
Non-Stationary Off-Policy Optimization

Joey Hong Branislav Kveton Manzil Zaheer Yinlam Chow Amr Ahmed
Google Research

Abstract

Off-policy learning is a framework for evalu-
ating and optimizing policies without deploy-
ing them, from data collected by another pol-
icy. Real-world environments are typically non-
stationary and the offline learned policies should
adapt to these changes. To address this challenge,
we study the novel problem of off-policy opti-
mization in piecewise-stationary contextual ban-
dits. Our proposed solution has two phases. In
the offline learning phase, we partition logged
data into categorical latent states and learn a near-
optimal sub-policy for each state. In the online
deployment phase, we adaptively switch between
the learned sub-policies based on their perfor-
mance. This approach is practical and analyz-
able, and we provide guarantees on both the qual-
ity of off-policy optimization and the regret dur-
ing online deployment. To show the effective-
ness of our approach, we compare it to state-of-
the-art baselines on both synthetic and real-world
datasets. Our approach outperforms methods that
act only on observed context.

1 Introduction

When users interact with online platforms, such as search
engines or recommender systems, their behavior is often
guided by certain contexts that the system cannot directly
observe. Examples of these contexts include user prefer-
ences, or in shorter term, user intent. As the user interacts
with the system, these contexts are slowly revealed based
on the actions and responses of the user. A good recom-
mender system should be able to utilize these contexts to
update the recommendation actions accordingly.

One popular framework to learn recommendation actions
conditioned on contexts is using contextual bandits (Latti-
more and Szepesvári, 2019). In contextual bandits, an agent

Proceedings of the 24th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2021, San Diego, California,
USA. PMLR: Volume 130. Copyright 2021 by the author(s).

(or policy) chooses an action based on the current context
and the feedback observed in previous rounds. Contextual
bandits have been applied to many core machine learning
systems, including search engines, recommender systems,
and ad placement (Li et al., 2010; Bottou et al., 2013).

Contextual bandit algorithms are either on-policy, where
the agent learns online from real-world interactions (Lang-
ford and Zhang, 2008; Abbasi-yadkori et al., 2011), or off-
policy, where the learning process uses offline logged data
collected by other policies (Strehl et al., 2010; Li et al.,
2010). While the former is more straightforward, the latter
is more suitable for applications where sub-optimal inter-
actions are costly and may lead to catastrophic outcomes.

Most existing contextual bandit algorithms assume that re-
wards are generated by a stationary distribution. While
this is a valid assumption in simpler problems, where the
user intent is static during interactions, in general the envi-
ronment should be non-stationary, where user preferences
may change during the interactions due to some unex-
pected events. These shifts in the environment can either
be smooth (Beshes et al., 2014) or abrupt at certain points
in time (Hartland et al., 2007). We focus on the latter case,
known as the piecewise-stationary environment (Hartland
et al., 2007; Garivier and Moulines, 2008), which is appli-
cable to many event-sensitive decision-making problems.

Non-stationary bandits (Auer et al., 2002; Luo et al., 2018),
and more specifically piecewise-stationary bandits (Hart-
land et al., 2007; Garivier and Moulines, 2008; Yu and
Mannor, 2009), have been studied extensively in the on-
policy setting. The prior work in non-stationary off-policy
learning only considered policy evaluation, where the evo-
lution of contexts is modeled using time series (Thomas
et al., 2017) or by weighting past observations (Jagerman
et al., 2019). Neither of these works considered policy op-
timization.

In this work, we develop a principled off-policy method to
learn a piecewise-stationary contextual bandit policy with
performance guarantees. Our algorithm consists of both the
offline and online learning phases. In the offline phase, the
piecewise stationarity is modeled with a categorical latent
state, whose evolution is either modeled by a change-point
detector (Liu et al., 2018; Cao et al., 2019) or a hidden
Markov model (HMM) (Baum and Petrie, 1966). At each



Non-Stationary Off-Policy Optimization

latent state, a corresponding policy is learned from a sub-
set of offline data associated with that state. With the set of
policies learned offline, the online phase then selects which
policy to deploy based on a mixture-of-experts (Auer et al.,
2002; Luo et al., 2018) online learning approach. We de-
rive high-probability bounds on the off-policy performance
of the learned policies and also analyze the regret of the
online policy deployment. Finally, the effectiveness of our
approach is demonstrated in both synthetic and real-world
experiments, where we outperform existing off-policy con-
textual bandit baselines. We address two novel challenges.
First, we are the first to consider the bias in off-policy es-
timation due to an unknown latent state. Second, it is non-
trivial to deploy a non-stationary policy learned offline. We
are the first to propose a framework for learning the compo-
nents of a switching policy offline, and then augment them
with an adaptive switching algorithm online.

2 Background

Let X be a set of contexts and A = [K] be a set of actions.
A typical contextual bandit setting consists of an agent in-
teracting with a stationary environment over T rounds. In
round t ∈ [T ], context xt ∈ X is sampled from an un-
known distribution P x. Then, conditioned on xt, the agent
chooses an action at ∈ A. Finally, conditioned on xt and
at, a reward rt ∈ [0, 1] is sampled from an unknown distri-
bution P r(· | xt, at).

Let H = {π : X → ∆K−1} be the set of stochastic sta-
tionary policies, where ∆K−1 is the (K − 1)-dimensional
simplex. We use shorthand x, a, r ∼ P, π to denote a triplet
sampled as x ∼ P x, a ∼ π(· | x), and r ∼ P r(· | x, a). We
define

Ex,a,r∼P,π [r] = Ex∼P xEa∼π(·|x)Er∼P r(·|x,a) [r] .

With this notation, the expected reward of policy π ∈ H in
round t can be written

Vt(π) = Ext,at,rt∼P,π [rt] .

Traditionally, Vt(π) is the same for all rounds t.

In off-policy learning, actions are chosen by a known sta-
tionary logging policy π0 ∈ H. Logged data are collected
in the form of tuples

D = {(x1, a1, r1, p1), . . . , (xT , aT , rT , pT )} ,

where xt, at, rt ∼ P, π0 and pt = π0(at | xt) is the proba-
bility that the logging policy takes action at under context
xt. For simplicity, we assume that π0 is known. Note that if
the logging policy is not known, a stationary π0 can be es-
timated from logged data to approximate the true logging
policy (Strehl et al., 2010; Xie et al., 2019; Chen et al.,
2019a). Off-policy learning focuses on two tasks: evalua-
tion and optimization.

2.1 Off-Policy Evaluation

The goal is to estimate the expected reward of a target pol-
icy π ∈ H, V (π) =

∑T
t=1 Vt(π), from logged data D.

One popular approach is inverse propensity scoring (IPS)
(Horvitz and Thompson, 1952), which reweighs observa-
tions with importance weights as

V̂ (π) =

T∑
t=1

min

{
M,

π(at | xt)
pt

}
rt ,

where M is a tunable clipping parameter. When M = ∞,
the IPS estimator is unbiased, that is E[V̂ (π)] = V (π). But
its variance could be unbounded if the target and logging
policies differ substantially. The clipping parameter M
trades off variance due to differences in target and logging
policies for bias from underestimating the reward (Ionides,
2008; Bottou et al., 2013). There are methods to design the
clipping weight to optimize such trade-offs (Dudik et al.,
2011; Wang et al., 2017). While we focus on the IPS esti-
mator, our work can be incorporated into other estimators,
such as the direct method (DM) and doubly robust (DR) es-
timator (Dudik et al., 2011), which leverage a reward model
r̂(x, a) ' Er∼P r(·|x,a) [r], where ' denotes an approxima-
tion by fitting on D.

2.2 Off-Policy Optimization

Our goal is to learn a policy with the highest expected re-
ward, π∗ = arg max π∈H V (π). One popular solution is to
maximize the IPS estimate, π̂ = arg max π∈H V̂ (π) (Chen
et al., 2019b). For stochastic policies, one often optimizes
an entropy-regularized estimate (Chen et al., 2019b),

π̂=arg max
π∈H

V̂ (π)−τ
T∑
t=1

∑
a∈A

π(a |xt) log π(a |xt) ,

where τ ≥ 0 is the temperature parameter that controls
the determinism of the learned policy. That is, as τ → 0,
the policy chooses the maximum. Following prior work
(Swaminathan and Joachims, 2015b,a), one class of poli-
cies that solves this entropy-regularized objective is the lin-
ear soft categorical policy π(a | x; θ) ∝ exp(θT f(x, a)),
where θ ∈ Rd is the weight of the linear function approx-
imation w.r.t. the joint feature maps of context and action
f(x, a) ∈ Rd. In the special case of X being finite, f(x, a)
can be an indicator vector for each pair (x, a), and learning
of π̂ reduces to an LP (Li et al., 2018).

