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Abstract

We consider learning to optimize a classification
metric defined by a black-box function of the con-
fusion matrix. Such black-box learning settings
are ubiquitous, for example, when the learner only
has query access to the metric of interest, or in
noisy-label and domain adaptation applications
where the learner must evaluate the metric via
performance evaluation using a small validation
sample. Our approach is to adaptively learn exam-
ple weights on the training dataset such that the
resulting weighted objective best approximates
the metric on the validation sample. We show
how to model and estimate the example weights
and use them to iteratively post-shift a pre-trained
class probability estimator to construct a classifier.
We also analyze the resulting procedure’s statis-
tical properties. Experiments on various label
noise, domain shift, and fair classification setups
confirm that our proposal compares favorably to
the state-of-the-art baselines for each application.

1. Introduction

In many real-world machine learning tasks, the evaluation
metric one seeks to optimize is not explicitly available in
closed-form. This is true for metrics that are evaluated
through live experiments or by querying human users (Tam-
burrelli & Margara, 2014; Hiranandani et al., 2019a), or that
require access to private or legally protected data (Awasthi
et al., 2021), and hence cannot be written as an explicit
training objective. This is also the case when the learner
only has access to data with skewed training distribution or
labels with heteroscedastic noise (Huang et al., 2019; Jiang
et al., 2020), and hence cannot directly optimize the metric
on the training set despite knowing its mathematical form.

These problems can be framed as black-box learning tasks,
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where the goal is to optimize an unknown classification
metric on a large (possibly noisy) training data, given access
to evaluations of the metric on a small, clean validation
sample (Jiang et al., 2020). Our high-level approach to
these learning tasks is to adaptively assigns weights to the
training examples, so that the resulting weighted training
objective closely approximates the black-box metric on the
validation sample. We then construct a classifier by using the
example weights to post-shift a class-probability estimator
pre-trained on the training set. This results in an efficient,
iterative approach that does not require any re-training.

Indeed, example weighting strategies have been widely used
to both optimize metrics and to correct for distribution shift,
but prior works either handle specialized forms of metric
or data noise (Sugiyama et al., 2008; Natarajan et al., 2013;
Patrini et al., 2017), formulate the example-weight learn-
ing task as a difficult non-convex problem that is hard to
analyze (Ren et al., 2018; Zhao et al., 2019), or employ an
expensive surrogate re-weighting strategy that comes with
limited statistical guarantees (Jiang et al., 2020). In contrast,
we propose a simple and effective approach to optimize a
general black-box metric (that is a function of the confusion
matrix) and provide a rigorous statistical analysis.

A key element of our approach is eliciting the weight co-
efficients by probing the black-box metric at few select
classifiers and solving a system of linear equations match-
ing the weighted training errors to the validation metric. We
choose the “probing” classifiers so that the linear system is
well-conditioned, for which we provide both theoretically-
grounded options and practically efficient variants. This
weight elicitation procedure is then used as a subroutine to
iteratively construct the final plug-in classifier.

Contributions: (i) We provide a method for eliciting ex-
ample weights for linear black-box metrics (Section 3). (ii)
We use this procedure to iteratively learn a plug-in classifier
for general black-box metrics (Section 4). (iii) We provide
theoretical guarantees for metrics that are concave functions
of the confusion matrix under distributional assumptions
(Section 5). (iv) We experimentally show that our approach
is competitive with (or better than) the state-of-the-art meth-
ods for tackling label noise in CIFAR-10 (Krizhevsky et al.,
2009) and domain shift in Adience (Eidinger et al., 2014),
and optimizing with proxy labels and a black-box fairness
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metric on Adult (Dua & Graff, 2017) (Section 7).

Notations: A, denotes the (m — 1)-dimensional simplex.
[m] = {1,...,m} represents an index set. onehot(j) €
{0, 1} returns the one-hot encoding of j € [m]. The 5
norm a vector is denoted by || - ||.

2. Problem Setup

We consider a standard multiclass setup with an instance
space X C R? and a label space ) = [m]. We wish to learn
a randomized multiclass classifier h : X —A,,, that for any
input x € X predicts a distribution h(z) € A,, over the
m classes. We will also consider deterministic classifiers
h : X—[m] which map an instance x to one of m classes.

Evaluation Metrics. Let D denote the underlying data
distribution over X x ). We will evaluate the performance
of a classifier h on D using an evaluation metric £”[h], with
higher values indicating better performance. Our goal is to
learn a classifier & that maximizes this evaluation measure:

maxy, EP[h). (1)

We will focus on metrics £ that can be written in terms of
classifier’s confusion matrix C[h] € [0, 1]™*™, where the
1, j-th entry is the probability that the true label is ¢ and the
randomized classifier h predicts j:

Ci71h] = B yy~p [Ly = )h; ()]

The performance of the classifier can then be evaluated
using a (possibly unknown) function ¢ : [0, 1]*™—R
of the confusion matrix:

EP[h) = y(CP[h)). )

Several common classification metrics take this form, in-
cluding typical linear metrics 1)(C) = 3, L;; C;; for
some reward matrix L € R"*™, the F-measure ¢/(C) =

2C;; : _ _
> 0,5 (Lewis, 1995), and the G-mean ¢(C) =

(L (Cii/ 3, Cij)) '™ (Daskalaki et al., 2006).

