
CliqueMap: Productionizing an RMA-Based Distributed
Caching System

Arjun Singhvi†‡ Aditya Akella†‡ Maggie Anderson‡ Rob Cauble‡ Harshad Deshmukh‡

Dan Gibson‡ Milo M. K. Martin‡ Amanda Strominger‡ Thomas F. Wenisch‡

Amin Vahdat‡
†University of Wisconsin - Madison ‡Google Inc

Abstract
Distributed in-memory caching is a key component of modern Inter-
net services. Such caches are often accessed via remote procedure
call (RPC), as RPC frameworks provide rich support for produc-
tionization, including protocol versioning, memory efficiency, auto-
scaling, and hitless upgrades. However, full-featured RPC limits per-
formance and scalability as it incurs high latencies and CPU over-
heads. Remote Memory Access (RMA) offers a promising alternative,
but meeting productionization requirements can be a significant
challenge with RMA-based systems due to limited programmability
and narrow RMA primitives.

This paper describes the design, implementation, and experi-
ence derived from CliqueMap, a hybrid RMA/RPC caching system.
CliqueMap has been in production use in Google’s datacenters
for over three years, currently serves more than 1PB of DRAM,
and underlies several end-user visible services. CliqueMap makes
use of performant and efficient RMAs on the critical serving path
and judiciously applies RPCs toward other functionality. The de-
sign embraces lightweight replication, client-based quoruming, self-
validating server responses, per-operation client-side retries, and
co-design with the network layers. These foci lead to a system re-
silient to the rigors of production and frequent post-deployment
evolution.

CCS Concepts
• Computer systems organization → Distributed Systems; Key-
Value Stores; • Networks → Datacenter networks.

Keywords
Remote Memory Access; Remote Procedure Call; Key-Value
Caching System

ACM Reference Format:
Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, Harshad
Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger, Thomas
F. Wenisch, Amin Vahdat. 2021. CliqueMap: Productionizing an RMA-
Based Distributed Caching System. In ACM SIGCOMM 2021 Conference
(SIGCOMM ’21), August 23–28, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3452296.3472934

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8383-7/21/08.
https://doi.org/10.1145/3452296.3472934

1 Introduction
Remote Procedure Call (RPC) frameworks are the backbone of
modern Internet services as they provide a familiar programming
abstraction for building distributed systems. The production needs
of hyperscale distributed systems have layered requirements on RPC
frameworks including protocol versioning, memory management,
auto-scaling, logging, and support for binary upgrades. These fea-
tures entail considerable CPU overhead at both the client and server,
limiting operation (op) rate, bandwidth, and efficiency; at Google,
even an empty RPC often costs >50 CPU-𝜇s in framework and
transport code across client and server. Per-RPC overheads easily
dominate remote operations with little server-side computation, such
as in-memory retrieval applications like distributed caches and key-
value stores.

To reduce CPU overheads and to increase peak op rate for such ap-
plications, recent efforts use remote memory access (RMA) technolo-
gies [17, 18, 23, 33, 36, 40]. RMA has become ubiquitous in high-
end networking; modern NICs natively support RMA [1, 3, 5, 34]
and software implementations [8, 31, 35] enable continuous inno-
vation in a hardware-independent manner. The essential element of
RMA is that no server-side application code needs to run to complete
an operation.

Whereas RMA raises distributed systems’ performance and ef-
ficiency ceiling by using simple primitives, the features that make
RPC-based systems robust—but sap CPU efficiency [25]—remain
critical to production operation (see Table 1 and §2). Hybrid sys-
tems [33, 35, 40] leverage the strengths of RMA and RPC through
the use of RMA-accessible data structures to accelerate performance-
critical communication, while using RPCs to ease programming
burden on less performance-critical paths. In practice, building such
hybrid systems faces two key challenges: (1) designing performant
data structures and protocols to accommodate concurrency between
RMA and server-side execution (RPC handlers), and (2) meeting pro-
ductionization expectations, such as availability, support for planned
maintenance, memory management/efficiency, evolution over time,
and software interoperability.

In this paper, we present the design, implementation, and expe-
riences derived from CliqueMap, a hybrid RMA/RPC in-memory
key-value caching system (KVCS) that overcomes the above two
challenges. Like MICA [29], CliqueMap uses an associative hash
table to enable remote access. Like Pilaf [33], each KV pair is
guarded by a checksum that is used to validate responses. The core
of CliqueMap’s design is centered around (1) providing performant
lookups, (2) a careful division of responsibilities between RPCs and
RMAs across dataplane, control, and management operations, and

93

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3452296.3472934
https://doi.org/10.1145/3452296.3472934
https://creativecommons.org/licenses/by/4.0/


SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA A. Singhvi et al.

Challenge Description Solution
1. Memory efficiency While RMA optimizes to reduce CPU cost, a KVCS must

aggressively optimize for memory footprint, too. The number
of backends and memory size per backend must grow/shrink
without disruption.

CliqueMap uses the server-side RPC handlers for memory
allocation/defragmentation and supports multiple eviction
algorithms based on client-side recording of RMA access.

2. Enable agile evolution
post deployment

Production services undergo requirement changes and other
upgrades throughout their lifetimes and must be easy to
evolve to meet the new requirements.

CliqueMap leverages RPCs to introduce new features while
ensuring that clients are resilient to such additions by em-
bracing self-validating server responses and client retries.

3. Increased availability
with minimal overheads

Server failures should not lead to data unavailability or per-
formance drops. Systems must tolerate frequent planned and
unplanned restarts without loss of data.

CliqueMap uses an uncoordinated replication protocol with
a load-aware client-based quoruming approach leading
to increased availability with minimal performance over-
heads.

4. Software
interoperability

Corpora stored in the KVCS must be accessible by any au-
thenticated production system, regardless of programming
language.

CliqueMap uses named pipes and sub-processes to provide
support for Go, Java, and Python.

5. Optimizing
to heterogeneous
networking hardware

Our data centers operate across several generations of net-
working technology and RMA protocols, which vary over
two orders of magnitude in available bandwidth per host.

CliqueMap operates over multiple RMA protocols, inte-
grates tightly with software-defined NIC Pony Express [31],
and provides WAN access via RPC.

Table 1: Productionization challenges and CliqueMap’s solutions.

(3) support for key productionization expectations, such as evolution
over time, high availability, interoperability, and ease of deployment.

CliqueMap accelerates the common-case read path via RMA
primitives and uses RPC for mutations [33], specifically optimiz-
ing for serving workloads where lookup (GET) performance is
critical and write (e.g., SET) performance is less so, a pattern
common in Google’s applications. An RMA-based read path sub-
stantially reduces CPU cost and increases peak op rate relative to
(fully) RPC-based systems. Nonetheless, RPCs significantly sim-
plify CliqueMap’s implementation, because state mutation, mutual
exclusion, and race resolution can all be solved with server-side code,
and thereby sidestep the challenges of data structures that tolerate
slow/racy RMA mutations [7]. To aggressively optimize server mem-
ory footprint, CliqueMap leverages server-side RPC handlers for
memory allocation/defragmentation, to trigger automatic memory
resizing, and to support various cache management algorithms.

To address production availability expectations, CliqueMap of-
fers several replication modes, including “R=3.2”, wherein each
key/value-pair is replicated across three server backends and ac-
cessed via a client-side quoruming scheme [19], delivering consistent
reads and writes at high performance and low overhead. Quoruming
offers performance benefits: (1) it automatically mitigates tail GET
latency, fetching data from the least loaded/nearest replica; and (2)
it resolves races among concurrent GETs and mutations, avoiding
distributed/global locking for replicated writes (see §5.3). During
weekly binary upgrades, CliqueMap bolsters availability through
explicit, proactive server data migration to warm spares.

CliqueMap combines the strengths of software datapaths, trans-
ports, and dataplanes in other ways (beyond simply leveraging
RPCs) to address key interoperability goals. Notably, CliqueMap
supports corpora accessed by systems (or a subset of their internal
components) written in several high-level languages, even though
these languages have no native support for RMA, by running a C++
CliqueMap client in a subprocess. By embracing the programmabil-
ity of software-defined NICs (Pony Express [31]), CliqueMap takes
advantage of RMA-like primitives that enable GET operations to
complete in fewer round-trips than when using hardware-supported
RMAs (§3), delivering better efficiency (§6.3) and overall latencies

in most cases (§7). Lastly, by capitalizing client-side retries and
self-validating responses, we have seamlessly evolved CliqueMap
over time (§6), including over a hundred changes to CliqueMap’s
protocol definitions of varying complexity.