3 Setting

In non-stationary bandits, the context and reward distri-
butions change with round t. To model this, we consider
an extended contextual bandit setting where the context
and reward distributions also depend on a discrete latent
state z ∈ Z , where Z = [L] is the set of L latent states.



Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed

rt

xt atzt

Figure 1: Graphical model for latent state zt, context xt, action
at, and reward rt.

We denote by zt ∈ Z the latent state in round t, and by
z1:T = (zt)

T
t=1 ∈ ZT its sequence over the logged data.

We consider z1:T to be fixed but unknown. For analysis,
we assume that L is known, but relax this assumption and
tune L in the experiments. We also assume that the latent
state is unaffected by the actions of the agent, a key differ-
ence from reinforcement learning (RL). (Barto and Sutton,
2018). In search engines, for instance, latent states could
be different user intents that change over time, such as
Z = {news, shopping, . . .}.

We can modify our earlier notation to account for the la-
tent state. Let P x

z and P r
z be the corresponding context and

reward distributions conditioned on z. Then the expected
reward of policy π at round t is Vt(π) = Ex,a,r∼Pzt ,π

[r].
The relation between all variables can be summarized in a
graphical model in Figure 1. Revisiting our search engine
example, if a system knew that the user shops, it would
likely recommend products to buy. So, instead of policies
that only act on observed context, we should consider poli-
cies that also act according to the latent state. Therefore,
we define a new class of policies HZ , whose members are
tuples of policies Π = (πz)z∈Z , with one stationary policy
πz ∈ H for each latent state z. The value of Π is

V (Π) =
∑
z∈Z

Vz(πz) ,

Vz(πz) =

T∑
t=1

1 [zt = z]Vt(πz) ,

(1)

where the latter is the value of πz on the subset of logged
data with latent state z. Note that calculating V (Π) requires
knowing z1:T . Therefore, V (Π) is hard to compute in prac-
tice, but can still be used to reason about performance.

Prior works on non-stationary bandits either studied envi-
ronments with smooth changes (Beshes et al., 2014), or
piecewise-stationary environments, where the changes are
abrupt at a fixed number of unknown change-points (Hart-
land et al., 2007; Garivier and Moulines, 2008). In this
work, we focus on the latter environment. We denote by S
the number of stationary segments in z1:T , where the latent
state is constant over a segment. We assume that S ≥ L,
as multiple segments can map to the same latent state, and
that S is small. We denote the change-points by

τ0 = 1 < τ1 < . . . < τS−1 < T = τS , (2)

where we let τ0 = 1, τS = T to simplify exposition.

4 Off-Policy Evaluation

To extend off-policy learning to the piecewise-stationary
latent setting, we consider an IPS estimator for Π ∈ HZ

V̂ (Π) =
∑
z∈Z

V̂z(πz) , (3)

V̂z(πz) =

T∑
t=1

1 [ẑt = z] ·min

{
M,

πz(at | xt)
pt

}
rt ,

where V̂z(πz) is the IPS estimator for the logged data with
latent state z and ẑ1:T is a sequence of latent states pre-
dicted by an oracle O. This estimator partitions the logged
data by latent state.

For simplicity, we restrict our performance analysis to a set
of policies where the clipping condition is satisfied,

H =

{
π :

π(a | x)

π0(a | x)
≤M for all a ∈ A, x ∈ X

}
, (4)

so that the propensity score does not needed to be clipped.
The analysis can be straightforwardly extended to a general
policy class, and this only adds an extra bias term to the
error bound (Ionides, 2008; Li et al., 2018). We omit this to
simplify exposition.

If the oracle accurately predicts all the ground-truth latent
states, that is ẑ1:T = z1:T , and M = ∞, the IPS estimator
V̂ (π) can be shown to be unbiased.

Lemma 1. For any Π ∈ HZ , the IPS estimator V̂ (Π) in
(3) is unbiased when ẑ1:T = z1:T .

Proof. From definition of V̂ (Π) in (3), we have

V (Π) =

T∑
t=1

Ext,at,rt∼Pzt ,πzt
[rt]

=

T∑
t=1

Ext,at,rt∼Pzt ,π0

[
πzt(at | xt)

pt
rt

]

= E

[
T∑
t=1

πzt(at | xt)
pt

rt

]
= E

[
V̂ (Π)

]
,

where the last expectation is over all xt, at, rt ∼ Pzt , π0,
for any t ∈ [T ].

While the above technical result justifies our choice of the
IPS estimator for piecewise-stationary environments, in re-
ality there is no practical way to ensure a perfect latent state
estimation because the latent states z1:T are not observed in
logged data D. To address this challenge, in the following
we assume that the latent state oracle O has a low predic-
tion error with high probability and show how this error
propagates into off-policy value estimation.



Non-Stationary Off-Policy Optimization

Assumption 1. For any z1:T and δ ∈ (0, 1], oracle O es-
timates ẑ1:T such that

∑T
t=1 1[ẑt 6= zt] ≤ ε(T, δ) holds

with probability at least 1 − δ, where ε(T, δ) = o(T ) is
some function of T and δ.

Now consider latent state predictions generated by an ora-
cleO that satisfies Assumption 1. Using this oracle, we can
provide an upper bound on the estimation error (proof is in
Appendix A) of the IPS estimator in (3).

Lemma 2. For any policy Π ∈ HZ , its IPS estimate V̂ (Π)
in (3), and true value V (Π), we have that

|V (Π)− V̂ (Π)| ≤Mε(T, δ1/2) +M
√

2T log(4/δ2)

holds with probability at least 1− δ1 − δ2.

This technical lemma shows that in a piecewise-stationary
environment, the error of the IPS estimator can be decom-
posed into the latent oracle prediction error and a statistical
error term that is sublinear in T . In the rest of this section,
we introduce two latent prediction oracles. The first one is
based on change-point detection, and we show that it sat-
isfies Assumption 1. The second one is based on a hidden
Markov model (HMM), for which we do not prove an error
bound but get better empirical performance.

4.1 Change-Point Detector

In this section, we propose and analyze a change-point de-
tector oracle that satisfies Assumption 1. First, we assume
a one-to-one mapping between stationary segments and la-
tent states, or S = L. We let z1:T form a non-decreasing
sequence of integers that satisfies z1 = 1, zT = S with
|zt+1 − zt| ≤ 1, ∀t ∈ [T − 1], and change-points in (2). In
practice, this could over-segment the offline data, if multi-
ple stationary segments can be modeled by the same latent
state. However, this assumption is only used in the analysis.

We also assume that changes are detectable. This means
that the difference in performance of a stationary logging
policy before and after the change-point exceeds some
threshold.

Assumption 2. For each segment i ∈ [S] there exists a
threshold ∆ > 0 such that the difference of values between
two consecutive change points is greater than ∆, that is
|Vτi(π0)− Vτi−1(π0)| ≥ ∆.

Similar assumptions are common in piecewise-stationary
bandits, where the state-of-the-art algorithms (Liu et al.,
2018; Cao et al., 2019) use an online change-point detec-
tor to detect change points and reset the parameters of the
bandit algorithm upon a change. In this work, we utilize
a similar idea but in an offline off-policy setting. We con-
struct a change-point detector oracle O with window size
w and detection threshold c (Algorithm 1).

At a high level, O computes difference statistics for each
round in the offline data. Then it iteratively selects the

Algorithm 1: Change-point detector oracle
Input: window size w ∈ N, detection threshold c ∈ R+,

and logged data D
for t← w + 1 to T − w + 1 do

µ−t ← w−1
∑t−1
i=t−w ri

µ+
t ← w−1

∑t+w−1
i=t ri

end
Initialize candidates C ← {t ∈ [T ] :

∣∣µ−t − µ+
t

∣∣ ≥ c} and
change-points Γ = ∅

while C 6= ∅ do
Find change-point τ̂ ← arg max t∈C{

∣∣µ−t − µ+
t

∣∣}
C ← C \ [τ̂ − 2w, τ̂ + 2w]
Γ← Γ ∪ {τ̂}

end
Order all elements in Γ as
1 < τ̂1 < . . . < τ̂S′−1 < T = τ̂S′ , where S′ = |Γ|+ 1.

for t← 1 to T do
ẑt ← min{i ∈ [S′] : t < τ̂i}

end

round with the highest statistic, declares it a change-point,
and removes any nearby rounds from consideration. This
continues until there is no statistic that lies above threshold
c. In the following, we state a latent prediction error bound
for this oracle, which is derived in Appendix B.