We consider settings where the learner has query-access to
the evaluation metric £, i.e., can evaluate the metric for
any given classifier h but cannot directly write out the metric
as an explicit mathematical objective. This happens when
the metric is truly a black-box function, i.e., ¢ is unknown,
or when 1) is known, but we have access to only a noisy
version of the distribution D needed to compute the metric.

Noisy Training Distribution. For learning a classifier, we
assume access to a large sample S" of n'" examples drawn
from a distribution u, which we will refer to as the “training”
distribution. The training distribution ;. may be the same as
the true distribution D, or may differ from the true distribu-
tion D in the feature distribution P (z), the conditional label
distribution P(y|x), or both. We also assume access to a
smaller sample S*¥ of n¥3 examples drawn from the true

distribution D. We will refer to the sample S" as the “train-
ing” sample, and the smaller sample S** as the “validation”
sample. We seek to solve (1) using both these samples.

The following are some examples of noisy training distribu-
tions in the literature:

Example 1 (Independent label noise (ILN) (Natarajan et al.,
2013; Patrini et al., 2017)). The distribution p draws an
example (z,y) from D, and randomly flips y to y with prob-
ability P(y|y), independent of the instance x.

Example 2 (Cluster-dependent label noise (CDLN) (Wang
et al., 2020a)). Suppose each x belongs to one of k disjoint
clusters g(x) € [k]. The distribution p draws (z,y) from D
and randomly flips y to § with probability P (y|y, g(x)).

Example 3 (Instance-dependent label noise (IDLN) (Menon
et al., 2018)). w draws (x,y) from D and randomly flips y
to y with probability P (y|y, «), which may depend on .

Example 4 (Domain shift (DS) (Sugiyama et al., 2008)). u
draws T according to a distribution P*(z) different from
PP (z), but draws y from the true conditional PP (y|7).

Our approach is to learn example weights on the training
sample S™, so that the resulting weighted empirical objec-
tive (locally, if not globally) approximates an estimate of
the metric £ on the validation sample S*¥. For ease of
presentation, we will assume that the metrics only depend
on the diagonal entries of the confusion matrix, i.e., Cj;’s.
In Appendix A, we elaborate how our ideas can be extended
to handle metrics that depend on the entire confusion matrix.

While our approach uses randomized classifiers, in prac-
tice one can replace them with similarly performing deter-
ministic classifiers using, e.g., the techniques of (Cotter
et al., 2019a). In what follows, we will neEd the empiri-
cal confusion matrix on the validation set C¥¥![h], where

C;/jal[h] = ﬁ Z(xvy)esva] 1(y = Z)h](x)

3. Example Weighting for Linear Metrics

We first describe our example weighting strategy for linear
functions of the diagonal entries of the confusion matrix,
which is given by:

EPI = 3, B CRIR] 3)

for some (unknown) weights (1, ..., 8,,. In the next sec-
tion, we will discuss how to use this procedure as a subrou-
tine to handle more complex metrics.

3.1. Modeling Example Weights

We define an example weighting function W : X—R™
which associates m correction weights [W;(x)]™, with
each example x so that:

E(z,y)w[zi Wi(z) 1(y = i)hi(x)} ~ EP[h],Yh. (4)
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Table 1: Example weights W : X—R""*"™ for linear metric £”[h] =
under the noise models in Exmp. 1-4, where W;; () is the weight on entry C};. In Sec.
34, we consider metrics that are functions of the diagonal confusion entries alone (i.e. L

and T are diagonal), and handle general metrics in Appendix A.
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IDLN Ti]' (IL‘) = P(g = ]|y = i, l’) W(JI) = L @ (T(l‘))_l :  Frank-Wolfe with Elicited Gradlt;nts (for General Metrics) :
DS - Wij (@) = PP (2)/P*(x),Yij Figure 1: Overview of our approach.

Indeed for the noise models in Examples 1-4, there exist
weighting functions W for which the above holds with
equality. Table 1 shows the form of the weighting function
for general linear metrics.

Ideally, the weighting function W assigns m independent
weights for each example z € X. However, in practice,
we estimate £ using a small validation sample S"& ~
D. So to avoid having the example weights over-fit to the
validation sample, we restrict the flexibility of W and set it
to a weighted sum of L basis functions ¢¢ : X—[0, 1]:

L

Wiz) = 3242 oje (@), (5)
where of € R is the coefficient associated with basis func-
tion ¢ and diagonal confusion entry (4, ).