CliqueMap has been in production for more than three years,
during which it has grown to serve more than 1PB of DRAM.
CliqueMap now underlies production stacks for end-user-facing
ads, maps, and other serving systems at Google, and is deployed
across some 50 production clusters distributed among 20 warehouse-
scale datacenters throughout the world. Use cases vary by corpus
size, key-value geometry, batching factors, and other considerations,
and comprise roughly 150M queries per second (QPS) globally.

Our experience with CliqueMap has highlighted several lessons
that we believe are valuable to the research community, including: (1)
the fundamental need to embrace RPCs even in performance-critical
systems; (2) considering multi-language interoperability in RMA,
a space that we see as open to exploration; (3) making memory
efficiency a strong requirement in RMA-based systems; and (4)
embracing software-based processing (e.g., programmable/software
NICs) in system design.

2 Background and Motivation
In-memory key-value caching systems (KVCS) are crucial to user-
facing services throughout the industry [10, 41]. As the name sug-
gests, a KVCS exposes a KV interface to the clients and typically
supports per-key operations such as GETs and mutations (e.g., SET
and ERASE).

While a KVCS should be performant and efficient (i.e., the data-
plane operations should be fast and have minimal CPU overhead),
these aspects alone do not make a KVCS viable in production. Ta-
ble 1 outlines key practical requirements that a production KVCS
should meet, pertaining to availability, memory efficiency, evolution,
and interoperability.

2.1 RPC or RMA?
System designers must address what network transport(s) to use in
their design, as this choice has a fundamental bearing on perfor-
mance and the requirements in Table 1.

94



CliqueMap: Productionizing an RMA-Based Distributed Caching System SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Index Region

 Bucket
IndexEntry

IndexEntry

IndexEntry

 Bucket
IndexEntry

IndexEntry

IndexEntry

Data Region

DataEntry

DataEntry

DataEntry

Free

KeyHash

VersionNumber

Pointer

IndexEntry

Key Length

Key

Data Length

Data

Checksum

Format

DataEntry

Metadata

Figure 1: CliqueMap index region and data region layouts.

RPC KVCS. Memcached [4] is a well-known KVCS, built upon
conventional kernel networking primitives. Twitter uses a forked ver-
sion of Memcached, known as Twemcache [41], to serve a majority
of its caching traffic. Google, too, has its own internal version, known
as MemcacheG, a translation of Memcached, using Stubby RPC—
Google’s production-grade RPC—as its transport. By building on
Stubby RPC, MemcacheG inherits critical productionization features
from its RPC framework, such as application-to-application authen-
tication (ALTS [2]), integrity protection, forward- and backward-
versioning assistance, per-RPC ACLs, and interoperability across
multiple languages.

This feature wealth comes at a CPU cost; even a well-optimized
Stubby RPC incurs >50 CPU-𝜇s across client and server—far higher
overheads than those of state-of-the-art academic RPC prototypes
(e.g., eRPC [22]) which tend to focus on performance to the exclu-
sion of production requirements such as authentication, privacy/en-
cryption, and privilege model. In contrast, Stubby strongly favors
feature richness to support the needs of tens of thousands of non-
network-expert professional software engineers. For most use cases,
Stubby’s benefits far outweigh its costs, but for an in-memory KVCS,
a minimum CPU cost of 50𝜇s per op eclipses the CPU cost of simply
accessing memory. Such a cost limits the usefulness of distributed
caching, especially for systems with large working sets for which
distributed storage is a critical means to husband expensive DRAM
(§6.5).
RMA KVCS. A number of systems advocate using RMA as the net-
work transport for KVCS dataplane primitives [17, 23]. Challenges
arise when intersecting the core ideas of these systems with the
requirements of Table 1. Systems built entirely atop RMA require
careful coordination between client and server binaries, making
post-deployment evolution a slow process. Simplifying assump-
tions around failures, hardware homogeneity, or viability of memory
pre-allocation may simply not hold in practice, and can lead to
performant but otherwise complex/impractical systems.
RMA/RPC hybrid KVCS systems. Hybrids [33, 35, 40] offer a
middle ground, and can more obviously accommodate the afore-
mentioned requirements around tolerance for heterogeneity and
post-deployment agility. Such hybrid designs refute RMA or RPC
as a false dichotomy, observing that both are useful building blocks
for higher-level systems, and use of one can complement, rather
than exclude, the other. We embrace this philosophy throughout the
CliqueMap design.

Bucket Fetch

Client Server

NICSW NIC SWGET Complete

Data Fetch

Figure 2: Sequence diagram of a 2×R GET in CliqueMap.

3 Overview and Productionization Ideas
CliqueMap is Google’s production RMA/RPC hybrid KVCS, offer-
ing state-of-the-art performance and efficiency while meeting the
production requirements outlined in Table 1. We first describe the
basic design, then build on it in subsequent sections.

CliqueMap uses performant and CPU-efficient RMAs for
common-case GETs, but RPCs for mutations and other traffic,
thereby making it simpler to ensure consistency, enact subtle mem-
ory allocation and management techniques, and deliver new features
over time.
Self-Validating Responses. Inspired by Pilaf [33], each KV pair in
CliqueMap is guarded by a checksum across its key, value, and meta-
data. Since RMAs are not atomic, clients performing lookups always
verify this checksum end-to-end (per KV pair). Checksum validation
failures are attributed to torn reads, that is, an RMA read that ob-
serves intermediate state of a concurrent mutation of the underlying
datum on the server—such failures are rare, but normal. Augment-
ing the checksum, additional metadata accompanies responses that
ensures clients and servers agree on configuration, memory layout,
and version. Clients retry lookups that fail validation steps at an
appropriate level of the stack (§9).
Backend Data Structure (Figure 1). To support wide-ranging key
and value sizes while handling key hash collisions, CliqueMap uses
an associative hash table [29]. The backend data structure is com-
posed of two logically-distinct RMA accessible regions—the index
region and data region. The index region consists of fixed-size Buck-
ets, and each Bucket contains a number of fixed-size tuples, known
as IndexEntries. An IndexEntry is tagged with a key hash and has
a pointer (a memory region identifier, offset, size) that indicates a
position in the data region, wherein the actual KV pair is stored.
Multiple DataEntries reside in the data region, which is managed by
backend RPC handlers (§4).
2×R GETs (Figure 2). The baseline CliqueMap GET operation,
which we refer to as 2xR, relies on two RMA reads in sequence,
operating on the index and data regions, respectively. (1) The client
computes a hash mapping the Key (an arbitrary string) to a fixed-size
KeyHash, which uniquely identifies a backend and Bucket associated
with the Key. Then, (2) the client fetches the associated Bucket via
an RMA read. (3) The client scans the Bucket for an IndexEntry with
the desired KeyHash. If there is no match, then the client declares a
miss. Otherwise (4), the client issues a second RMA read to fetch the
potentially-matching DataEntry. (5) On completion of the second
RMA read, the client validates the response by: (a) validating the
checksum end-to-end, to guard against tearing, and (b) verifying
that the DataEntry contains the desired Key (not merely KeyHash),
guarding against a (very) rare 128-bit hash collision.
SETs. The client issues an RPC, including the KV pair to be SET,
to the appropriate backend. On receiving a SET RPC, the backend

95



SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA A. Singhvi et al.

allocates capacity for the new DataEntry in the data region, prepares
an RMA-friendly pointer and scans the relevant Bucket in the index
region for an existing mapping. If such an entry is found, the backend
overwrites it with the new pointer, and reclaims the old DataEntry as
free space. Backends apply SETs only when doing so monotonically
increases a particular KV pair’s version (see §5.2).
Clients. The CliqueMap client library transparently retries GET/SET
operations to overcome transient failures, such as checksum vali-
dation failures that can arise under a race, subject to both a user-
specified deadline and retry count. Retries occur at a layer appropri-
ate to the error (e.g., checksum failures may retry RMA operations,
but failed RMA operations may retry on new connections, etc.).