Theorem 1. Let τi − τi−1 > 4w for all i ∈ [S]. Then for
any δ ∈ (0, 1], and c and w in Algorithm 1 such that

∆/2 ≥ c ≥
√

2 log(8T/δ)/w ,

Algorithm 1 estimates ẑ1:T so that
∑T
t=1 1[ẑt 6= zt] ≤ Sw

holds with probability at least 1− δ.

Theorem 1 says that the oracleO can correctly detect, with-
out false positives, all change-points within a window w
with high probability. Note that both w and c in Theorem 1
depend on ∆, which may not be known. A lower bound
on ∆, which we denote by ∆̃, would suffice and may be
known. We do this to choose c in the experiments in Sec-
tion 6.

4.2 Hidden Markov Model

Another natural way of partitioning the data is using a la-
tent variable model. In this work, we specifically model the
temporal evolution of z1:T with a HMM over Z (Baum and
Petrie, 1966). Let Φ = [Φi,j ]

L
i,j=1 be the transition ma-

trix with Φi,j = P (zt = j | zt−1 = i), and P0 be the
initial distribution over Z with P0,i = P (z1 = i). The
latent states evolve as z1 ∼ P0 and zt+1 ∼ Φzt,· after
that. Recall from Section 2 that we have joint feature maps
of context and action f(x, a) ∈ Rd. We assume the re-
wards are sampled according to the conditional distribution
P (· | x, a, z) = N (βTz f(x, a), σ2), where β = (βz)z∈Z



Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed

Algorithm 2: HMM oracle

Input: estimated HMM parameters M̂ = {P̂0, Φ̂, β̂} and
logged data D

Initialize A0(z)← P̂0,z, BT (z)← 1
for z ∈ Z do

Compute At(z), Bt(z) for all t = 1, . . . , T by
forward-backward recursion

At(z)←
∑
z′∈Z

At−1(z′)P (z | z′; Φ̂)P (rt | xt, at, z; β̂)

Bt(z)←∑
z′∈Z

P (z′ | z; Φ̂)P (rt+1 | xt+1, at+1, z
′; β̂)Bt+1(z′)

end
for t← 1, 2, . . . , T do

Compute Qt(z) ∝ At(z)Bt(z) for all z ∈ Z and
ẑt ← arg maxz∈Z Qt(z)

end

are regression weights. Though we use Gaussians, any dis-
tribution could be incorporated. Let M = {P0,Φ, β} be
the HMM parameters. The HMM can be estimated through
expectation-maximization (EM) (Baum and Petrie, 1966).

Oracle O can use the estimated HMM M̂ to predict ẑ1:T

from Algorithm 2. At each round t, the oracle estimates
forward and backward probabilities

At(z) = P (x1:t, a1:t, r1:t, zt = z;M̂) ,

Bt(z) = P (xt+1:T , at+1:T , rt+1:T | zt = z;M̂) ,

and posteriorQt(z) = P (zt = z | x1:T , a1:T , r1:T ;M̂) us-
ing forward-backward recursion (Baum and Petrie, 1966).
Then O predicts ẑt = maxz∈Z Qt(z) at each round t.
Though the described HMM oracle is practical, currently
no guarantees similar to Assumption 1 can be derived. An
analysis similar to Theorem 1 would require parameter re-
covery guarantees for the HMM, which to our knowledge,
do not exist for EM or spectral methods1 (Hsu et al., 2008).
Nevertheless, the HMM oracle has several appealing prop-
erties. First, unlike the change-point detector, the HMM
can map multiple stationary segments into a single latent
state, which potentially reduces the size of the latent space.
Second, the learned reward model r̂z(x, a) = β̂Tz f(x, a) '
Er∼P r

z(·|x,a) [r] can be incorporated into more advanced
off-policy estimators, such as the DR estimator in Sec-
tion 2, and further reduce variance.

5 Optimization and Deployment

We propose a piecewise-stationary off-policy optimization
algorithm, which has two parts: (i) an offline optimization

1Guarantees exist only on the marginal probability of data.

Algorithm 3: Piecewise off-policy learning
Input: number of latent states L ∈ N, logged data D, and

oracle O

Run O on D to get latent state estimates ẑ1:T ∈ [L]T

for z ← 1 to L do
Solve for
π̂z = arg max π∈H

∑T
t=1 1 [ẑt = z] V̂t(π)

end
Output Π̂ = (π̂z)z∈Z .

Algorithm 4: Piecewise policy deployment

Input: learned policy Π̂ ∈ HZ and mixture-of-experts
algorithm E

Initialize algorithm E1
for t← 1 to T do

Given xt, choose action at ∼ Et(xt, Π̂)
Update Et+1 from Et with reward rt ∼ P r

zt(· | xt, at)
end

that solves for the latent-space policy Π̂ = (π̂z)z∈Z where
π̂z = π(·|·; θ̂z) ∈ H; and (ii) an online sub-policy selection
procedure. We also derive a lower bound on the reward of
the policy from offline optimization and an upper bound on
the regret of its online deployment.

5.1 Off-Policy Optimization

For optimization, we leverage the fact that logged data are
partitioned into L sub-datasets, each corresponding to a
particular latent state, which gives the IPS estimator V̂ (π)
in (3) a separable structure. In this way, policy optimiza-
tion can be broken down into learning the best policy
at each individual latent state z. Formally, each compo-
nent of Π̂ is learned by solving the optimization π̂z =
arg max π∈H V̂z(π).

If each sub-policy π̂z = π(· | ·; θ̂z) is parameterized by
some θ̂z ∈ Θ, where Θ denotes the space of model param-
eters, then we solve the following for each latent state z

θ̂z = arg max
θ∈Θ

T∑
t=1

1 [ẑt = z] ·min

{
M,

π(at | xt; θ)
pt

}
rt .

(5)
If π̂z was a linear soft categorical policy, its parameters θ̂z
could be found as discussed in Section 2. Otherwise, fol-
lowing prior work (Swaminathan and Joachims, 2015b),
we can iteratively solve for each sub-policy using off-the-
shelf gradient ascent algorithms. Algorithm 3 summarizes
our approach to learning Π̂.

For Π̂ = arg maxΠ∈HZ V̂ (Π), we now bound from below
the expected reward of Π̂, in terms of any oracle O that
satisfies Assumption 1. We merely state the result here and



Non-Stationary Off-Policy Optimization

defer its derivation to Appendix A.

Theorem 2. Let

Π̂ = arg max
Π∈HZ

V̂ (Π) , Π∗ = arg max
Π∈HZ

V (Π)

be the optimal latent policies w.r.t. the off-policy estimated
value and the true value, respectively. Then for any δ1, δ2 ∈
(0, 1], we have that

V (Π̂) ≥ V (Π∗)− 2Mε(T, δ1/2)− 2M
√

2T log(4/δ2)

holds with probability at least 1− δ1 − δ2.

Theorem 2 states that the reward gap of the learned policy
Π̂ from Π∗ decomposes into the error due to oracle O and
randomness of logged dataD. It is important to note that we
assume that the true latent sequence z1:T is known when
measuring the performance of a policy. This is evident in
(1), where the sub-policy in round t is chosen by zt. We
relax this assumption in Section 5.2, where the latent state
is estimated only from past interactions.

Next we derive a lower bound on expected reward of pol-
icy Π̂ learned by Algorithm 3 with change-point detector
oracle O in Algorithm 1.

Corollary 1. Fix any ∆̃ ≤ ∆ and δ1, δ2 ∈ (0, 1]. Let ora-
cle O be Algorithm 1 with

w = 8 log(16T/δ1)/∆̃2 , c = ∆̃/2 ,

and Π∗, Π̂ be defined as in Theorem 2. Then

V (Π̂) ≥ V (Π∗)− 16M
(
S log(16T/δ1)/∆̃2

)
−

2M
√

2T log(4/δ2)

holds with probability at least 1− δ1 − δ2.

Corollary 1 follows from combining Theorems 1 and 2. It
says that if the estimated latent states ẑ1:T are generated by
Algorithm 1, and the policy Π̂ is learned by Algorithm 3,
then the difference in the expected rewards of Π̂ from Π∗

is O(log T
√
T ).