In practice, the basis functions can be as simple as a parti-
tioning of the instance space into L clusters, i.e.,:

¢'(2) = 1(g(x) = 0), (©)
for a clustering function g : X—[L], or may define a more

complicated soft clustering using, e.g., radial basis functions
(Sugiyama et al., 2008) with centers 2 and width o

¢'(x) = exp (—[|lz — 2*[|/20?) . (7)
3.2. ¢-transformed Confusions

Expanding the weighting function in (4) gives us:

ZZ@

=11i=1

(@) [0 (2) Ly = D)hi(z)] =~ EP[h],Vh,

N2
o1t [h]

where ®"“[h] € [0,1]™ can be seen as a ¢-transformed
confusion matrix for the training distribution y. For ex-
ample, if one had only one basis function ¢*(z) = 1, Vz,
then @' [h] = E, )~ [1(y = i)hi(2)] gives the stan-
dard confusion entries for the training distribution. If the
basis functions divides the data into L clusters, as in (6),
then ®°[h] = By o [L(g(2) = €y = i)hi(x)] gives
the training confusion entries evaluated on examples from
cluster /. We can thus re-write equation (4) as a weighted
combination of the ®-confusion entries:

> et

/=1 i=1

~ EP[n),vh. (8)

3.3. Eliciting Weight Coefficients o

We next discuss how to estimate the weighting function
coefficients a’s from the training sample S and valida-
tion sample S"“l. Notice that (8) gives a relationship be-
tween statistics ®**’s computed on the training distribu-
tion u, and the evaluation metric of interest computed on
the true distribution DD. Moreover, for a fixed classifier
h, the left-hand side is linear in the unknown coefficients
a=[al,...;af ... al L1 e RI™,

mrc

We therefore probe the metric &¥al at Lim different classifiers
rbt oo pbmo o REL R which results in a set
of Lm linear equations of the form in (8):

e ot {ﬁ;rl[hu] = Evillply,
' )
Zf,l Oéf (/ﬁ?,z [h,L’m] =

Ftr, . .
where ®°[n] = L 2 (oy)esr )1y = Z)jlz(z) is
evaluated on the training sample and the metric £Y3[h] =
>, Bi CY2'h] is evaluated on the validation sample.

(E:\val [hL,m]7

More formally, let & € RE™*Lm and £ € RE™ denote the
left-hand and right-hand side observations in (9), i.e.,:

S 1 ' I\l
Sy, i) = pr Z ¢ (2)1(y = i")hy' (x),
(z,y)esT
é\([,i) _ gval [hf,i]' (10)
Then the weight coefficients are given by 27 E.
3.4. Choosing the Probing Classifiers A1, ... hL™

We will have to choose the Lm probing classifiers so that
3 is well-conditioned. One way to do this is to choose
the classifiers so that 32 has a high value on the diagonal
entries and a low value on the off-diagonals, i.e. choose each
classifier h** to evaluate to a high value on @" ‘In] and a

low value on <I>;r,€ [h], Y(¢',i") # (£,1). This can be framed
as the following constraint satisfaction problem on S':

For h'* pick h € H such that:

BR] > v, and Y [B] < w, V(£ 4) # (¢,4), (1)
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Algorithm 1: ElicitWeights for Diagonal Linear Metrics

1: Input: £, Basis functions ¢!,...,¢F : X—0,1],
Training set S ~ p, Val. set S ~ D, h, e, H, v,w
If fixed classifier:

Choose h*(x) = ed’(x) e'(x) + (1 — ed’(x)) h(z)
Else:

H={rh+ (1 —7)h|heH,Te[0,€}

Pick h** € H to satisfy (11) with slack -, w, V(, 1)
Compute Sand € using (10) with metric gval

—1~

Output: a =% &

P RN AELR

Algorithm 2: Plug-in with Elicited Weights (PI-EW) for
Diagonal Linear Metrics

1: Input: £, Basis functions o, 0 - X—0,1],
Class probability model B : X—A,,, for u, Training
set S ~ p, Validation set S vl ~ D, h, e

a —Ellc1tWe1ghts($"al o, ..,¢>L St SVl b €)
Example-weights: Wi (x) = Ze LAkt (x)

Plug-in: iAL(;L") € argmax;ci,,| W( N (x)

Output: h

for some v > w > 0 and a sufficiently flexible hypothesis
class H for which the constraints are feasible. These prob-
lems can generally be solved by formulating a constrained
classification problem (Cotter et al., 2019b; Narasimhan,
2018). We show in Appendix G that this problem is feasible
and can be efficiently solved for a range of settings.

In practice, we do not explicitly solve (11) over a hypothesis
class . Instead, a simpler and surprisingly effective strat-
egy is to set the probing classifiers to trivial classifiers that
predict the same class on all (or a subset of) examples. To
build intuition for why this is a good idea, consider a simple
setting with only one basis function ¢! (z) = 1, Vx, where
the ¢-confusions &' [n] = L (wyyese 1y = Dhi(x)
are the standard confusion entries on the training set. In
this case, a trivial classifier e’(z) = onehot(i), Vx, which
predicts class 7 on all examples yields the highest value for
(I)” ! and 0 for all other <I>tr ,Vj # 4. In fact, in our exper-
iments, we set the problng classifier A1 to a randomized
combination of e’ and some fixed base classifier h:

hbi(x) = ee’(z) + (1 — e)h(x),

for large enough € so that S is well-conditioned.