This basic design delivers RMA’s intrinsic performance advan-
tages for common-case read operations, and use of RPCs for SETs/
mutations eases the complexity of ensuring consistency, but not all
key requirements are met. The challenges outlined in Table 1 call
for further augmentation:
1. Memory efficiency via RPC-based mutations. CliqueMap allo-
cates and manages memory capacity locally, triggered by RPCs that
run entirely in the backends. Using straightforward code, these back-
ends implement rich replacement and allocation policies, and can
restructure the index and data regions on demand (e.g., via defrag-
mention/replacement) or even trigger background processes (e.g.,
memory reshaping in §4.1). CliqueMap’s self-validating lookup
mechanisms ensure detection and retry of any resulting races. Impor-
tantly, these mechanisms make it possible for CliqueMap backends
to resize their memory footprint on demand, rather than wastefully
pre-allocate/pre-register for peak memory capacity on startup.
2. Lightweight replication with client-based quoruming. To deal
with slow or failed servers, CliqueMap offers deployment modes
in which data is replicated across multiple backends. To realize
availability benefits with minimal performance cost, CliqueMap
adopts an uncoordinated replication approach in which replicas do
not synchronize in the serving path, and clients use load-aware
quoruming to resolve data consistency.
3. Self-validating responses coupled with retries as a key build-
ing block. While self-validating responses and retries resolve race
resolution in the basic design, we also find them to be key enablers
in supporting seamless binary upgrades and recovering from failures.
Self-validating responses from the server make the client aware of
transient changes occurring at backends, and trigger the clients to
retry at the appropriate layer of the stack. Due to the number of
backends globally and weekly upgrade schedule, upgrades are the
norm and this approach simplifies delivery of “hitless” upgrades.
4. Decoupled design for non–C-family clients. CliqueMap pro-
vides support for Java, Go, and Python clients via language-specific
shims, enabling non–C-family internal components of a broader
system to access the corpora stored in CliqueMap and thereby eas-
ing adoption of CliqueMap in established multi-language serving
ecosystems. Each language shim launches a subprocess, which in
turn contains the primary C++ client library, thereby side-stepping
error-prone native-code invocation mechanisms, maximizing code
reuse, and unifying debugging processes among all languages.
5. Leverage software transports for heterogeneity and perfor-
mance. Because our datacenters operate across several generations

of networks, CliqueMap tightly integrates with Google’s software-
defined NIC, Pony Express [31]. This integration includes a cus-
tom RMA operation that matches precisely the semantics of the
CliqueMap GET operation, enabling most GETs to complete with
a single network round trip (see §6.3). Further, CliqueMap offers
RPCs as a seamless fallback for lookups in scenarios wherein RMA
protocols are not applicable/available (e.g., lookup over WAN).

4 Backend Responsibilities
CliqueMap’s backend memory layout is designed to accommodate
2×R-style GETs while also maintaining significant freedom to relo-
cate data and change protocol over time, a balance relying heavily
on the self-verifying properties realized by client-side validation and
retry (§3). Critically, client-side validation ensures that server-side
modification of a KV pair or associated metadata implicitly poisons
the operation. Although rarely triggered in practice (less than 0.01%
of all ops), such retries grant the backend code significant freedom
when adjusting memory layout, simplifying both defragmentation
and, later in the design’s evolution, dynamic resizing. Ultimately,
server-side logic need only be concerned about making retryable
conditions transient, detectable, and rare, rather than entirely invisi-
ble.

4.1 Memory Allocation and Reshaping
Index Region Allocation and Reshaping. Index region memory
allocation is straightforward and is initially provisioned on backend
restart based on the expected key count in the underlying corpus.
Crucially, indexes can be upsized at runtime when they surpass a
target load factor. During such reshaping, the backend creates a new,
second index, populates it, and then revokes remote access to the
original index. At this point, client-initiated RMA operations fail;
clients enacting retries for failed RMAs contact backends via RPC
as part of their retry procedure for such errors, at which time the
client also learns the new per-backend index size. For simplicity,
mutations stall during an index resize.
Data Region Allocation. Because the data region is random-access
in nature, the memory pool for DataEntries is governed by a slab-
based allocator [11] and tuned to the deployment’s workload. Slabs
can be repurposed to different size classes as values come and go in
the lifetime of the backend task. Because all allocations occur within
an RPC, allocation logic can freely use the familiar programming
abstraction provided by RPCs.
Data Region Reshaping. Memory registration for RMA is widely
recognized to be expensive, as it requires the operating system to
communicate with the RMA-capable NIC, to pin memory, and to
manipulate translation tables. Naive designs that pre-allocate all
backend memory at startup—and thereby avoid memory registra-
tion at runtime—are tempting, but we found this approach strands
DRAM and thereby risks high operating costs. Taking advantage of
freely-relocatable DataEntries, CliqueMap’s DataEntry pool resizes
on demand, so that deployments can provision for common-case,
rather than peak, DRAM usage. When nearing current capacity, an
individual backend task can asynchronously grow (reshape) its data
region. Reshaping works by pre-allocating the maximum possible
virtual address range needed to serve the entirety of a machine’s
memory capacity1, but only ever populating a subset of the address

1via mmap(PROT_NONE) of a very large virtual range.

96



CliqueMap: Productionizing an RMA-Based Distributed Caching System SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Week1 Week4 Week7 Week10 Week130

128

256

384

512

M
em

or
y

U
se

d
(T

B
)

Memory
reshaping
launched

Figure 3: Memory reshaping in CliqueMap and subsequent
DRAM savings.

range. That is, the data pool is always virtually contiguous, but not
fully backed by DRAM. During expansion, CliqueMap establishes
a second, larger, overlapping RMA memory window2, and begins
advertising this new window to clients as the data region. Clients
converge over time to using the second window exclusively, per-
haps after a retry. Because kernel memory management operations
have unpredictable duration, CliqueMap initiates growth according
to a high-watermark policy, performing such work off the critical
path, but triggered by some RPC-based operation. As with the index
region, data region downsizing occurs with non-disruptive restart.

Rollout of the reshaping feature saved 10% (50TB) of customer
DRAM at launch (see Figure 3). Shortly thereafter the underly-
ing corpus itself shrank, and without further human intervention
CliqueMap dropped its DRAM usage by 50% (200TB). Since each
individual backend makes an independent scaling decision, the ag-
gregate savings is derived from the sum of many independent scaling
decisions, and fluctuates in time.

4.2 Cache Eviction
A mutation (via RPC) triggers cache eviction when it encounters
one of two conflict conditions:
• Capacity Conflict. No spare capacity in the data region. An

eviction anywhere in the data pool suffices.
• Associativity Conflict. No spare IndexEntry in the key’s Bucket.

For the newly-installed KV to be RMA-accessible, an existing
KV pair must be evicted from the Bucket.
The latter is a consequence of the set-associative but RMA-

friendly data structure, which we mitigate by dynamically scaling
the index (§4.1) to make associativity conflicts rare. CliqueMap also
offers an optional RPC fallback in the case of a Bucket overflow,
indicated by a bit in the Bucket. Clients encountering an overflowed
bucket may optionally send an RPC to the backend [29], incurring
higher latency but still serving a hit—a tradeoff appropriate when
the downstream cost of a cache miss is high relative to the RPC cost.

Because CliqueMap uses RMAs for GETs, backends have no di-
rect record of access information to facilitate recency-based eviction
algorithms, such as LRU. Instead, clients inform backends of data
touches via RPC, as a batched background process, to amortize RPC
overheads. Backends ingest access records en masse to implement
configurable eviction policies—LRU, ARC [32], and others.
Eviction Procedure. Like reshaping, the eviction mechanism again
relies on the self-verifying properties inherent in the design. Because
a checksum covers the IndexEntry and DataEntry in combination, the
RPC handler processing an eviction can nullify IndexEntry pointers
and modify DataEntry contents. Subtly, this admits interleavings in

2via subsequent mmap() calls to populate memory on demand.

Client S1

NICSW

S2 S3

Preferred Backend

Metadata Quorum

GET Complete

Bucket Fetch Data Fetch

Figure 4: Sequence diagram of GETs in CliqueMap R=3.2
mode.

which 2×R GETs already in progress might still complete; this is
acceptable as such GETs are considered ordered-before the eviction.

Since the new inbound KV may differ in size from the evicted
entry, multiple evictions in an appropriate size class may be needed.
Once sufficient space is available, a new DataEntry is written, fol-
lowed by the relevant IndexEntry’s pointer into the data region,
which establishes an ordering point after which the new value is
visible. In practice, evictions occur at roughly half the rate of SETs.

5 Availability
CliqueMap offers replication to ensure read/write availability in the
face of unplanned failures and to provide some tolerance for slow
backends. The replication scheme is designed to avoid inter-replica
coordination to keep overheads low. Again, self-validating responses
and retries play a role, assisting race resolution without the need for
remote or global locking.

5.1 Quorumed GETs Under Three Replicas
When operating with three replicas, copies of each KV pair are
assigned to adjacent backend tasks. I.e., for each key, CliqueMap
uses a consistent key hash to first determine the backend number
for a logical primary replica i–as if no replication existed–and then
assigns copies of KV pairs to physical backends i, i+1 and i+2 (all
mod N).

Next, we augment 2×R-style lookups to accommodate replication
by performing an index fetch from all replicas (Figure 4). Although
all three backends will respond, due to load differences or network
proximity, one backend’s response will arrive at the client first. The
client then fetches the datum from the first responding backend,
termed the preferred backend. Upon receipt of its second index
response, the client can attempt a quorum—a per-KV-pair majority
vote—to ensure consistency between replicas [19]. Deployments
with three replicas and a quorum of two are known as R=3.2. R=3.2
CliqueMap cells are resilient against single failures3.