5.2 Online Deployment

Recall that our offline optimizer learns a vector of sub-
policies Π̂ = (π̂z)z∈Z , one for each latent state. During
online deployment, however, the latent state is still unob-
served, and we cannot query an oracle as we did offline. We
need an online algorithm that switches between the learned
sub-policies based on past rewards.

Our solution is to treat each sub-policy as an “expert”, and
select which one to execute in each round by a mixture-
of-experts algorithm E . This is because the online perfor-
mance of sub-policies can be treated as a surrogate predic-
tor for the unknown latent state. Our online algorithm is

presented in Algorithm 4, and takes a mixture-of-experts
algorithm E as an input. At each round t, actions are sam-
pled as at ∼ Et(xt, Π̂), where Et depends on the history of
rewards thus far and context xt.

To simplify exposition, we introduce shorthand Ez,π [·] =
Ex,a,r∼Pz,π [·]. We also assume initially that the online la-
tent sequence is the same as z1:T in offline data; we later
give a high-level argument on how to relax this assumption.
Let the T -round regret be defined as

R(T ; E , Π̂) =

T∑
t=1

Ezt,π∗zt [rt]−
T∑
t=1

Ezt,Et [rt] .

The first term is the optimal policy Π∗ acting according to
the true latent state. The second term is our offline-learned
policy Π̂ acting according to E . In this section, we give a
brief outline of how to bound the online regret, and defer
details to Appendix C.

Recall that S is the number of stationary segments, and
change-points are defined as in (2). Assuming the latent
state is constant over a stationary segment, we first have the
following lemma that decomposes the regretR(T ; E , Π̂).

Lemma 3. The regret R(T ; E , Π̂) is bounded from above
as

R(T ; E , Π̂) ≤

[
T∑
t=1

Ezt,π∗zt [rt]−
T∑
t=1

Ezt,π̂zt
[rt]

]

+

 S∑
s=1

max
z∈Z

τs−1∑
t=τs−1

Ezt,π̂z
[rt]−

T∑
t=1

Ezt,Et [rt]

 . (6)

The first-term is exactly V (Π∗) − V (Π̂) and is bounded
by Theorem 2 in our offline analysis, which shows near-
optimality of Π̂ when z1:T are known. The second term is
bounded by the regret of mixture-of-experts algorithm E
over S − 1 change-points.

Prior work showed an optimal T -round switching regret
with S − 1 switches of O(

√
SKT ) (Luo et al., 2018). One

such algorithm that is optimal up to log factors is Exp4.S
(Luo et al., 2018). We adapt Exp4.S to stochastic experts
in Algorithm 6 in Appendix C. Using this algorithm for E
gives us the following regret bound.

Theorem 3. Let Π̂ be defined as in Theorem 2 and E be
Exp4.S (Algorithm 6). Let z1:T be the same latent states as
in offline data D and S be the number of stationary seg-
ments. Then for any δ1, δ2 ∈ (0, 1], we have that

R(T ; E , Π̂) ≤

2Mε(T, δ1/2) + 2M
√

2T log(4/δ2) + 2
√
STK logL

holds with probability at least 1− δ1 − δ2.



Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed

Algorithm 5: HMM posterior sampling

Input: learned policy Π̂ ∈ HZ and estimated HMM
parameters M̂ = {P̂0, Φ̂, β̂}

Initialize w1 = P̂0

for t← 1, 2, . . . , T do
Observe xt ∈ X and expert feedback
π̂z(· | xt), ∀z ∈ Z

Choose action at ∼ wt, where for each a ∈ A,
wt(a) =

∑
z∈Z Qt(z)π̂z(a | xt)

Observe rt
Update the latent-state posterior distribution, ∀z ∈ Z ,

Qt+1(z) ∝
∑
z′∈Z

Qt(z
′)P (rt | xt, at, z′; β̂)P (z | z′; Φ̂)

end

The regret of deploying our offline-learned policy Π̂ online
elegantly decomposes into the expected reward gap of Π̂
from Π∗ in off-policy optimization, and the regret of E that
switches between sub-policies of Π̂.

5.3 Policy Selection by Posterior Sampling

In Section 4.2, we learn an HMM offline to identify the
latent states. The same HMM can be used to sample a
latent state from its posterior, and act according to the
corresponding expert, similarly to Bayesian policy reuse
for adversarial environments (Rosman et al., 2016). Some
guarantees exist for posterior sampling of stationary latent
states (Hong et al., 2020), but not for ones that evolve ac-
cording to an unknown HMM. Our posterior sampling al-
gorithm is in Algorithm 5, and works by computing a latent
state posterior

Qt(z) = P (zt = z | x1:t−1, a1:t−1, r1:t−1;M̂) .

Note that this is different from Qt in Section 4.2, because
we only condition on the history. Algorithm 5 can be used
as E in Algorithm 4 if an HMM was estimated offline.
While regret guarantees do not exist as for Exp4.S, such
posterior sampling algorithms typically have much better
empirical performance.

5.4 Extension to Different Latent Sequences

In Theorem 3, we bound the online regret of our algorithm
on latent state sequence z1:T in Lemma 3. Specifically, the
first term of the regret decomposition given in Lemma 3 is
V (Π∗)− V (Π̂), which is computed with respect to z1:T .

Now we consider online data with a different latent state
sequence z′1:T . For stationary policy π ∈ H, we denote its
value in round t by V ′t (π) = Ex,a,r∼Pz′t

,π [r]. For policy

Π ∈ HZ , we define its value by V ′(Π) =
∑
z∈Z V

′
z (πz)

where V ′z (πz) =
∑T
t=1 1 [z′t = z]V ′t (πz). We want to

characterize how the reward gap V ′(Π∗)− V ′(Π̂) changes
when computed with respect to z′1:T .

For z ∈ Z , let Tz and T ′z be the number of occurrences of
z in z1:T and z′1:T , respectively. Note that

Vz(πz) =

T∑
t=1

1 [zt = z]Vt(πz) = TzEx,a,r∼Pz,πz
[r] ,

and similarly for V ′z , as the value of any policy under latent
state z is constant. We can bound the difference in reward
gap of Π̂ between the two latent sequences as(

V ′(Π∗)− V ′(Π̂)
)
−
(
V (Π∗)− V (Π̂)

)
=
∑
z∈Z

(V ′z (π∗z)− V ′z (π̂z))− (Vz(π
∗
z)− Vz(π̂z))

≤
∑
z∈Z
|T ′z − Tz| .

where the first inequality is due to naively bounding from
above Ex,a,r∼Pz,π∗z

[r]−Ex,a,r∼Pz,π̂z
[r] ≤ 1, and the sec-

ond bounds the `1 with `2-norm. This additional error can
be added to the regret bound in Theorem 3.

6 Experiments

In this section, we evaluate our approach on synthetic and
real-world datasets, and show that it outperforms learning
a single stationary policy. We compare the following meth-
ods: (i) IPS: a single policy trained on the IPS objective;
(ii) DR: a single policy trained on the DR objective, with
reward model r̂(x, a) = β̂T f(x, a) fit using least squares;
(iii) POEM: a single policy trained on the counterfactual
risk minimization (CRM) objective, which adds an empir-
ical covariance regularizer to the objective in Section 2
(Swaminathan and Joachims, 2015b); (iv) k-CD: k sub-
policies trained using our method with a change-point de-
tector (Algorithm 1), deployed using Exp4.S (Algorithm 6
of Appendix C); (v) k-HMM: k sub-policies trained us-
ing our method with an HMM (Algorithm 2), deployed us-
ing posterior sampling (Algorithm 5). The first three meth-
ods are baselines in stationary off-policy optimization, and
the last two are our approach. In our approach, k is a tun-
able parameter that estimates the unknown number of la-
tent states L. In k-CD, we control the number of latent
states by k-means clustering on detected stationary seg-
ments. Specifically, we compute the value of the logging
policy across each stationary segment, and cluster segments
by their value into k latent states.