Similarly, if the basis functions divide the data into L clus-
ters (as in (6)), then we can randomize between h and a
trivial classifier that predicts a particular class ¢ on all exam-
ples assigned to the cluster £ € [L]. The confusion matrix
for the resulting classifiers will have higher values than h
on the (¢,14)-th diagonal entry and a lower value on other

Algorithm 3: Frank-Wolfe with Elicited Gradients (FW-
EG) for General Diagonal Metrics (also depicted in Fig. 1)

I: Input: £, Basis functions ¢',..., ¢~ : X—[0,1],
Pre-trained i)' : X —A,,, S" ~ pu, S ~ D, T, €

2: Initialize classifier h° and c¢® = diag(C*¥[h])

3: Fort =0to7 — 1do

4 if 5D[h} = (CHI[Ah],...,CE [h]) for known 1:
50 B = V()

6 ﬁ‘"[ h = 3, BLCH ]

7. else R

8 Ein[p] = £Yd[h) {small € recommendeded}
9:  f=PIEW(E™ ¢!, .. ¢l 7" S' S¥ nt )

0 §= diag(C[f])

-~

1: A= (1= Z5)h' + Zonehot(f)
2 = (1- )t + T
13: End For

14: Output: h = AT

entries. These classifiers can be succinctly written as:
ho'(x) = e¢’(2)e’ (z) + (1 — e (2))h

where we again tune € to make sure that the resulting S is
well-conditioned. This choice of the probing classifiers also
works well in practice for general basis functions ¢*’s.

(12)

Algorithm 1 summarizes the weight elicitation procedure,
where the probing classifiers are either constructed by solv-
ing the constrained satisfaction problem (11) or set to the
“fixed” classifiers in (12). In both cases, the algorithm takes
a base classifier i and the parameter € as input, where e
controls the extent to which A is perturbed to construct the
probing classifiers. This radius parameter e restricts the
probing classifiers to a neighborhood around h and will
prove handy in the algorithm we develop in Section 4.2.

4. Plug-in Based Algorithms

Having elicited the weight coefficients c, we now seek to
learn a classifier that optimizes the left hand side of (8).
We do this via the plug-in approach: first pre-train a model
. . C .

n" . X—A,, on the noisy training distribution y to estimate
the conditional class probabilities 7' (z) ~ P*(y = i|z),
and then apply the correction weights to post-shift 7'

4.1. Plug-in Algorithm for Linear Metrics

We first describe our approach for (diagonal) linear met-
rics EP[h] = Y, 8: C2[h] in Algorithm 2. Given the
correction weights W : XY —R"™*, we seek to maximize the
following weighted objective on the training distribution:

maxy, E(p o | 5 Wilz) 1y = i)hi(2)]| .
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This is a standard example-weighted learning problem, for
which the following plug-in (post-shift) classifier is a consis-
tent estimator (Narasimhan et al., 2015b; Yang et al., 2020):

o~

h(z) € argmax; e (,,; Wi(z) nj ().

K2

4.2. Tterative Algorithm for General Metrics

To optimize generic non-linear metrics of the form EP[h] =
Y(CHIA], ..., CE, [h]) for ¢ : [0,1]™—R, we apply Al-
gorithm 2 iteratively. We consider both cases where 9 is
unknown, and where v is known, but needs to be optimized
using the noisy distribution p. The idea is to first elicit
local linear approximations to ¢ and to then learn plug-in
classifiers for the resulting linear metrics in each iteration.

Specifically, following Narasimhan et al. (2015b), we derive
our algorithm from the classical Frank-Wolfe method (Jaggi,
2013) for maximizing a smooth concave function (c) over
a convex set C C R™. In our case, C is the set of confusion
matrices CP[h] achieved by any classifier A, and is con-
vex when we allow randomized classifiers (see Lemma 10,
Appendix B.3). The algorithm maintains iterates ct, and
at each step, maximizes a linear approximation to ¢ at c':
¢ € argmax,cc(V(c?), c). The next iterate c' is then
a convex combination of ¢t and the current solution €.

In Algorithm 3, we outline an adaptation of this Frank-Wolfe
algorithm to our setting, where we maintain a classifier k!
and an estimate of the diagonal confusion entries c? from the
validation sample Sval At each step, we linearize 1) using
Ein[p] = 2. BICY[h], where B' = Vi)(c!), and invoke
the plug-in method in Algorithm 2 to optimize the linear
approximation £ When the mathematical form of P is
known, one can directly compute the gradient B'. When it is
not known, we can simply set £1[h] = £¥[h], but restrict
the weight elicitation routine (Algorithm 1) to choose its
probing classifiers h**’s from a small neighborhood around
the current classifier A (in which 1 is effectively linear).
This can be done by passing i = h! to the weight elicitation
routine, and setting the radius € to a small value.