CliqueMap augments each IndexEntry with a VersionNumber,
which is globally unique and monotonic within a KV pair (§5.2). A
GET under R=3.2 reports a cache hit if and only if (1) the DataEntry
and its corresponding IndexEntry pass checksum validation (e.g.,
no torn value was observed); (2) at least two IndexEntries agree on
VersionNumber and KeyHash (i.e., a version quorum exists); (3)
the full Key in the DataEntry matches the requested Key (i.e., no
hash collision); and (4) the DataEntry was fetched from a backend

3We proved single failure tolerance using TLA+ [27], a formal verification language.

97



SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA A. Singhvi et al.

with the quorumed VersionNumber (i.e., data came from a quorum
member), again capitalizing on the tenet of self-verifying responses.

Under this protocol, a successful GET quorum thus requires re-
sponses from only two replicas, a property useful for both fail-
ure/race tolerance and performance, because a slow backend’s re-
sponse can be ignored when the remaining two agree. CliqueMap’s
first responder preference leverages this property by speculating
that the preferred backend will form a quorum with at least one
subsequent response; this is likely whenever the mutation rate is
sufficiently rare, relative to the overall size of the corpus. When
this speculation fails, i.e., when the first responder isn’t part of the
quorum, the client retries, preferentially fetching the datum from a
distinct backend.

5.2 Multi-Replica Mutations
Clients perform mutations by sending RPCs to all replicas for a
particular key. Each such mutation proposes a client-nominated Ver-
sionNumber, a tuple comprised of {TrueTime [12], ClientId, Sequen-
ceNumber}, such that each VersionNumber is globally unique and
the VersionNumbers emitted by a particular client ascend monotoni-
cally. By using TrueTime [12]—a globally-consistent coordinated
clock—for the uppermost bits, each client eventually nominates the
highest VersionNumber for retried mutation operations, which is
crucial for per-client forward progress. Specifically, a mutation pro-
ceeds at a backend only when the client’s proposed VersionNumber
is higher than the VersionNumber stored for each datum. As a re-
sult, each KV pair has a monotonically increasing VersionNumber,
and all backends can independently agree on final mutation order,
without requiring a common RPC arrival order.
Erases. ERASE operations are a special case of mutations. Like
SETs, they are performed via RPC and make forward progress
even when a replica is down. ERASEs also bear a client-nominated
VersionNumber, retained so that late-arriving SETs cannot restore
affirmatively-erased values. But unlike other operations, Version-
Numbers for ERASEd elements cannot reside in the index region,
since such a design untenably spends DRAM capacity for erased
elements. However, VersionNumbers for erased elements need not
be RMA-accessible, and so they are stored in a per-backend side-
band data structure—a fully associative, fixed-size tombstone cache
on the backend’s heap. Further, a summary VersionNumber tracks
the largest VersionNumber ever evicted from the tombstone cache.
When reasoning about VersionNumber monotonicity, mutations con-
sult the tombstone cache, its summary, and the contents of the index
region. Because some erased elements’ VersionNumbers are approx-
imated (bounded above) by the summary VersionNumber, reasoning
about ERASEd VersionNumbers is sometimes coarse-grained but
never inconsistent.
Compare-And-Set (CAS). CAS operations are another special case
of mutation. Like a SET, they install a new value, but only if the
stored VersionNumber matches a provided VersionNumber. CAS
provides a limited means of implementing conditional updates and
reasoning about their success, with the provision that the Version-
Number is known a priori (e.g., memoized from a previous operation
on the same key).

5.3 Race Conditions
Clients do not coordinate mutations, and mutations of the same key
may occur near-simultaneously. These mutations interact without

Figure 5: An example race condition, in which a GET initiated
by client 𝐶2 races against a SET initiated by client 𝐶1, detected
in CliqueMap R=3.2 mode by a self-validating response. 𝐶2’s
GET attempt leads to a potential version quorum when it ver-
ifies that two fetched indices contain the same VersionNumber
𝑉0, but the final data fetch can still collide against 𝐶1’s ongoing
SET, since it is not atomic with respect to earlier accesses.

explicit synchronization with RMA-based GETs; race resolution
hinges on the self-verifying properties of GETs and associated re-
tries performed by CliqueMap clients. This strategy has the signif-
icant advantage that no expensive RMA-based synchronization is
needed (e.g., remote locking), but the notable downside that forward
progress is not guaranteed. With R=3.2, our design objective was to
provide obstruction free [20] forward progress for GETs, notably,
that they will succeed when they don’t compete against a SET of the
same key or encounter a failure condition reducing replica count be-
low quorum. As such, it is possible for repeated mutations to starve
GETs causing them to time out and report an error, once their retry
count and/or deadline is exhausted. In practice, speed differential
between RMA and RPC makes this a non-concern.

To exemplify race conditions that can arise in R=3.2, consider
a race in which Client 𝐶1 attempts SET 𝐾 = 𝑉1 while Client 𝐶2
attempts a GET of K (see Figure 5), where initially 𝐾 → 𝑉0. De-
pending on the precise timing and interleaving of operations at server
replicas 𝑆1 through 𝑆3, 𝐶2’s GET attempt can result in quorum on
value 𝑉0 (𝑉1), wherein the GET is logically ordered before (after)
the SET, or can result in a retryable checksum failure; in the ex-
ample, checksum failure occurs when the slowest of the three data
array mutations, namely the one at 𝑆3, occurs during𝐶2’s RMA data
fetch operation, resulting in metadata quorum for 𝑉0, but a torn read
nonetheless.

Note that an inquorate outcome—wherein an operation cannot
arrive at a quorum—is not possible when GETs race against single
SETs. In contrast, a GET that races against multiple concurrent SETs,
or experiences a failure condition (e.g., backend failure, torn read,
etc.), may subsequently fail to achieve quorum. CliqueMap over-
comes such races by retrying operations that fail due to a potential
race.

5.4 Quorum Repairs
A key with a quorum of only two backends—instead of all three—is
called a dirty quorum. In a dirty quorum, not all backends agree on

98



CliqueMap: Productionizing an RMA-Based Distributed Caching System SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

cpp java go py
CliqueMap Client Language

0

50

100

150

200

250

O
p

R
at

e
(M

op
s/

s)

(a)

cpp java go py
CliqueMap Client Language

101

102

C
P

U
-u

s/
op

(b)

cpp java go py
CliqueMap Client Language

0

60

120

180

240

300

O
p

La
te

nc
y

(u
s)

(c)

Figure 6: CliqueMap performance by client language - (a) Op rate; (b) CPU cost and (c) Median Op latency.
a key’s existence or its VersionNumber. Dirty quorums arise due to
backend task failures, uncoordinated eviction (∼1 in 7M GETs), and
RPC failures.

A second failure, such as the loss of an additional backend, causes
the dirty quorum to degrade to an inquorate state, which is treated
as a cache miss. However, because the cost of a cache miss can
be high (e.g., may require reading data from persistent storage),
CliqueMap supports quorum repair in which a backend triggers
an explicit on-demand recovery, sourcing from the remaining two
healthy replicas.

To manage the risk of a dirty quorum degrading to an inquorate
state, backends independently scan their cohorts (i.e., the other two
backends) for missing or stale KV pairs, detected via KeyHash ex-
change to minimize overhead. A backend observing a dirty quorum
performs an on-demand repair on a key-by-key basis by: (1) issuing
a SET to the dirty backend to install the missing key K at a new
VersionNumber 𝑁 and (2) updating the VersionNumber of the key
K to 𝑁 at the repairing backend as well as the other (clean) backend.
This repair procedure ensures that all the three backends settle on a
consistent view of Key K at VersionNumber 𝑁 . We tune the inter-
scan interval to suit the needs of the deployment; tens of seconds is
typical.

A similar process operates en masse whenever a backend restarts
after an unplanned failure, such as a crash. Specifically, restarted
backends request repairs from the other two healthy backends in
their cohort.

6 Evolution
We next discuss a variety of changes we made to CliqueMap after
initial deployment, which reflect challenges we did not anticipate
in initial design. We’ve found that CliqueMap’s core design ideas—
self-verification, retries, and use of RPC in general—substantially
eased this evolution.

6.1 Warm Spares for Planned Maintenance
CliqueMap initially relied entirely on repairs (§5.4) to tolerate reg-
ular binary upgrades and server maintenance, as well as crashes.
However, upgrades are extremely common–essentially always in
progress–due to scale and staged rollout practices (§3). Such rollouts
would effectively drop all data from R=1 deployments, since no
repairs are possible without replication. Demand for less-disruptive
rollouts for R=1 configurations motivated the addition of warm spare
backends, which temporarily host the shard of a backend undergoing
maintenance.

