=Pr

(
r′ = S(d)

)
.

When r or r′ is beyond S(D), they both evaluate to quantity S(D) +

(1− S(D))
(

1− u
1
b

)
where u is a uniform random variable and b is a random

variable sampled from Binomial distribution
(
|P| −D,

∑
n≤q wn

)
.

Now, we formulate the joinability requirement rigorously. For each

i ∈ {1, 2}, let w(i) = [w
(i)
1 , . . . , w

(i)

Q(i)] be some panel i, and Ti be its subset.

The two panels w(1) and w(2) can be disjoint, overlapping, or even identical,

12

but subsets T1 and T2 are independent.

For some i ∈ {1, 2}, Pi is the subset of P represented by subset Ti, i.e.

{PickPanelist(h(p), w(i)) : p ∈ Pi} = Ti,

and ri is the result of running MergeHR on the subset of HR sketches
FastAssociate(w(i),P, D) corresponding to Ti. An example is that panel i
is a traditional TV panel, Ti is the set of panelists who watch certain TV
program, and Pi is the audience represented by Ti.

For j = 3− i, Pj and HR sketch ri could be one of the following, respec-
tively:

• Pj is an independent subset of P similarly represented by Tj through
PickPanelist, and rj is similarly generated by algorithms FastAssociate
and MergeHR. For example Pj is another independence TV audience.

• Same as above except FastAssociate is replaced by NaiveAssociate.

• Pj is an independent subset of P, and rj is generated by algorithms
GenerateHR and MergeHR. For instance Pj is an online audience
that watch certain YouTube channel and is determined from YouTube
log in the servers.

Regardless of the sematics of P1 and P2, they are independent and the
joinability requirement is for the cardinality estimate of their union based
on HR sketches r1 and r2 to be close to |P1|+|P2|− |P1||P2|

|P| . If FastAssociate
was involved in generating both r1 and r2 with depth D1 and D2, respec-
tively, then let D be the minimum of D1 and D2.

In our main result below, we bound the relative error of cardinality
estimate caused by finite depth D. Contrary to convention, we normalize
the error by the estimated cardinality rather than true cardinality because
it is easier to bound. Numerically it matters very little if we only operate
at percentage level error.

Theorem 1. Define y and y′ as the actual and estimated cardinality of

P1 ∪ P2. Then we have E
[
y′−y
y′

]
≤ (2D)2D

2(2D+1)2D+1 . This approaches 1
4eD as D

goes to infinity.

13

Proof. We reason about the value of r in the context of the deep sketch of
depth D. With probability 1−

(
(1− p1)

D(1− p2)
D
)
, either r1, r2, or both

take value from the deep sketch of depth D, and therefore so does r. This
translates to true expected union size (p1 + p2 − p1p2)|P| and relative error
of zero. Otherwise, r is the minimum of |P|(p1 + p2) independent uniform
hashes drawn from (S(D), 1), which translates to estimated cardinality of

|P|(p1 + p2) and relative error of p1+p2−(p1+p2−p1p2)
p1+p2

= p1p2
p1+p2

. So

E
[
y′ − y

y′

]
= (1− p1)

D(1− p2)
D p1p2
p1 + p2

.

With p1 + p2 fixed, it is maximized when p1 = p2, so we reduce it to

(1− p)2D
p2

2p
=

1

2
p(1− p)2D =

1

2
(2D)2Dp

(
1− p

2D

)2D

≤ (2D)2D

2(2D + 1)2D+1
.

Remark 1. The cardinality estimate based on the merged HR sketch r =
min(r1, r2) described above could only have an over estimate.

We can therefore select D based on this upper bound. For example, if we
want the finite depth to bring no more than 1% additional error, we could
set D = 9 to achieve 0.94% relative error.

References

[1] Stefan Heule, Marc Nunkesser, and Alexander Hall, Hyperloglog in prac-
tice: algorithmic engineering of a state of the art cardinality estimation
algorithm, Proceedings of the 16th International Conference on Extend-
ing Database Technology, 2013, pp. 683–692.

[2] Jim Koehler, Evgeny Skvortsov, Sheng Ma, and Song Liu, Measuring
cross-device online audiences, Tech. report, Google, Inc., 2016, available
at https://research.google/pubs/pub45353/.

[3] Jim Koehler, Evgeny Skvortsov, and Wiesner Vos, A method for mea-
suring online audiences, Tech. report, Google Inc, 2013, available at
https://research.google/pubs/pub41089/.

[4] Frédéric Meunier, Olivier Gandouet, Éric Fusy, and Philippe Flajolet,
Hyperloglog: the analysis of a near-optimal cardinality estimation algo-
rithm, Discrete Mathematics & Theoretical Computer Science (2007).

14

https://research.google/pubs/pub45353/
https://research.google/pubs/pub41089/

[5] Evgeny Skvortsov, Deep liquidlegions sketch sam-
pling, https://colab.sandbox.google.com/github/

world-federation-of-advertisers/virtual_people_examples/

blob/main/notebooks/DeepLiquidSampling.ipynb, 2020.

[6] Evgeny Skvortsov and Jim Koehler, Virtual people: Actionable
reach modeling, (2019), available at https://research.google/pubs/

pub48387/.

[7] Andreas Ulbrich, Evgeny Sergeevich Skvortsov, Jeffrey Scott Wilhelm,
Josh Bao, Lawrence Tsang, and Will Bradbury, Tracking audience
statistics with hyperloglog, Tech. report, 2021, available at https://

research.google/pubs/pub50207/.

[8] Wikipedia, Exponential distribution, https://en.wikipedia.org/

wiki/Exponential_distribution#Distribution_of_the_minimum_

of_exponential_random_variables.

15

https://colab.sandbox.google.com/github/world-federation-of-advertisers/virtual_people_examples/blob/main/notebooks/DeepLiquidSampling.ipynb
https://colab.sandbox.google.com/github/world-federation-of-advertisers/virtual_people_examples/blob/main/notebooks/DeepLiquidSampling.ipynb
https://colab.sandbox.google.com/github/world-federation-of-advertisers/virtual_people_examples/blob/main/notebooks/DeepLiquidSampling.ipynb
https://research.google/pubs/pub48387/
https://research.google/pubs/pub48387/
https://research.google/pubs/pub50207/
https://research.google/pubs/pub50207/
https://en.wikipedia.org/wiki/Exponential_distribution#Distribution_of_the_minimum_of_exponential_random_variables
https://en.wikipedia.org/wiki/Exponential_distribution#Distribution_of_the_minimum_of_exponential_random_variables
https://en.wikipedia.org/wiki/Exponential_distribution#Distribution_of_the_minimum_of_exponential_random_variables

	Introduction
	HyperLogLog and HyperReal
	HyperLogLog
	HyperReal

	Problem definition
	Naive association
	Fast association by deep sketch sampling
	Algorithm
	Deciding on depth D