6.1 Synthetic Dataset

The first problem is a synthetic non-stationary bandit with-
out context, with A = [5] and Z = [5], i.e. L = 5. The



Non-Stationary Off-Policy Optimization

2 4 6 8 10
k

0.54

0.56

0.58

0.60

0.62

M
ea

n 
re

wa
rd

IPS
POEM
DR
k-CD
k-HMM

Method Reward

IPS 0.545
DR 0.550
POEM 0.546

Ours:
k-CD 0.601
k-HMM 0.621

Figure 2: Mean rewards and their standard deviations in the syn-
thetic dataset. The results are averaged over 10 runs. The table
shows results for k = 5.

mean rewards of actions are sampled uniformly at random
as µ(a, z) ∼ Uniform(0, 1) for each a ∈ A, z ∈ Z . The
rewards are drawn i.i.d. as r ∼ N (· | µ(a, z), σ2) with
σ = 0.5. The horizon is T = 100, 000 rounds. The latent
state sequence z1:T is generated as follows. We set z1 = 1.
Then, every 10, 000 rounds, the latent state is incremented
by one. After round 50, 000, the latent state is decremented
by one every 10, 000 rounds. This is a piecewise-stationary
environment with changes every 10, 000 rounds. Since this
problem is non-contextual, the feature vector f(x, a) ∈
{0, 1}|A| for action a is its indicator. The logging policy π0

is designed to perform well on average over all latent states,
which often happens in practice. We define it as π0(a) ∝
exp(µ̃(a)), where µ̃(a) = |Z|−1∑

z∈Z µ(a, z) + ε and
ε ∼ N (0, 0.1) is a perturbed mean reward for action a.

The learned policies are evaluated by a simulated online
deployment, on the same latent state sequence z1:T as in
logged data. This is the setting that we analyze. We relax
it in the next experiment. In the change-point detector of
k-CD, w = 4, 000 and c =

√
2 log(8T 2)/w. This satis-

fies the condition in Theorem 1 for δ = 1/T . Figure 2
shows expected rewards of all learned policies. Both of our
approaches, k-CD and k-HMM, significantly outperform
learning a stationary policy, with k-HMM performing bet-
ter. This is likely because k-HMM acts stochastically ac-
cording to the learned HMM, whereas k-CD, which uses
adversarial Exp4.S, acts too conservatively. As the number
of latent states L is not known in practice, it must be esti-
mated, and we also do that in this experiment. This results
in a bias-variance trade-off, where underestimating k < L
leads to under-partitioned data and biased sub-policies, and
overestimating k > L results in over-partitioned data and
sub-policies with high variance. This is evident in Fig-
ure 2, as both result in suboptimal performance compared
to choosing k = L.

6.2 Yahoo! Dataset

We also experiment with the Yahoo! clickstream dataset
(Li et al., 2010), which consists of real user interactions. In

each interaction, a document is uniformly sampled from a
pool of documents to show to a user, and whether the docu-
ment is clicked by the user is logged. In prior work, the av-
erage click-through rate (CTR) of documents across users
was empirically verified to change over time (Cao et al.,
2019; Wu et al., 2018)

We construct our logged dataset as follows. To reduce the
size of the data, we choose a 6-day horizon and randomly
subsample one interaction per second over that horizon. For
each sampled interaction, we choose a random subset of
10 documents that could be shown to the user, to ensure
the same number of actions in each round. The context for
each interaction is a concatenation of the feature vectors of
all 10 sampled documents. The actions are documents and
their rewards are indicators of being clicked in the original
dataset. The result of this preprocessing is a logged dataset
with horizon T = 6 × 86, 400 = 518, 400 and K = 10
actions. It is important to note that the CTR for each doc-
ument is likely to be non-stationary and change smoothly.
Hence, this experiment shows that our algorithms perform
well even when our modeling assumptions may not hold.

We learn policies offline using the same methods as in Sec-
tion 6.1. Because our switching strategies depend on past
interactions, offline evaluation of such policies from logged
data is challenging. One approach is rejection sampling (Li
et al., 2011); but that can be sample inefficient. We remedy
this by constructing a semi-synthetic piecewise-stationary
bandit environment. In this environment, the CTR of a doc-
ument in a given round is estimated from a half-day win-
dow around that round, and the click is sampled from a
Bernoulli distribution with that mean. The half-day win-
dow is to model the non-stationarity of clicks.

We evaluate our learned policies in online deployment in
two different bandit experiments. In the first experiment,
we sub-sample interactions from the same 6-day horizon,
one per second. This approximately ensures that the un-
derlying latent sequence is the same as in the logged data,
which is the special case that we analyze. In the second ex-
periment, we sub-sample interactions from the next 4 days
of data, which potentially have a dramatically different la-
tent state sequence. In Figure 3, we report relative CTRs
for all compared methods, averaged over 10 runs. We also
plot the relative CTR of k-CD and k-HMM methods as a
function of the estimated number of latent states k. Both of
our approaches perform the best, with k-HMM being bet-
ter due to learning a full environment model. Our methods
outperform stationary baselines by up to 10%. These re-
sults show that even in situations with a non-obvious latent
state structure, our approach improves over methods that
ignore latent states.



Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed

5 10 15 20
k

1.10

1.15

1.20

1.25

1.30
Re

la
tiv

e 
CT

R
Same 6 days

5 10 15 20
k

1.10

1.15

1.20

1.25

1.30

Re
la

tiv
e 

CT
R

Next 4 days

IPS
POEM
DR
k-CD
k-HMM

Method Same 6 days Next 4 days

IPS 1.13± 0.006 1.12± 0.010
DR 1.16± 0.011 1.17± 0.009
POEM 1.13± 0.008 1.13± 0.009

Ours:
k-CD 1.21± 0.012 1.21± 0.010
k-HMM 1.25 ± 0.011 1.24 ± 0.011

Figure 3: Mean relative CTRs and their standard deviations in the Yahoo! dataset. The results are averaged over 10 runs. The table shows
results for k = 10.

7 Related Work

We study off-policy learning in a non-stationary bandit set-
ting. Both areas have been individually well-explored be-
fore.

Non-stationary bandits. The problem of non-stationary
rewards is well-studied in bandit literature (Beshes et al.,
2014; Garivier and Moulines, 2008). First works adapted
to changes passively by weighting rewards, either by ex-
ponential discounting (Kocsis and Szepesvári, 2006) or by
considering recent rewards in a sliding window (Garivier
and Moulines, 2008). In the adversarial setting (Auer et al.,
2002; Auer, 2002), adaptation can be achieved by bound-
ing the weights of experts from below. These algorithms
have state-of-the-art switching regret, and we use them
as the online component of our algorithm. Recent works
in piecewise-stationary bandits explored the idea of mon-
itoring reward changes with a change-point detector. The
detector examines differences in reward distributions (Liu
et al., 2018) or empirical means (Cao et al., 2019). Such
algorithms have state-of-the-art theoretical and empirical
performance, and can be extended with similar guarantees
to the contextual setting (Luo et al., 2018; Wu et al., 2018).

Off-policy learning. Many works in off-policy learning
have been devoted to building counterfactual estimators for
evaluating policies. The unbiased IPS estimator has optimal
theoretical guarantees when the logging policy is known
or estimated well (Strehl et al., 2010; Xie et al., 2019).
Various techniques have been employed to reduce the vari-
ance of IPS estimators, such as importance weight clip-
ping (Ionides, 2008; Bottou et al., 2013) or learning a re-
ward model, to improve the MSE of the estimator (Dudik
et al., 2011; Farajtabar et al., 2018; Wang et al., 2017;
Chen et al., 2019b). Off-policy estimators can be directly
applied to learning policies by optimizing the estimated
value. Recent works in off-policy optimization addition-
ally regularized the estimated value with its empirical stan-
dard deviation (Swaminathan and Joachims, 2015b) or used
self-normalization as control variates (Swaminathan and
Joachims, 2015a). Combinatorial actions, which are com-
mon in learning to rank, have been also explored (Swami-

nathan et al., 2016; Li et al., 2018; Chen et al., 2019a).

Prior work in off-policy learning in non-stationary bandits
is sparse, and has focused solely on evaluating a fixed target
policy. Such works utilized time-series forecasting of future
values (Thomas et al., 2017) or passively reweighed past
observations (Jagerman et al., 2019). There are also related
works in offline evaluation of history-dependent policies
in stationary environments (Li et al., 2011; Dudik et al.,
2012). We are the first to provide a comprehensive method
for both off-policy optimization and online policy selection
in non-stationary environments.

8 Conclusions

In this work, we take first steps towards off-policy opti-
mization in non-stationary environments. Our algorithms
partition the offline logged data by latent state, and opti-
mize latent sub-policies conditioned on the partitions. We
propose two techniques to partition the data: change-point
detection and HMM. We prove high-probability bounds on
the quality of off-policy optimized sub-policies and their
regret during online deployment. Finally, we empirically
validate our approach in synthetic and real-world data.