A backend task notified of planned maintenance, e.g., a new
binary rollout, triggers a migration of its identity and data to a

warm spare. In the course of normal RMA-based GETs, clients
may discover in-progress backend migrations via a configuration
ID stored in each Bucket. Specifically, during response validation,
if a client observes that the configuration ID in the fetched Bucket
does not match its expectation (established at connection-time along-
side other RMA-relevant metadata), the client enacts a retry by
refreshing its configuration from an external high-availability stor-
age system [13, 15]. In doing so, the client discovers all migrations
in flight and (temporary) roles of any spare backends.

Although initially motivated by R=1, sparing is effective for
R=3.2 to avoid even transient dirty quorums. Maintaining three
healthy replicas via sparing during planned maintenance ensures
that quorums remain clean and the system still tolerates unplanned
failures that occur during rollouts. We now deploy a small number
of spares in almost all cells.

6.2 Extending Beyond C++
Google datacenters run software primarily written in C++, Java, Go,
and Python, each representing pools of thousands of developers.
Launched initially with only C++ support, CliqueMap was, for a
time, unavailable to many of Google’s developers, and corpora stored
in CliqueMap were only accessible by systems composed entirely of
C++. Because serving stacks atop RPC are built from components
in many languages, we required a solution to broaden access across
languages, even if not at the full performance envelope of our native
C++ client.

Programming APIs for RMA are typically user-level libraries
in C or C++ (e.g., libibverbs [6]). Supporting RMA in other lan-
guages is challenging, as RMA operates on essentially raw memory
abstractions—pointers, offsets, etc. One might conclude the obvi-
ous approach for RMA from these languages is to leverage native
code invocation mechanisms (e.g., JNI in Java) to directly invoke
an underlying C library. We do not take this approach because it
would require us to maintain language-specific implementations of
the CliqueMap client library, which would greatly increase complex-
ity (e.g., of changing the library functionality over time). Instead,
we provide a lightweight shim for each language, which in turn
launches the CliqueMap C++ client as a Linux subprocess. We com-
municate between these processes using named pipes, which are
simple abstractions available in all these languages.4 The subprocess
approach is a tradeoff—it avoids per-language maintenance burden
and complexity for each non-C++ language, while sacrificing some
efficiency.

4We also developed a shared memory mechanism specifically to accelerate Java.

99



SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA A. Singhvi et al.

CliqueMap Client Pony Express0

880

1760

2640
C

P
U

-n
s/

op
2xR
SCAR

MSG

Figure 7: CliqueMap client and Pony Express (client and server-
side) CPU efficiency under different lookup strategies.

Figures 6a and 6b summarize performance of a large synthetic
workload wherein 500 clients retrieve random keys from 500 back-
ends. Figure 6a plots the maximum GET op rate achievable in each
language, using 64B objects fetched at maximum possible rate, and
Figure 6b plots the associated CPU cost per operation. Figure 6c
plots lookup latency at 1K/GETs/sec/client (not peak). While over-
heads can be significant relative to the C++ baseline, we have found
that the resulting implementations are still performance-competitive
relative to RPC counterparts, though admittedly non-optimal. We
anticipate further optimization in this area (§9).

6.3 From 2×R to Scan-and-Read
Google’s datacenters are highly heterogeneous, i.e., not all deploy-
ments support all RMA protocols. The 2×R GET strategy is generic
and viable on a variety of transports (Pony Express [31], 1RMA [34],
and RDMA), but programmable transports like Pony Express and
emerging SmartNICs offer opportunities to optimize specifically for
KV stores [8]. When operating atop Pony Express, we leverage a
custom-built RMA-like primitive, called Scan-and-Read (SCAR),
wherein we perform the “scan” of the Bucket server-side, in Pony
Express, and return the combined Bucket and DataEntry to the initi-
ating client. By performing a small computation in the server-side
NIC, SCAR removes a full round trip from the critical path, and
also reduces the fixed, per-op CPU overheads of a full second RMA
operation from both Pony Express and the CliqueMap client. While
small in the absolute sense, these overheads are large relative to
the handful of memory accesses required to perform the SCAR
operation.

Figure 7 shows CPU efficiency of the CliqueMap client and of
Pony Express under three distinct lookup strategies: 2×R, SCAR,
and a two-sided messaging/RPC approach (MSG). Overall, we find
that an individual SCAR operation is about as costly as a normal
Pony Express RMA read. Because it halves the total number of
RMA operations per GET, SCAR is substantially more efficient on
the whole than 2×R. As a further point of comparison, the over-
heads needed to wake server-side application threads to process
and respond to inbound messages (as is in the two-sided messaging
case, MSG) significantly exceed the CPU cost of simply performing
SCAR’s Bucket scan.

SCAR is now in widespread use, as it is especially helpful for
corpora with typically-small object sizes. However, SCAR has an
occasional downside: the combination of R=3.2, SCAR, large ob-
ject size, and high lookup concurrency can transiently incast the
CliqueMap client, as SCAR solicits three full copies of the datum.
When combined with scarce downlink bandwidth (e.g., due to older

0 +1d +2d +3d +4d +5d +6d +7d
0

2.5K

5K

7.5K

O
p

La
te

nc
y

(u
s)

0

250K

500K

750K

O
p

R
at

e
(o

ps
/s

ec
)

50p Latency
90p Latency
99p Latency

99.9p Latency
GET Rate

SET Rate (Writes)
SET Rate (Backfill)

Figure 8: Ads Workload.

or oversubscribed hardware), this incast can lead to higher tail la-
tency (§7.2.2).

6.4 R=2/Immutable Mode
Google has a rich ecosystem of durable storage systems [14–16]
which utilize persistent storage media to avoid data loss. To reduce
lookup latencies relative to persistent storage and DRAM require-
ments relative to R=3.2, we added an R=2 mode to CliqueMap,
in which an immutable corpus is loaded from an external system
of record. Because the data is immutable, only one replica need
be consulted for most operations, although the second replica still
serves in the event of a failed backend task. As such, R=2/Immutable
resembles CliqueMap R=1, in terms of its network behaviors, and
has data availability properties that tolerate single-backend failures.

6.5 Disaggregating Local State
CliqueMap was initially intended to displace RPC-based KVCS for
CPU efficiency improvement of applications that accessed a dis-
tributed corpus. However, we found that CliqueMap’s latency was
sufficiently low that some serving stacks that relied on serving data
shards from local memory could instead access those corpora over
the network from CliqueMap. Importantly, remote access allows
these serving tasks to become stateless. Statelessness allows com-
pute to scale independently from DRAM (holding data), leading
to overall improved resource efficiency. Increased strategic focus
on disaggregation occurred well after initial launch and minor fea-
tures enabling such use cases were added, e.g., customizeable hash
functions.

7 Evaluation
This section first presents measurements of CliqueMap production
workloads, and then, using synthetic workloads, we present con-
trolled experiments that highlight CliqueMap behaviors in specific
scenarios, including the impact of previously discussed production-
ization features.

7.1 Production Workloads
We highlight two production serving workloads: Ads (Figure 8),
from a datacenter in The Dalles, Oregon (USA), and Geo (Figure 9),
serving road traffic predictions from a datacenter in Lenoir, North
Carolina (USA).

The Ads workload is a portion of the serving pipeline for Google’s
advertising business on third-party Internet properties. Advertising
data is keyed by topic and fetched on-demand from CliqueMap cells
(R=3.2) when participating in an auction process; late responses
to such auctions are discarded and hence response time is critical
to revenue opportunity. The graph supports CliqueMap’s design

100



CliqueMap: Productionizing an RMA-Based Distributed Caching System SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

0 +1d +2d +3d +4d +5d +6d +7d0

5K

10K

15K

O
p

La
te

nc
y

(u
s)

0

2M

4M

6M

O
p

R
at

e
(o

ps
/s

ec
)

50p Latency
90p Latency

99p Latency
99.9p Latency

GET Rate
SET Rate

Figure 9: Geo Workload.

103 105

KV Object Size (B)

0.00

0.25

0.50

0.75

1.00

C
D

F

Ads
Geo

Figure 10: Ads and Geo Object Size Distribution.

decisions to optimize for a GET rate that greatly exceeds the SET
rate. Ads fetch tends to be highly batched; batch sizes reach 30-300
KV pairs in the 99.9th percentile tail, which makes the client the
bottleneck due to response incast, pushing 99.9% GET tail latency
into the vicinity of 5ms.

Geo is a serving workload that provides estimates of traffic condi-
tions on roadways throughout the world. It feeds into, e.g., driving
directions suggested to end-users. The corpus is keyed by a road seg-
ment identifier, and stores a compact representation of utilization of
the road segment in question. Like Ads, lookups are highly batched,
usually consisting of tens of segments at a time. The underlying
model experiences a high update rate. The Geo workload serves
highly diurnal GET traffic intermixed with a background update rate
for the corpus (SETs), originating from different client jobs. Despite
the 3x variation in GET rate over the course of a day, 99.9% tail
latency varies minimally. Like most CliqueMap workloads, GET
performance is critical; less so for SETs.