Each call to Algorithm 2 uses the training and validation set
to elicit example weights for a local linear approximation
to v, and uses the weights to construct a plug-in classifier.
The final output is a randomized combination of the plug-
in classifiers from each step. Note that Algorithm 3 runs
efficiently for reasonable values of L and m. Indeed the
runtime is almost always dominated by the pre-training of
the base model 7", with the time taken to elicit the weights
(e.g. using (12)) being relatively inexpensive (see App. E).

5. Theoretical Guarantees

We provide theoretical guarantees for the weight elicitation
procedure and the plug-in methods in Algorithms 1-3.

Assumption 1. The distributions D and . are such that
for any linear metric EP[h) = 3. B;Ci;[h], with ||B]| < 1,

Ja € RU™ g1, ‘ZM al o] —ED[h]‘ < v,Yh and
lalli < B, for some v € [0,1) and B > 0.

The assumption states that our choice of basis functions
¢, ..., ¢ are such that, any linear metric on D can be
approximated (up to a slack v) by a weighting W;(z) =
Y-, at¢t(x) of the training examples from p. The exis-
tence of such a weighting function depends on how well
the basis functions capture the underlying distribution shift.
Indeed, the assumption holds for some common settings
in Table 1, e.g., when the noise transition T is diagonal
(Appendix A handles a general T'), and the basis func-
tions are set to ¢! (z) = 1, Vaz, for the IDLN setting, and
#*(x) = 1(g(z) = ¢), VY, for the CDLN setting.

We analyze the coefficients & elicited by Algorithm 1 when
the probing classifiers 2" are chosen to satisfy (11). In
Appendix C, we provide an analysis when the probing clas-
sifiers K% are set to the fixed choices in (12).

Theorem 1 (Error bound on elicited weights). Lety,w >
0 be such that the constraints in (11) are feasible for hypoth-
esis class H, for all £, 4. Suppose Algorithm 1 chooses each
classifier K% to satisfy (11), with EP [h%7] € [c, 1], V4, 4, for
some ¢ > 0. Let & be defined as in Assumption 1. Suppose

T L2mlog(Lm|H|/§ .
v > 2v/2Lmw and n* > %. Fix 6 € (0,1).

Then w.p. > 1 — § over draws of S™ and S** from y and D
resp., the coefficients & output by Algorithm 1 satisfies:

la—-af <

Lm|H m
0 Lm \/Llog(él) N Llog(%) +1/\/Lm ,
72 nt c2pval 5

where the term |H| can be replaced by a measure of capacity
of the hypothesis class H.

Because the probing classifiers are chosen using the training
set alone, it is only the sampling errors from the training set
that depend on the complexity of H, and not those from the
validation set. This suggests robustness of our approach to a
small validation set as long as the training set is sufficiently
large and the number of basis functions is reasonably small.

For the iterative plug-in method in Algorithm 3, we bound
the gap between the metric value £P[h] for the output clas-
sifier 1 on the true distribution D, and the optimal value.
We handle the case where the function v is known and its
gradient Vi can be computed in closed-form. The more
general case of an unknown 1) is handled in Appendix D.
The above bound depends on the gap between the estimated
class probabilities 7}*(x) for the training distribution and
true class probabilities 7} () = P(y = i|z), as well as the
quality of the coefficients & provided by the weight estima-
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tion subroutine, as measured by x(-). One can substitute
k(+) with, e.g., the error bound provided in Theorem 1.

Theorem 2 (Error Bound for FW-EG). Let £P[h] =
Y(CEIR),...,CP  [h]) for a known concave function 1 :
[0,1]™—R,, which is Q-Lipschitz and \-smooth. Fix
0 € (0,1). Suppose Assumption 1 holds, and for any linear
metric Y, B;CE[h], whose associated weight coefficients
is a with |&|| < B, w.p. > 1 — 6 over draw of S" and S*?,
the weight estimation routine in Alg. 1 outputs coefficients o
with ||a — &l < k(5,n', n'¥), for some function k(-) > 0.
Let B' = B+ VIm&(5/T,n",n"™). Then wp. > 1 —§
over draws of S and S¥™ from D and p resp., the classifier
h output by Algorithm 3 after T iterations satisfies:

max £[h] - EP[n) <
2QB'E, [||n"(x) — 7"(2)[h] + 4QVLm k(£, n",n"") +
)

mlog(m)log(n'¥) +log(m/6) =~ A
O ()\m\/ + T + Qy> .

nval

The proof in turn derives an error bound for the plug-in
classifier in Algorithm 2 for linear metrics (see App. B.2).