We believe that our work is the first step in general off-
policy optimization under non-stationarity. Our current ap-
proach uses simple non-stationary models of logged data.
We propose using a change-point detector or HMM, but do
not provide guarantees on HMMs due to lack of existing
guarantees in inference. Good directions for future work
are better models of non-stationarity, which could poten-
tially handle smooth changes in the logged data.

References

Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári.
Improved algorithms for linear stochastic bandits.
NeurIPS, 2011.

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Re-
search, 2002.



Non-Stationary Off-Policy Optimization

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. The nonstochastic multiarmed bandit
problem. In SIAM journal on computing, 2002.

Andrew Barto and Richard S. Sutton. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
2018.

Leonard E. Baum and Ted Petrie. Statistical inference for
probabilistic functions of finite state Markov chains. The
Annals of Mathematical Statistics, 1966.

Omar Beshes, Yonatan Gur, and Assaf Zeevi. Stochas-
tic multi-armed-bandit problem with non-stationary re-
wards. NIPS, 2014.

Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela,
Denis X Charles, D Max Chickering, Elon Portugaly,
Dipankar Ray, Patrice Simard, and Ed Snelson. Coun-
terfactual reasoning and learning systems: The example
of computational advertising. The Journal of Machine
Learning Research, 2013.

Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie.
Nearly optimal adaptive procedure with change detec-
tion for piecewise-stationary bandit. AISTATS, 2019.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain,
Francois Belletti, and Ed H. Chi. Top-k off-policy
correction for a REINFORCE recommender system.
WSDM, 2019a.

Minmin Chen, Ramki Gummadi, Chris Harris, and Dale
Schuurmans. Surrogate objectives for batch policy opti-
mization in one-step decision making. NIPS, 2019b.

Miroslav Dudik, John Langford, and Lihong Li. Doubly
robust policy evaluation and learning. ICML, 2011.

Miroslav Dudik, Dumitru Erhan, John Langford, and Li-
hong Li. Sample-efficient nonstationary policy evalua-
tion for contextual bandits. UAI, 2012.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad
Ghamvamzadeh. More robust doubly robust off-policy
evaluation. ICML, 2018.

Aurélien Garivier and Eric Moulines. On upper-confidence
bound policies for non-stationary bandit problems. Inter-
national Conference on Algorithmic Learning Theory,
2008.

Cédric Hartland, Nicolas Baskiotis, Sylvain Gelly, Michèle
Sebag, and Olivier Teytaud. Change point detection
and meta-bandits for online learning in dynamic envi-
ronments. CAp, 2007.

Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam
Chow, Amr Ahmed, and Craig Boutilier. Latent bandits
revisited. In NeurIPS, 2020.

D. G. Horvitz and D. J. Thompson. A generalization of
sampling without replacement from a finite universe.
Journal of the American Statistical Association, 1952.

Daniel J. Hsu, Sham M. Kakade, and Tong Zhang. A
spectral algorithm for learning hidden Markov models.
CoRR, abs/0811.4413, 2008.

Edward L Ionides. Truncated importance sampling. Jour-
nal of Computational and Graphical Statistics, 2008.

Rolf Jagerman, Ilya Markov, and Maarten de Rijke. When
people change their mind: Off-policy evaluation in
non-stationary recommendation environments. WSDM,
2019.

Levente Kocsis and Csaba Szepesvári. Discounted ucb. In
2nd PASCAL Challenges Workshop, 2006.

John Langford and Tong Zhang. The epoch-greedy al-
gorithm for multi-armed bandits with side information.
NeurIPS, 2008.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms.
Cambridge University Press, 2019. doi: 10.1017/
9781108571401.

Lihong Li, Wei Chu, John Langford, and Robert E.
Schapire. A contextual-bandit approach to personalized
news article recommendation. WWW, 2010.

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang.
Unbiased offline evaluation of contextual bandit-based
news article recommendation algorithms. WSDM, 2011.

Shuai Li, Yasin Abbasi-Yadkori, Branislav Kveton,
S. Muthukrishnan, Vishwa Vinay, and Zheng Wen. Of-
fline evaluation of ranking policies with click models.
KDD, 2018.

Fang Liu, Joohyun Lee, and Ness B. Shroff. A change-
detection based framework for piecewise-stationary
multi-armed bandit problem. AAAI, 2018.

Haipeng Luo, Alekh Agarwal, and John Langford. Effi-
cient contextual bandits in non-stationary worlds. COLT,
2018.

Benjamin Rosman, Majd Hawasly, and Subramanian Ra-
mamoorthy. Bayesian policy reuse. Machine Learning,
2016.

Alexander L. Strehl, John Langford, Lihong Li, and
Sham M. Kakade. Learning from logged implicit ex-
ploration data. NIPS, 2010.

Adith Swaminathan and Thorsten Joachims. The self-
normalized estimator for counterfactual learning. NIPS,
2015a.

Adith Swaminathan and Thorsten Joachims. Counterfac-
tual risk minimization: Learning from logged bandit
feedback. ICML, 2015b.

Adith Swaminathan, Akshay Krishnamurthy, Alekh Agar-
wal, Miroslav Dudik, John Langford, Damien Jose, and
Imed Zitouni. Off-policy evaluation for slate recommen-
dation. NIPS, 2016.

Philip S. Thomas, Georgios Theocharous, Mohammad
Ghavamzadeh, Ishan Durugkar, and Emma Brunskill.



Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed

Predictive off-policy policy evaluation for nonstationary
decision problems, with applications to digital market-
ing. AAAI, 2017.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudik. Op-
timal and adaptive off-policy evaluation in contextual
bandits. ICML, 2017.

Qingyun Wu, Naveen Iyer, and Hongning Wang. Learn-
ing contextual bandits in a non-stationary environment.
SIGIR, 2018.

Yuan Xie, Boyi Liu, Qiang Liu, Zhaoran Wang, Yuan Zhou,
and Jian Peng. Off-policy evaluation and learning from
logged bandit feedback: Error reduction via surrogate
policy. ICLR, 2019.

Jia Yuan Yu and Shie Mannor. Piecewise-stationary bandit
problems with side observations. In International Con-
ference on Machine Learning, 2009.



Non-Stationary Off-Policy Optimization

A Proofs for Offline Policy Optimization

Recall that we have a fixed latent sequence z1:T such that for round t, latent state zt parameterizes the underlying distri-
bution of reward rt ∈ [0, 1]. Also recall that we have IPS estimator V̂ given in (3), where the clipping parameter M can
be ignored by only considering policies in H. In this section, we denote by Ṽ the IPS estimator in (3) with the true latent
states z1:T . By Lemma 1, we know that Ṽ is unbiased.

Our first result bounds the discrepancy between the two IPS estimators Ṽ (Π) and V̂ (Π):

Lemma 4. For any Π ∈ HZ and δ ∈ (0, 1],
∣∣∣V̂ (Π)− Ṽ (Π)

∣∣∣ ≤Mε(T, δ) holds with probability at least 1− δ.

Proof. The claim is proved as

∣∣∣V̂ (Π)− Ṽ (Π)
∣∣∣ =

∣∣∣∣∣
T∑
t=1

πẑt(at | xt)
pt

rt −
πzt(at | xt)

pt
rt

∣∣∣∣∣ ≤M
T∑
t=1

1[ẑt 6= zt] ≤Mε(T, δ) .

The first inequality is by assuming that H in HZ satisfy (4). The second inequality is by Assumption 1 in Section 4 and
holds with probability at least 1− δ.

Next, we bound the estimation error of Ṽ (Π) from V (Π). This error is due to the randomness in D.

Lemma 5. For any Π ∈ HZ , logged data D, and δ ∈ (0, 1],
∣∣∣Ṽ (Π)− V (Π)

∣∣∣ ≤ M
√

2T log(2/δ) holds with probability
at least 1− δ.

Proof. We define a martingale sequence (Ut)t∈[T ]∪{0} over rounds t and then use Azuma’s inequality. The sequence is
defined as U0 = 0 and

Ut = Ut−1 +
πzt(at | xt)

pt
rt − Vt(πzt)

for t > 0. It is easy to verify that this is a martingale. In particular, since zt is fixed,

Ext,at,rt∼Pzt ,π0

[
πzt(at | xt)

pt
rt − Vt(πzt)

∣∣∣∣U0, . . . , Ut−1

]
= Ext,at,rt∼Pzt ,πzt

[rt]− Vt(πzt) = 0 ,

and E [Ut | U0, . . . , Ut−1] = Ut−1 for any round t. Also, since Π ∈ HZ , we have∣∣∣∣πzt(at | xt)pt
rt − Vt(πzt)

∣∣∣∣ ≤M .