These workloads are typified by values of different sizes; Fig-
ure 10 plots the CDF. For both workloads, objects tend to be small,
typically at most a few KB (importantly, smaller than our typical
MTU size), but there is a tail of larger objects.

7.2 Controlled Experiments
Next, we discuss the quantifiable behaviors of the CliqueMap design
through a set of controlled experiments using synthetic workloads.

7.2.1 Preferred Backend Selection Benefits
To highlight the effect of quoruming to reduce tail latency in R=3.2,

we set up a synthetic workload with a small, 3-backend R=3.2
CliqueMap cell, configured to use 2×R. Synthetic clients repeat-
edly GET the same 4KB-sized K/V pair. We then place one of three
backends under load from an antagonist, which offers ∼95Gbps of
competing demand through its NIC. Figure 11 plots the resulting
normalized median and tail latencies.

R=3.2
No

External
Load

R=3.2
With

External
Load

R=1
No

External
Load

R=1
With

External
Load

0

1

2

N
or

m
al

iz
ed

La
te

nc
y

50p Latency 99p Latency

Figure 11: Preferred backend selection benefits under varied
server host load; normalized to no-load.

2XR SCAR0

50

100

150

M
ed

ia
n

La
te

nc
y

(u
s) With External Load

No External Load

Figure 12: SCAR vs. 2×R performance under varied client load.

Takeaway: Preferred backend selection in R=3.2 tolerates a single
slow server; there is almost no elevation in latency (within noise
margins). In comparison, R=1 is obliged to rely on load to a slow
server, and hence both median and tail suffer due to the overtaxed
backend.

7.2.2 SCAR and Incast
§6.3 outlines our addition of SCAR to Pony Express, and because

of its advantages we deploy SCAR to most production cells. But
not all tail latency metrics improved when we introduced SCAR, as
SCAR has a potential downside: when deployed with R=3.2, SCAR
solicits three full copies of the datum, whereas 2×R solicits only one,
plus three IndexEntries. That is, SCAR transiently incasts its client,
which can be problematic when batch sizes or values are large.

Figure 12 plots the behavior of SCAR and 2×R when fetching
relatively large (64KB) values, with and without competing load
applied to the client (which exacerbates the incast condition). The
difference in median GET duration is evident; because SCAR trans-
fers 195KB per op (3× 64KB values and 3× 1KB Buckets), it begins
to lag behind 2×R’s 67KB transfer (1× 64KB value and 3× 1KB
Buckets), despite SCAR’s single round-trip advantage. The precise
constants leading to this effect vary with technology generation;
older, slower hardware observes this effect at smaller value/batch
sizes.

Takeaway: Deploy SCAR when values/batch sizes are small rela-
tive to NIC speeds. It’s acceptable to redundantly fetch data when
individual KV sizes are small.

7.2.3 Maintenance
Maintenance, binary upgrades, and reconfigurations are ubiquitous,

and hence CliqueMap performance during these events is critical. We
next highlight the performance of CliqueMap GETs during repairs
and data migrations.

101



SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA A. Singhvi et al.

13:52 13:53 13:54 13:550

40

80

120

O
p

La
te

nc
y

(u
s)

0

0.4M

0.8M

1.2M

R
PC

B
yt

es
/s

ec50p Latency
99.9p Latency
RPC Bytes/sec

Figure 13: CliqueMap Planned Maintenance via Spares at con-
sistent 100K GET/sec.

14:23 14:24 14:25 14:260

40

80

120

O
p

La
te

nc
y

(u
s)

0

5M

10M

15M

R
PC

B
yt

es
/s

ec50p Latency
99.9p Latency
RPC Bytes/sec

Figure 14: CliqueMap Unplanned Maintenance via Repairs at
consistent 100K GET/sec.

In this scenario, we load an R=3.2 CliqueMap cell with 100K
GET/sec from ten clients, and then inject artificial planned and
unplanned maintenance events. In the former case, CliqueMap is no-
tified of impending primary (non-spare) backend restart, and hence,
can utilize warm spare backends gracefully; in the latter case, only
post-restart repairs are possible. Figure 13 plots GET latency per-
centiles and RPC byte rates (from repairs and sparing) during the
planned event. We inject the planned restart at 13:52:00. Immedi-
ately, the notified primary backend transfers its data to a spare (RPC
traffic), and exits by 13:53:30. At 13:54:05, the spare returns the
transferred data to the newly-restarted primary (RPC traffic again).

Takeaway: Warm sparing effectively hides planned maintenance
from clients. Throughout the event, we see virtually no change in the
client-observed latencies; fewer than 1 op in 1000 observes degraded
performance, e.g., from retries.

Finally, we forcibly crash a backend to simulate an unplanned
maintenance event (Figure 14), at 14:22:00 (not evident from graph).
The new backend restarts on another host by 14:23:30, and we
observe a significant burst of RPC activity as repairs are performed.
Latency fluctuates slightly during this interval, and even experiences
a downward trend, as the clients perform less total work when the
cell is degraded–after observing a connection failure, clients only
send two out of three operations per GET, as they await reconnect.

Takeaway: Repairs augment warm sparing and have little perfor-
mance impact under realistic load levels.

7.2.4 RMA Deployment Characterization
We next characterize the performance of moderate-sized CliqueMap

cells under controlled load in homogeneous RMA deployments. We
use a 950-host testbed with synthetic load generation, as the details
of transport operation are difficult to isolate and study in situ in
production workloads. Our testbed is equipped with Skylake-class
CPUs and connected with a fabric capable of 50Gbps sustained and

Transport C
P

U
 S

cale-outC
liq

ue
M

ap
 L

at
en

cy
 (u

s)

19:50 20:00 20:10 20:20 20:30
0

50

100

150

200

250

300

350

400

0
0.5

1

1.5

2

2.5

3

3.5

4

19:40

Client-only scale-out

Co-tenant scale-out

Pony Express scale out

Figure 15: Pony Express scale out as a heatmap, wherein darker
red indicates a larger fraction of machines scaled out to, on av-
erage, the number of cores reflected on the right axis. Lines de-
marcate 50th/90th/99th CliqueMap latencies on the left axis.

100Gbps burst per host. To highlight the networking behaviors at
scale, we operate a 500-backend R=1 CliqueMap cell; when using
Pony Express [31] we enable SCAR, but use 2×R fetches when
using 1RMA [34]. We use a fixed value size of 4KB, which, with
framing and metadata, allows a GET response to fit within a single
5KB-MTU frame.
Pony Express Load Ramp. Pony Express can scale out to addi-
tional CPU for network Tx/Rx activities. We configure each client
and backend to spread its load among four Pony Express engines.
Engines are single-threaded and may time-multiplex a single core
or each scale out to their own core in response to load. Figure 15
plots the GET latency percentiles as we ramp request rate to 400M
GET/sec (among 10K client tasks, which is 800K ops/sec/backend).
We overlay the degree of Pony Express scale-out on the right axis,
as a heat map, wherein darker red indicates a larger fraction of ma-
chines scaled out to, on average, the number of cores reflected on
the right axis.

The scale-out plot reveals two bands, respectively corresponding
to hosts occupied by only CliqueMap clients (average 10.6 clients
per host) and those also hosting a backend (500 such systems with
one backend each). Hosts occupied by both CliqueMap backends and
clients (co-tenant) are busier on average, and hence Pony Express
scales out on these hosts first, reaching ∼3.5 CPU/host. But as load
continues to rise, client-only hosts also surpass scaling thresholds,
and begin to scale out at 20:00, and en masse by 20:10, reaching ∼1.5
CPU/host. The client-side scale-out process significantly reduces tail
latency even as load continues to ramp up, because receive transfer
parallelism is achieved within individual clients.

Takeaway: The combination of CliqueMap and Pony Express
has significant capacity headroom. For near-term technologies, we
don’t expect significant design changes needed to realize further
performance, because with tuning we can drive our system’s op rate
in a single cell well beyond the current demand.
1RMA Load Ramp. Figure 16 plots a similar experiment using
1RMA. 1RMA offers a different set of tradeoffs—in contrast to Pony
Express, 1RMA’s serving path is entirely hardware. However, 1RMA
doesn’t offer the SCAR primitive, and hence each lookup operation
must use 2×R and incur two fabric round-trip times (RTTs) per
operation. 1RMA also significantly optimizes interaction between
the NIC and the server memory system via PCIe, so the application-
visible RTT for 1RMA is lower than with more traditional packet-
oriented systems.