6. Related Work

Methods for closed-form metrics. There has been a va-
riety of work on optimizing complex evaluation metrics,
including both plug-in type algorithms (Ye et al., 2012;
Narasimhan et al., 2014; Koyejo et al., 2014; Narasimhan
et al., 2015b; Yan et al., 2018), and those that use con-
vex surrogates for the metric (Joachims, 2005; Kar et al.,
2014; 2016; Narasimhan et al., 2015a; Eban et al., 2017;
Narasimhan et al., 2019; Hiranandani et al., 2020). These
methods rely on the test metric having a specific closed-form
structure and do not handle black-box metrics.

Methods for black-box metrics. Among recent black-
box metric learning works, the closest to ours is Jiang
et al. (2020), who learn a weighted combination of sur-
rogate losses to approximate the metric on a validation set.
Like us, they probe the metric at multiple classifiers, but
their approach has several drawbacks on both practical and
theoretical fronts. Firstly, Jiang et al. (2020) require retrain-
ing the model in each iteration, which can be time-intensive,
whereas we only post-shift a pre-trained model. Secondly,
the procedure they prescribe for eliciting gradients requires
perturbing the model parameters multiple times, which can
be very expensive for large deep networks, whereas we only
require perturbing the predictions from the model. More-
over, the number of perturbations they need grows polyno-
mially with the precision with which they need to estimate
the loss coefficients, whereas we only require a constant
number of them. Lastly, their approach does not come with
strong statistical guarantees, whereas ours does. Besides
these benefits over (Jiang et al., 2020), we will also see in

Section 7 that our method yields better accuracies. Other re-
lated black-box learning methods include Zhao et al. (2019),
Ren et al. (2018), and Huang et al. (2019), who learn a
(weighted) loss to approximate the metric, but do so using
computationally expensive procedures (e.g. meta-gradient
descent or RL) that often require retraining the model from
scratch, and come with limited theoretical analysis.

Methods for distribution shift. The literature on distri-
bution shift is vast, and so we cover a few representative
papers; see (Frénay & Verleysen, 2013; Csurka, 2017) for a
comprehensive discussion. For the independent label noise
setting (Natarajan et al., 2013), Patrini et al. (2017) pro-
pose a loss correction approach that first trains a model with
noisy label, use its predictions to estimate the noise tran-
sition matrix, and then re-trains model with the corrected
loss. This approach is however tailored to optimize linear
metrics; whereas, we can handle more complex metrics as
well without re-training the underlying model. A plethora
of approaches exist for tackling domain shift, including clas-
sical importance weighting (IW) strategies (Sugiyama et al.,
2008; Shimodaira, 2000; Kanamori et al., 2009; Lipton et al.,
2018) that work in two steps: estimate the density ratios and
train a model with the resulting weighted loss. One such
approach is Kernel Mean Matching (Huang et al., 2006),
which matches covariate distributions between training and
test sets in a high dimensional RKHS feature space. These
IW approaches are however prone to over-fitting when used
with deep networks (Byrd & Lipton, 2019). More recent
iterative variants seek to remedy this (Fang et al., 2020).

7. Experiments

We run experiments on four classification tasks, with both
known and black-box metrics, and under different label
noise and domain shift settings. All our experiments use
a large training sample, which is either noisy or contains
missing attributes, and a smaller clean (and complete) vali-
dation sample. We always optimize the cross-entropy loss
for learning 7""(z) = P#(Y|z) using the training set (or
7' (x) ~ PP (Y|z) for some baselines), where the models
are varied across experiments. For monitoring the quality
of 7 and 7*¥, we sample small subsets hyper-train and
hyper-val data from the original training and validation data,
respectively. We repeat our experiments over 5 random train-
vali-test splits, and report the mean and standard deviation
for each metric. We will use *, **, and *** to denote that
the differences between our method and the closest baseline
are statistically significant (using Welch’s t-test) at a confi-
dence level of 90%, 95%, and 99%, respectively. Table 6
in App. H summarizes the datasets used. The source code
(along with random seeds) is provided on the link below.

Common baselines: We use representative baselines from

"https://github.com/koyejolab/fweg/


https://github.com/koyejolab/fweg/

Optimizing Black-box Metrics with Iterative Example Weighting

Table 2: Test accuracy for noisy label experiment on CIFAR-10.

Cross-entropy [train]  0.582 £ 0.007
Cross-entropy [val] 0.386 + 0.031
Learn-to-reweight 0.651 + 0.017
Plug-in [train-val] 0.733 4 0.044
Forward Correction 0.757 4+ 0.005
Fine-tuning 0.769 £+ 0.005
PI-EW 0.781 + 0.019

the black-box learning (Jiang et al., 2020), iterative re-
weighting (Ren et al., 2018), label noise correction (Patrini
et al., 2017), and importance weighting (Huang et al., 2006)
literatures. First, we list the ones common to all experiments.

1. Cross-entropy [train]: Maximizes accuracy on the
training set and predicts: ?L(I) € argmax; e, 1; (7).

2. Cross-entropy [val]: Maximizes accuracy on the vali-
dation set and predicts: ﬁ(x) € argmax;ci,,] nyl(z).

3. Fine-tuning: Fine-tunes the pre-trained 7" using the
validation data, monitoring the cross-entropy loss on the
hyper-val data for early stopping.