Finally, by Azuma’s inequality, we get

P
(
|Ṽ (Π)− V (Π)| ≥M

√
2T log(2/δ)

)
= P

(
|UT − U0| ≥M

√
2T log(2/δ)

)
≤ 2 exp

[
−4M2T log(2/δ)

2M2T

]
≤ δ .

This concludes the proof.

Using Lemmas 4 and 5 above, we can derive the results stated in the main paper.

Lemma 2. For any policy Π ∈ HZ , its IPS estimate V̂ (Π) in (3), and true value V (Π), we have that

|V (Π)− V̂ (Π)| ≤Mε(T, δ1/2) +M
√

2T log(4/δ2)

holds with probability at least 1− δ1 − δ2.

Proof. We have ∣∣∣V̂ (Π)− V (Π)
∣∣∣ ≤ ∣∣∣V̂ (Π)− Ṽ (Π)

∣∣∣+
∣∣∣Ṽ (Π)− V (Π)

∣∣∣
from the triangle inequality. The result follows from Lemma 4 and Lemma 5.



Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed

Theorem 2. Let
Π̂ = arg max

Π∈HZ
V̂ (Π) , Π∗ = arg max

Π∈HZ
V (Π)

be the optimal latent policies w.r.t. the off-policy estimated value and the true value, respectively. Then for any δ1, δ2 ∈
(0, 1], we have that

V (Π̂) ≥ V (Π∗)− 2Mε(T, δ1/2)− 2M
√

2T log(4/δ2)

holds with probability at least 1− δ1 − δ2.

Proof. We have

V (Π∗)− V (Π̂) =
[
V (Π∗)− V̂ (Π̂)

]
+
[
V̂ (Π̂)− V (Π̂)

]
≤
[
V (Π∗)− V̂ (Π∗)

]
+
[
V̂ (Π̂)− V (Π̂)

]
,

where the inequality is from Π̂ maximizing V̂ . By Lemma 2, we have for any Π ∈ HZ that

|V̂ (Π)− V (Π)| ≤Mε(T, δ1/2) + 2M
√
T log(4/δ2)

holds with probability at least 1− δ1/2− δ2/2. We apply the lemma to both Π̂ and Π∗, and get the desired result.

B Proofs for Change-Point Detector

Recall that S is the number of stationary segments, and τ0 = 1 < τ1 < . . . < τS−1 < T = τS are the change-points. Also
recall that we have change-point detector given by Algorithm 1 that on a high-level, computes differences in total reward
across sliding windows of length w and detects a change-point if a difference exceeds threshold c. For any i ∈ [S − 1],
let Wi = [τi − w, τi + w] be w-close rounds to change-point τi. We also define W =

⋃
iWi as all rounds w-close to any

change-point.

First, we bound the probability of false positives, or that we declare any round t 6∈W as a change-point:

Lemma 6. For any round t 6∈W , the probability of a false detection is bounded from above as

P
(∣∣µ−t − µ+

t

∣∣ ≥ c) ≤ 4 exp

[
−wc

2

2

]
.

Proof. Since t 6∈
⋃
iWi, we have E

[
µ−t
]

= E
[
µ+
t

]
. By Hoeffding’s inequality, we get

P
(∣∣µ−t − µ+

t

∣∣ ≥ c) ≤ P
(∣∣µ−t − E

[
µ−t
]∣∣ ≥ c/2)+ P

(∣∣µ+
t − E

[
µ+
t

]∣∣ ≥ c/2) ≤ exp

[
−wc

2

2

]
.

This concludes the proof.

Next we bound the probability of failing to detect a change-point in W :

Lemma 7. For any positive c ≤ ∆/2 and Wi, a change-point is not detected in Wi with probability at most

P
(
∀t ∈Wi :

∣∣µ−t − µ+
t

∣∣ ≤ c) ≤ 4 exp

[
−wc

2

2

]
.

Proof. Fix s = τi. From s ∈Wi, we have

P
(
∀t ∈Wi :

∣∣µ−t − µ+
t

∣∣ ≤ c) = 1− P
(
∃t ∈Wi :

∣∣µ−t − µ+
t

∣∣ > c
)
≤ 1− P

(∣∣µ−s − µ+
s

∣∣ > c
)

= P
(∣∣µ−s − µ+

s

∣∣ ≤ c) .



Non-Stationary Off-Policy Optimization

Note that |µ−s − µ+
s | ≤ c implies that either µ−s or µ+

s is not close to its mean. More specifically, since E [µ−s ] = Vs−1(π0),
E [µ+

s ] = Vs(π0), and |Vs(π0)− Vs−1(π0)| ≥ ∆, we have

P
(∣∣µ−s − µ+

s

∣∣ ≤ c) ≤ P
(∣∣µ−s − E

[
µ−s
]∣∣ ≥ ∆− c

2

)
+ P

(∣∣µ+
s − E

[
µ+
s

]∣∣ ≥ ∆− c
2

)
.

From 2c ≤ ∆ and by Hoeffding’s inequality, the first term is bounded as

P
(∣∣µ−s − E

[
µ−s
]∣∣ ≥ ∆− c

2

)
≤ P

(∣∣µ−s − E
[
µ−s
]∣∣ ≥ c/2) ≤ 2 exp

[
−wc

2

2

]
.

The second term is bounded analogously. Finally, we chain all inequalities and get our claim.

Finally, we prove Theorem 1 by applying Lemma 6 to all rounds t 6∈W , Lemma 7 to all change-points, and then chaining
them by the union bound.

Theorem 1. Let τi − τi−1 > 4w for all i ∈ [S]. Then for any δ ∈ (0, 1], and c and w in Algorithm 1 such that

∆/2 ≥ c ≥
√

2 log(8T/δ)/w ,

Algorithm 1 estimates ẑ1:T so that
∑T
t=1 1[ẑt 6= zt] ≤ Sw holds with probability at least 1− δ.

Proof. Define δ ∈ (0, 1]. We see that given w, setting c as described satisfies,

4T exp

[
−wc2

2

]
, 4k exp

[
−wc2

2

]
≤ δ

2
.

We know that ε(T, δ) = kw when all the estimated changepoints are inW (at mostw rounds from a true change-point), and
every Wi ∈ W contains exactly one estimated change-point. This cannot happen if (1) a change-point is falsely detected
outside W , and (2), no change-point is detected in some Wi ∈W .

We can bound from above the probability of any error occurring with the union bound. Proposition 3 applied to every round
upper-bounds the probability of (1) by 4T exp

(
−wc2/2

)
. Meanwhile, Proposition 4 applied to every change-point upper-

bounds the probability of (2) by 4k exp
(
−wc2/2

)
. From Algorithm 1, we remove a 4w-window around each detected

changepoint, and under the assumption that τi − τi−1 > 4w for all i ∈ [k], we guarantee that exactly one changepoint is
detected in each Wi for true changepoint τi. Combining yields the total probability of an error,

4T exp

[
−wc2

2

]
+ 4k exp

[
−wc2

2

]
≤ δ,

which is the desired result.

C Proofs for Online Deployment

Recall that we have a mixture-of-experts algorithm E and experts/sub-policies Π̂ = (π̂)z∈Z , such that for each round t,
actions are sampled according to at ∼ Et(xt, π̂). Let E be Exp4.S as described in Algorithm 6; this is similar to one



Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed

proposed in Luo et al. (2018), but for stochastic experts.

Algorithm 6: Exp4.S

Input: vector of expert sub-policies Π̂ = (π̂z)z∈Z with |Z| = L, and hyperparameters β, η > 0, γ ∈ (0, 1]

Initialize w1 = (1/L, . . . , 1/L) ∈ [0, 1]L.
for t← 1, 2, . . . , T do

Observe xt and expert feedback π̂z(· | xt), ∀z ∈ Z .
Choose at ∼ Et, where for each a ∈ A,

Et(a) = (1− γ)
∑
z∈Z

wt(z)π̂z(a | xt) +
γ

L
.

Observe rt
Estimate the action costs under full feedback ĉt(a) = 1[at = a] 1−rt

Et(a) , ∀a ∈ A.
Propagate the cost to the experts c̃t(z) = ĉt(at)π̂z(at | xt), ∀z ∈ Z .
Update the distribution weights, w̃t+1(z) ∝ wt(z) exp (−ηc̃t(z)), ∀z ∈ Z .
Mix with uniform weights, wt+1(z) = (1− β)wt(z) + β, ∀z ∈ Z .

end

Our first result is the following regret guarantee over any stationary segment. A version of this proof for deterministic
experts is in Theorem 2 of Luo et al. (2018).