102



CliqueMap: Productionizing an RMA-Based Distributed Caching System SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

18:00 18:10 18:20 18:40 18:5018:30

1x

2x

3x

4x

5x

6x

7x
1RMA Command Executor Timestamps

N
or

m
al

iz
ed

 L
at

en
cy

Figure 16: 1RMA Ramp: Fabric+PCIe timestamps during load
ramp. Lines demarcate 50th/90th/99th/99.9th percentiles.

CliqueMap + 1RMA GET Latencies

Figure 17: 1RMA Ramp - GET Latencies. Lines demarcate
50th/90th/99th percentiles.

We again ramp load from 0 to 400M GET/sec. The figure over-
lays a heatmap of the timestamps emitted by the 1RMA NIC, a
hardware measurement of the combined latency of fabric and re-
mote PCIe. At peak, this workload demands only ∼32Gbps from
server-side PCIe on average and hence we expect its latency to
not be substantially elevated. Combined fabric/PCIe latency rises
marginally with load, still well short of saturating the network. End-
to-end GET latency, shown in Figure 17, is dominated by CPU time
spent in the CliqueMap client, as depicted by the mostly unchanging
latency distribution of CliqueMap GETs themselves. Perhaps sur-
prisingly, the highest latency is observed at the lowest load, an effect
we often see when our testbed is otherwise idle, due to power-saving
C-state transitions at low load. By roughly 250K GET/sec/client,
delays from C-state transitions have disappeared entirely and total
latency remains insensitive to load.

Takeaway: RMA Infrastructure heterogeneity means there’s no
single optimal lookup method–the choice depends on the underlying
infrastructure, and hence a system’s ability to evolve over time mat-
ters. Counter-intuitively, despite requiring two fabric round-trips per
GET, the simple and generic 2×R fetch strategy can outperform the
SCAR-based strategy under load in this testbed, as the all-hardware
1RMA serving path incurs no software bottleneck on the serving
side. Because CliqueMap can leverage a variety of transports and
fetch algorithms atop them, CliqueMap can provide users a relatively
uniform performance envelope, taking advantage of scale-out to do
so in environments lacking significant offload.

7.2.5 Workload Variance
Figure 18 plots latency and Figure 19 plots CPU usage of

CliqueMap backends under varying mixes of GETs and SETs. These
are unlike our previous graphs, which differentiate GET from SET
performance. It is no surprise that greater percentages of RPC-based
SETs incur greater overheads and worse typical latency, as progres-
sively more of the workload is unable to use RMA.

5% GETs 50% GETs 95% GETs0

150

300

450

600

La
te

nc
y

(u
s)

GET-50p
GET-99p

SET-50p
SET-99p

Figure 18: CliqueMap latencies under varying mixes of GETs
and SETs, under fixed value size 4KB.

5% GETs 50% GETs 95% GETs0

2K

4K

6K

8K

C
P

U
*s

/s

Figure 19: CliqueMap CPU cost under varying mixes of GETs
and SETs, under fixed value size 4KB.

32B 256B 2KB 16KB0

500

La
te

nc
y

(u
s)

GET-50p
GET-99p

SET-50p
SET-99p

Figure 20: CliqueMap performance under varying value sizes.

We consider the effect of value size at fixed GET rate in Figure 20.
For values sizes common in our production workloads, individual
GET and SET performance are dominated by fixed costs–i.e., costs
per op, not costs per byte–as our value sizes tend to be small (Figure
10).

Takeaway: CliqueMap delivers on its intent of providing nominal
lookup latencies across diverse workloads.

8 Related Work
Since its inception, CliqueMap’s goal has been to deliver the perfor-
mance of state-of-the-art KVCSs in the literature (e.g., Pilaf [33],
HERD [23], MICA [29], FaRM-KV [17, 18], and others [36, 39, 40])
to Google datacenters, adapting ideas as needed to meet the practical
requirements of our environment. These requirements differ among
hyperscale operators. For instance, the ubiquity of Stubby RPCs
and ALTS [2] at Google means that third party solutions (e.g., mem-
cached) aren’t directly applicable. Rather, as with Twemcached [41],
such solutions require a fair amount of investment to reach produc-
tionizeable feature sets. We note significant agreement between our
productionization challenges and those discussed by Facebook [10],
with differences in approach arising from the underlying technolo-
gies involved.

103



SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA A. Singhvi et al.

From Pilaf and other systems [36, 39], we take the key insight to
compose RMA and RPC, as well as specific techniques to do so, such
as self-validation. Elements of our design also resemble RPC-based
systems. For example, when considering the combination of Pony
Express and CliqueMap, SCAR (§6.3) bears similarity to message-
oriented, rather than strictly RMA-oriented lookup strategies, akin
to those in HERD [23]. Likewise, SCAR itself resembles a highly-
specialized RPC [8, 22].

When evaluating solutions for availability and replication, we
opted for quoruming over the primary/backup architecture adopted
by HydraDB [40] and FaRM [18] so that we could take advantage
of preferred backends (§5). To ensure that replication does not lead
to significant overheads, we opted for client-side quoruming rather
than indirection through a server to avoid serialization points (e.g.,
ZAB [21], CR [38]) and inter-replica communication (e.g., ABD [9,
30], Paxos [28] for reads; Hermes [26], CR [37, 38] for writes).

Lastly, we sought to build CliqueMap so that no potential user re-
quired special privilege to operate it, because such privileges impose
undesirable adoption hurdles. This design choice ultimately made
Unreliable Connected/Unreliable Datagram transports, as used by
HERD [23] and FaSST [24], infeasible as sub-components. Instead,
we rely on indirection through Pony Express to avoid binding to any
high-privilege network APIs. Similarly, low default privilege levels
make it difficult to realize predictable CPU and NIC siloing in our
environments, despite the performance advantages demonstrated by
MICA [29].

9 Experience and Conclusions
CliqueMap highlights the importance of complete system design that
focuses on performance, robustness, and efficiency, by deploying
high-performance/low-programmability RMA primitives on criti-
cal performance paths, and highly agile but less-efficient RPCs for
other functionality. This division of labor capitalizes on the needs
of a particular set of critical serving workloads—those with strin-
gent demand for performance in serving paths. At the same time,
it meets the expectations for productionization feature-richness of
RPC based systems. To conclude, we summarize broad takeaways
for the networking and systems-building communities based on our
experiences derived from building CliqueMap.
Leverage RPC, in composition with RMA, to maintain post-
deployment agility. Production services undergo requirement
changes throughout their lifetimes. Ultimately, CliqueMap’s lookup
path is the only path heavily tailored for RMA, and the system is
relatively easy to adapt to changes as a result. Throughout the design,
we embrace the use of RPCs for control and management actions,
and as options for dataplane operations, affording opportunities to
refine the design and support new features: sparing for planned main-
tenance, diverse eviction algorithms, compression, and new mutation
types. Systems maintainers for all-RMA designs tend to find even
trivial changes (e.g., to memory layouts) a major challenge.
Enable multi-language software ecosystems. It is tempting to fo-
cus solely on performance, and hence, low-level languages such as
C and C++. Early in CliqueMap’s lifetime, we even turned away
potential customers rooted outside these languages. In retrospect, a
C++-only approach stunted growth and adoption, as our datacenters
are vivid multilingual environments, grown out of the ease of devel-
opment afforded by RPC. CliqueMap’s language support makes it a

viable option for many thousands of developers at Google. Whereas
our current approach—named pipes to a subprocesses—meets our
performance requirements well, it is not optimal. We believe that
this area is ripe for the research community’s future innovations in
exploring new tradeoffs between maintenance burden, complexity,
efficiency, and performance.
Don’t compromise memory efficiency. We initially envisioned
CliqueMap would provision for peak DRAM usage, to work around
the notorious difficulties of memory registration [6]. As a result,
early potential adopters faced a tradeoff: faster lookups for (perhaps)
higher DRAM usage. Such trade-offs are difficult to analyze, as
DRAM cost isn’t uniform in time or geography. The right call in
one datacenter might be wrong in another. By investing in memory
efficiency while preserving lookup performance, CliqueMap became
significantly more appealing.
Simplify design with self-validating server responses and client
retries. We found the design pattern of combining self-validating
responses with client-side retry greatly simplifying, as clients be-
come resilient to a variety of hazards across all layers of the stack;
self-validation can tolerate RMA operation failure, data races among
competing mutations, backend configuration changes, and even wire
protocol format changes. Through retries at the appropriate abstrac-
tion level, CliqueMap near-seamlessly handles these cases. A notable
drawback of this approach is that GET forward progress is not guar-
anteed; nevertheless, we have found this drawback can be managed
through (mostly-automated) tuning.
Programmable NICs offer advantage through specialization.
Hardware implementations of RMA offer stunning performance
envelopes, but software NICs offer continuous innovation and post-
deployment customization. We could not have deployed Scan-and-
Read (§6.3)—an optimization saving an entire RTT—without an
underlying software NIC, Pony Express. The superior expressivity
and reprogrammability of software NICs gives them a notable edge
over faster-but-inflexible all-hardware designs, and helps bridge
gaps caused by heterogeneous hardware deployments by deploying
hardware-NIC-agnostic protocols. As so-called SmartNICs continue
to emerge, opportunities to optimize them for serving systems will
grow.