4. Opt-metric [val]: For metrics 1/(CP[h]), for which
is known, trains a model to directly maximize the metric
on the small validation set using the Frank-Wolfe based
algorithm of (Narasimhan et al., 2015b).

5. Learn-to-reweight (Ren et al., 2018): Jointly learns
example weights, with the model, to maximize accuracy
on the validation set; does not handle specialized metrics.

6. Plug-in [train-val]: Constructs a classifier h(z) €
argmax; w; 7y (z), where the weights w; € R are tuned
to maximize the given metric on the validation set, using
a coordinate-wise line search (details in Appendix F).

7. Adaptive Surrogates (Jiang et al., 2020): Learns a
weighted combination of surrogate losses (evaluated on
clusters of examples) to approximate the metric on the
validation set. Since this method is not directly amenable
for use with large neural networks (see Section 6), we
compare with it only when using linear models, and
present additional comparisons in App. H (Table 7).

Hyper-parameters: The learning rate for Fine-tuning is
chosen from 1e{=6¢-->=4}  For PI-EW and FW-EG, we
tune the parameter ¢ from {1,0.4, 1e~ {4321} The line
search for Plug-in is performed with a spacing of 1e~. The
only hyper-parameters the other baselines have are those for
training 7)'" and 7)*¥!, which we state in the individual tasks.

7.1. Maximizing Accuracy under Label Noise

In our first task, we train a 10-class image classifier for the
CIFAR-10 dataset (Krizhevsky et al., 2009), replicating the
independent (asymmetric) label noise setup from (Patrini
et al., 2017). The evaluation metric we use is accuracy. We
take 2% of original training data as validation data and flip
labels in the remaining training set based on the follow-
ing transition matrix: TRUCK — AUTOMOBILE, BIRD —

Table 3: Test G-mean for proxy label experiment on Adult.

Cross-entropy [train]  0.654 £ 0.002
Cross-entropy [val] 0.394 + 0.064
Opt-metric [val] 0.652 £+ 0.027
Learn-to-reweight 0.668 £+ 0.003
Plug-in [train-val] 0.672 £0.013
Forward Correction 0.214 £+ 0.004
Fine-tuning 0.631 + 0.017
Importance Weights 0.662 + 0.024
Adaptive Surrogates 0.682 4+ 0.002
FW-EG [unknown )]  0.685 £ 0.002™~
FW-EG [known 9] 0.685 + 0.001"

PLANE, DEER — HORSE, CAT <> DOG, with a flip proba-
bility of 0.6. For 7" and 7", we use the same ResNet-14
architecture as (Patrini et al., 2017), trained using SGD with
momentum 0.9, weight decay 1le ™, and learning rate 0.01,
which we divide by 10 after 40 and 80 epochs (120 in total).

We additionally compare with the Forward Correction
method of (Patrini et al., 2017), a specialized method for cor-
recting independent label noise, which estimates the noise
transition matrix T using predictions from 7 on the train-
ing set, and retrains it with the corrected loss, thus training
the ResNet twice. We saw a notable drop with this method
when we used the (small) validation set to estimate T.

We apply the proposed PI-EW method for linear metrics,
using a weighting function W defined with one of two
choices for the basis functions (chosen via cross-validation):
(i) a default basis function that clusters all the points together
¢%(x) = 1V, and (ii) ten basis functions ¢!,. .., $'",
each one being the average of the RBF kernels (see (7))
centered at validation points belonging to a true class. The
RBF kernels are computed with width 2 on UMAP-reduced
50-dimensional image embeddings (MclInnes et al., 2018).

As shown in Table 2, PI-EW achieves significantly better test
accuracies than all the baselines. The results for Forward
Correction matches those in (Patrini et al., 2017); unlike
this method, we train the ResNet only once, but achieve
2.4% higher accuracy. Cross-entropy [val] over-fits badly,
and yields the least test accuracy. Surprisingly, the sim-
ple fine-tuning yields the second-best accuracy. A possible
reason is that the pre-trained model learns a good feature
representation, and the fine-tuning step adapts well to the
domain change. We also observed that PI-EW achieves
better accuracy during cross-validation with ten basis func-
tions, highlighting the benefit of the underlying modeling in
PI-EW. Lastly, in Figure 2(a), we show the elicited (class)
weights with the default basis function (¢%f(z) = 1Vz),
where e.g. because BIRD — PLANE, the weight on BIRD
is upweighted and that on PLANE is down-weighted.

7.2. Maximizing G-mean with Proxy Labels

Our next experiment borrows the “proxy label” setup from
Jiang et al. (2020) on the Adult dataset (Dua & Graff, 2017).
The task is to predict whether a candidate’s gender is male,
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Table 4: Test F-measure for domain shift experiment on Adience.