Lemma 8. Let E be Exp4.S as in Algorithm 6. Also, let γ = 0, η =
√

log(L)/(`K), and β = 1/L. Then, for any stationary
segment [τs−1, τs − 1] of length at most `, any history up to τs−1, and any latent state z ∈ Z , the regret is bounded as

τs−1∑
t=τs−1

Ezt,π̂z
[rt]− Ezt,Et [rt] ≤

√
2`K log(L) .

Proof. First, we have the following upper-bound,

log

[∑
z′∈Z

wt(z
′) exp(−ηc̃t(z′))

]
≤ log

[∑
z′∈Z

wt(z
′)
(
1− ηc̃t(z′) + η2c̃t(z

′)2
)]

≤ −η
∑
z′∈Z

wt(z
′)c̃t(z

′) + η2
∑
z′∈Z

wt(z
′)c̃t(z

′)2 ,

where we use that exp(−x) ≤ 1 − x + x2, and log(1 + x) ≤ x for all x ≥ 0. Meanwhile, for any z ∈ Z , we can also
bound the same quantity from below,

log

[∑
z′∈Z

wt(z
′) exp(−ηc̃t(z′))

]
= log

[
wt(z) exp(−ηc̃t(z))

w̃t+1(z)

]
= log

[
wt(z)(1− β)

wt+1(z)− β

]
− ηc̃t(z)

≥ log

[
wt(z)

wt+1(z)

]
− 2β − ηc̃t(z) ,

where for the last inequality, we use that log(1 − β) ≥ −β/(1 − β) ≥ −2β. Combining the two inequalities, summing
over all t ∈ [τs−1, τs − 1], and telescoping yields,

τs−1∑
t=τs−1

∑
z′∈Z

wt(z
′)c̃t(z

′)− c̃t(z) ≤
1

η
log

[
wτs(z)

wτs−1
(z)

]
+

2β`

η
+ η

τs−1∑
t=τs−1

∑
z′∈Z

wt(z
′)c̃t(z

′)2

≤ log(1/β) + 2β`

η
+ η

τs−1∑
t=τs−1

∑
z′∈Z

wt(z
′)c̃t(z

′)2 ,

where we use that wt(z) ∈ [β, 1] for all rounds t.



Non-Stationary Off-Policy Optimization

When γ = 0 we know that ĉt(at) is unbiased, or Ezt,Et [ĉt(at)] = 1− Ezt,Et [rt]. We also have that for any z′ ∈ Z ,

Ezt,Et [c̃t(z
′)] = Ezt,Et

[∑
a∈A

π̂z′(a | xt)ĉt(a)

]
= 1− Ezt,π̂z [rt] .

Taking the expectation of both sides leads to,

τs−1∑
t=τs−1

Ezt,π̂z [rt]− Ezt,Et [rt] ≤
log(1/β) + 2β`

η
+ η

τs−1∑
t=τs−1

∑
z′∈Z

Ezt,Et
[
wt(z

′)c̃t(z
′)2
]
.

Next, we have that for any z′ ∈ Z ,

Ezt,Et
[
c̃t(z

′)2
]

= Ezt,Et

[(
π̂z′(at | xt)(1− rt)

Et(at)

)2
]
≤
∑
a∈A

π̂z′(a | xt)
Et(a)

,

where we use that at ∼ Et and rt ∈ [0, 1]. Substituting this result yields,

∑
z′∈Z

Ezt,Et
[
wt(z

′)c̃t(z
′)2
]
≤
∑
a∈A

Ezt,Et

[
1

Et(a)

∑
z′∈Z

wt(z
′)πz′(at | xt)

]
≤ K ,

where we again use that at ∼ Et. Substituting into the regret bound and using the values for η, β yields

τs−1∑
t=τs−1

Ezt,π̂z
[rt]− Ezt,Et [rt] ≤

log(1/β) + 2β`

η
+ ηK` ≤

√
2`K log(L) ,

as desired.

In practice, we do not know the lengths of stationary segments, and may not be able to find a tight upper-bound ` on the
lengths of stationary segments. However, in our analysis, we can further partition stationary segments so that they do not
exceed length ` at the cost of increasing the number of change-points. This is formalized in the following corollary.

Lemma 9. Let E be Exp4.S as in Algorithm 6. Also, let γ = 0, η =
√

log(L)/(`K), and β = 1/L. Then, the total regret
is bounded by

S∑
s=1

max
z∈Z

τs−1∑
t=τs−1

Ezt,π̂z [rt]−
T∑
t=1

Ezt,Et [rt] ≤
(
T/
√
`+ S

√
`
)√

2K log(L) .

Proof. Recall that S is the number of stationary segments within the T rounds, as defined in Section 3. Our goal is to
divide the T rounds into stationary intervals of length at most `, so that we can apply Lemma 8 on each interval. We do
this as follows. First, we construct T/` intervals of length at most T . Then, we additionally divide intervals that contain
changepoints, so that each interval contains only a single latent state. This leads to at most T/` + S stationary intervals.
Finally, using Lemma 8 on each interval and summing the regrets the desired result. Note that though we consider T/`+S
intervals, we only need to consider the best latent sub-policy for each of S stationary segments, as intervals belonging to
the same stationary segment have the same optimal sub-policy.

Lemma 3. The regretR(T ; E , Π̂) is bounded from above as

R(T ; E , Π̂) ≤

[
T∑
t=1

Ezt,π∗zt [rt]−
T∑
t=1

Ezt,π̂zt
[rt]

]

+

 S∑
s=1

max
z∈Z

τs−1∑
t=τs−1

Ezt,π̂z
[rt]−

T∑
t=1

Ezt,Et [rt]

 . (6)



Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed

Proof. The regret can be decomposed as follows:

R(T ; E , Π̂) =

T∑
t=1

Ezt,π∗zt [rt]−
T∑
t=1

Ezt,Et [rt]

=

[
T∑
t=1

Ezt,π∗zt [rt]−
T∑
t=1

Ezt,π̂zt
[rt]

]
+

[
T∑
t=1

Ezt,π̂zt
[rt]−

T∑
t=1

Ezt,Et [rt]

]
,

where we introduce Π̂ that acts according to the true latent state. Then, recalling there are S stationary segments, the above
expression can be further expressed as

[
T∑
t=1

Ezt,π∗zt [rt]−
T∑
t=1

Ezt,π̂zt
[rt]

]
+

 S∑
s=1

τs−1∑
t=τs−1

Ezt,π̂zt
[rt]−

T∑
t=1

Ezt,Et [rt]


≤

[
T∑
t=1

Ezt,π∗zt [rt]−
T∑
t=1

Ezt,π̂zt
[rt]

]
+

 S∑
s=1

max
z∈Z

τs−1∑
t=τs−1

Ezt,π̂z [rt]−
T∑
t=1

Ezt,Et [rt]

 ,
where we utilize the fact that each stationary segment has one optimal sub-policy.

Theorem 3. Let Π̂ be defined as in Theorem 2 and E be Exp4.S (Algorithm 6). Let z1:T be the same latent states as in
offline data D and S be the number of stationary segments. Then for any δ1, δ2 ∈ (0, 1], we have that

R(T ; E , Π̂) ≤

2Mε(T, δ1/2) + 2M
√

2T log(4/δ2) + 2
√
STK logL

holds with probability at least 1− δ1 − δ2.

Proof. We have the following regret decomposition due to Lemma 3,

R(T ; E , Π̂) ≤

[
T∑
t=1

Ezt,π∗zt [rt]−
T∑
t=1

Ezt,π̂zt
[rt]

]
+

 S∑
s=1

max
z∈Z

τs−1∑
t=τs−1

Ezt,π̂z
[rt]−

T∑
t=1

Ezt,Et [rt]

 .
The first term can be bounded using our offline analysis, which shows near-optimality of Π̂ when the latent state is known.
In the case where z1:T is the same both offline and online, we see that for each round t, Ezt,π∗zt [rt] − Ezt,π̂zt

[rt] =

Vt(π
∗
zt)− Vt(π̂zt). Hence, the first term is exactly V (Π∗)− V (Π̂) and is bounded by Theorem 2 w.p. at least 1− δ1 − δ2.

The second term is the switching regret of Exp4.S, and is bounded by choosing ` = T/S in Lemma 9. Combining the two
bounds yields the desired result.