We recommend that designers of future infrastructure take
advantage of these guidelines when building systems for hyperscale
datacenter environments: maintain agility, sacrifice neither common-
case performance nor DRAM efficiency, enable customers’ practical
needs, and adapt to the underlying technology landscape. These
tenets underlie CliqueMap’s design, execution, and evolution over
time, and have led to a production-friendly and practically useful
design point.

This work raises no ethical concerns.

Acknowledgments
We would like to thank early reviewers Jeff Mogul, Jason Hsueh,
Jeff Hightower, and Philip Wells. Likewise we thank the anonymous
SIGCOMM reviewers and our shepherd, Nathan Bronson, for pro-
viding valuable feedback. Lastly, we thank the production, serving,
and support teams at Google for their partnership and contributions
to the work—including but not limited to the Pony Express, 1RMA,
Ads, Geo, and Travel teams.

104



CliqueMap: Productionizing an RMA-Based Distributed Caching System SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

References
[1] 2020. Chelsio Terminator 6 NICs. https://www.chelsio.com/terminator-6-asic/.
[2] 2020. Google’s Application Layer Transport Security. https://cloud.google.com/

security/encryption-in-transit/application-layer-transport-security.
[3] 2020. Marvell FastLinQ 41000 Series Ethernet NICs. https://www.marvell.com/

products/ethernet-adapters-and-controllers/41000-ethernet-adapters.html.
[4] 2020. Memcached. http://memcached.org/.
[5] 2020. Nvidia Mellanox Connect-X NICs. https://www.nvidia.com/en-us/

networking/ethernet-adapters/.
[6] 2020. RDMA Core Userspace Libraries (libibverbs). https://github.com/linux-

rdma/rdma-core.
[7] Marcos K Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal.

2019. Designing far memory data structures: Think outside the box. In Proceedings
of the Workshop on Hot Topics in Operating Systems (HotOS’19). 120–126.

[8] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout, Arvind Krishnamurthy, Aurojit
Panda, Sylvia Ratnasamy, and Scott Shenker. 2020. Remote Memory Calls. In
Proceedings of the 19th ACM Workshop on Hot Topics in Networks (HotNets’20).
38–44.

[9] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing memory robustly
in message-passing systems. Journal of the ACM (JACM) 42, 1 (1995), 124–142.

[10] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar,
Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter,
and Gregory R. Ganger. 2020. The CacheLib Caching Engine: Design and
Experiences at Scale. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20). 753–768.

[11] Jeff Bonwick. 1994. The Slab Allocator: An Object-Caching Kernel. In USENIX
Summer 1994 Technical Conference (USTC’94).

[12] Eric Brewer. 2017. Spanner, TrueTime and the CAP Theorem. Technical Report.
https://research.google/pubs/pub45855/

[13] Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th symposium on Operating systems design and
implementation (OSDI’06). 335–350.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[15] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[16] Jeffrey Dean. 2010. Evolution and future directions of large-scale storage and
computation systems at Google. (2010). https://research.google/pubs/pub44877/

[17] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro.
2014. FaRM: Fast Remote Memory. In Proceedings of the Eleventh USENIX
Symposium on Networked Systems Design and Implementation (NSDI’14). 401–
414.

[18] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No compro-
mises: distributed transactions with consistency, availability, and performance. In
Proceedings of the 25th Symposium on Operating Systems Principles (SOSP’15).
54–70.

[19] David K Gifford. 1979. Weighted voting for replicated data. In Proceedings of the
seventh ACM Symposium on Operating Systems Principles (SOSP’79). 150–162.

[20] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2003. Obstruction-free
synchronization: Double-ended queues as an example. In 23rd International
Conference on Distributed Computing Systems, 2003. Proceedings. 522–529.

[21] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. 2011. Zab: High-
performance broadcast for primary-backup systems. In 41st International Confer-
ence on Dependable Systems & Networks (DSN’11). 245–256.

[22] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs
can be General and Fast. In Proceeding of Sixteenth USENIX Symposium on
Networked Systems Design and Implementation. 1–16.

[23] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using RDMA
efficiently for key-value services. In Proceedings of the 2014 Conference of ACM
SIGCOMM. 295–306.

[24] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST: Fast, Scal-
able and Simple Distributed Transactions with Two-Sided RDMA Datagram RPCs.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’16). 185–201.

[25] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture (ISCA’15). 158–169.

[26] Antonios Katsarakis, Vasilis Gavrielatos, MR Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. 2020. Hermes: a
Fast, Fault-Tolerant and Linearizable Replication Protocol. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’20). 201–217.

[27] Leslie Lamport. 1994. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems (TOPLAS) 16, 3 (1994), 872–923.

[28] Leslie Lamport. 1998. The Part-Time Parliament. ACM Transactions on Computer
Systems (TOCS) 16, 2 (1998), 133–169.

[29] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky. 2014.
MICA: A holistic approach to fast in-memory key-value storage. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’14). 429–
444.

[30] Nancy A Lynch and Alexander A Shvartsman. 1997. Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts. In Proceedings of
IEEE 27th International Symposium on Fault Tolerant Computing. 272–281.

[31] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. 2019. Snap: A Microkernel Ap-
proach to Host Networking. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP’19). 399–413.

[32] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low
Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on
File and Storage Technologies (FAST ’03). 115–130.

[33] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided
RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. In 2013 USENIX
Annual Technical Conference (ATC’13). 103–114.

[34] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica Wong-
Chan, Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, Hassan M. G. Wassel, Behnam Montazeri, Simon L. Sabato, Joel Scher-
pelz, and Amin Vahdat. 2020. 1RMA: Re-Envisioning Remote Memory Access
for Multi-Tenant Datacenters. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (SIGCOMM

’20). 708–721.
[35] Patrick Stuedi, Animesh Trivedi, and Bernard Metzler. 2012. Wimpy nodes with

10GbE: leveraging one-sided operations in soft-RDMA to boost memcached. In
In 2012 USENIX Annual Technical Conference (ATC’12). 347–353.

[36] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei Wu. 2017.
RFP: When RPC is Faster than Server-Bypass with RDMA. In Proceedings of the
Twelfth European Conference on Computer Systems (EuroSys ’17). 1–15.

[37] Jeff Terrace and Michael J Freedman. 2009. Object Storage on CRAQ: High-
Throughput Chain Replication for Read-Mostly Workloads. In 2009 USENIX
Annual Technical Conference. 1–16.

[38] Robbert van Renesse and Fred B. Schneider. 2004. Chain Replication for Support-
ing High Throughput and Availability. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design and Implementation (OSDI’04). 7.

[39] Yandong Wang, Xiaoqiao Meng, Li Zhang, and Jian Tan. 2014. C-hint: An
effective and reliable cache management for rdma-accelerated key-value stores. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC’14). 1–13.

[40] Yandong Wang, Li Zhang, Jian Tan, Min Li, Yuqing Gao, Xavier Guerin, Xiaoqiao
Meng, and Shicong Meng. 2015. HydraDB: a resilient RDMA-driven key-value
middleware for in-memory cluster computing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC’15). 1–11.

[41] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis of
hundreds of in-memory cache clusters at Twitter. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 191–208.

105

https://www.chelsio.com/terminator-6-asic/
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security
https://www.marvell.com/products/ethernet-adapters-and-controllers/41000-ethernet-adapters.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/41000-ethernet-adapters.html
http://memcached.org/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://research.google/pubs/pub45855/
https://research.google/pubs/pub44877/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 RPC or RMA?

	3 Overview and Productionization Ideas
	4 Backend Responsibilities
	4.1 Memory Allocation and Reshaping
	4.2 Cache Eviction

	5 Availability
	5.1 Quorumed GETs Under Three Replicas
	5.2 Multi-Replica Mutations
	5.3 Race Conditions
	5.4 Quorum Repairs

	6 Evolution
	6.1 Warm Spares for Planned Maintenance
	6.2 Extending Beyond C++
	6.3 From 2R to Scan-and-Read
	6.4 R=2/Immutable Mode
	6.5 Disaggregating Local State

	7 Evaluation
	7.1 Production Workloads
	7.2 Controlled Experiments

	8 Related Work
	9 Experience and Conclusions
	Acknowledgments
	References