Cross-entropy [train] 0.760 + 0.014
Cross-entropy [val] 0.708 £+ 0.022
Opt-metric [val] 0.760 = 0.014
Plug-in [train-val] 0.759 +£0.014
Importance Weights [KMM]  0.760 £ 0.013
Learn-to-reweight 0.773 + 0.009
Fine-tuning 0.781 + 0.014
FW-EG [unknown )] 0.815 4+ 0.013***
FW-EG [known 9] 0.804 + 0.015"*"

but the training set contains only a proxy for the true label.
We sample 1% validation data from the original training
data, and replace the labels in the remaining sample with
the feature ‘relationship-husband’. The label noise here is
instance-dependent (see Example 3), and we seek to maxi-
mize the G-mean metric: ¢(C) = ([, (Cii/ X, C’ij))l/m.

We train 7)'" and 7" using linear logistic regression using
SGD with a learning rate of 0.01. As additional baselines,
we include the Adaptive Surrogates method of (Jiang et al.,
2020) and Forward Correction (Patrini et al., 2017). The
inner and outer learning rates for Adaptive Surrogates are
each cross-validated in {0.1, 1.0}. We also compare with a
simple Importance Weighting strategy, where we first train
a logistic regression model f to predict if an example (z, y)
belongs to the validation data, and train a gender classifier
with the training examples weighted by f(z,y)/(1— f(z,v)).

We choose between three sets of basis functions (using cross-
validation): (i) a default basis function ¢*f(z) = 1Vaz,
(ii) %, ¢P¥, ¢"P%, where ¢P¥(x) = 1(zpw = 1) and
¢"™(x) = 1(xnpw = 1) use features ‘private-workforce’
and ‘non-private-workforce’ to form hard clusters, (iii) (bdef,
PV, PV p1", where ¢"°(z) = 1(xip = 1) uses the bi-
nary feature ‘income’. These choices are motivated from
those used by (Jiang et al., 2020), who compute surrogate
losses on the individual clusters. We provide their Adaptive
Surrogates method with the same clustering choices.

Table 3 summarizes our results. We apply both variants of
our FW-EG method for a non-linear metric 1), one where
1 is known and its gradient is available in closed-form,
and the other where v is assumed to be unknown, and is
treated as a general black-box metric. Both variants perform
similarly and are better than the baselines. Adaptive Sur-
rogates comes a close second, but underperforms by 0.3%
(with results being statistically significant). While the im-
provement of FW-EG over Adaptive Surrogates is small,
the latter is time intensive as, in each iteration, it re-trains
a logistic regression model. We verify this empirically in
Figure 2(b) by reporting run-times for Adaptive Surrogates
and our method FW-EG (including the pre-training time)
against the choices of basis functions (clustering features).
We see that our approach is 5x faster for this experiment.
Lastly, Forward Correction performs poorly, likely because
its loss correction is not aligned with this label noise model.

Table 5: Black-box fairness metric on the test set for Adult.

Cross-entropy [train]  0.736% 0.005
Cross-entropy [val] 0.610 £ 0.020
Learn-to-reweight 0.729 + 0.007
Fine-tuning 0.738+£ 0.005
Adaptive Surrogates  0.812 4 0.004
Plug-in [train-val] 0.812 £ 0.005
FW-EG 0.822 + 0.002"~

7.3. Maximizing F-measure under Domain Shift

We now move on to a domain shift application (see Ex-
ample 4). The task is to learn a gender recognizer for the
Adience face image dataset (Eidinger et al., 2014), but with
the training and test datasets containing images from differ-
ent age groups (domain shift based on age). We use images
belonging to age buckets 1-5 for training (12.2K images),
and evaluate on images from age buckets 68 (4K images).
For the validation set, we sample 20% of the 6-8 age bucket
images. Here we aim to maximize the F-measure.

For 7" and 7)*¥, we use the same ResNet-14 model from
the CIFAR-10 experiment, except that the learning rate is
divided by 2 after 10 epochs (20 in total). As an additional
baseline, we compute importance weights using Kernel
Mean Matching (KMM) (Huang et al., 2006), and train the
same ResNet model with a weighted loss. Since the image
size is large for directly applying KMM, we first compute
the 2048-dimensional ImageNet embedding (Krizhevsky
et al., 2012) for the images and further reduce them to 10-
dimensions via UMAP. The KMM weights are learned on
the 10-dimensional embedding. For the basis functions,
besides the default basis ¢*'(z) = 1Vz, we choose from
subsets of six RBF basis functions ¢!, ..., #°, centered at
points from the validation set, each representing one of six
age-gender combinations. We use the same UMAP embed-
ding as KMM to compute the RBF kernels.

Table 4 presents the test F-measure values. Both variants of
FW-EG algorithm provide statistically significant improve-
ments over the baselines. Both Fine-tuning and Learning-
to-reweight improve over plain cross-entropy optimization
(train), however only moderately, likely because of the small
size of the validation set, and because these methods are not
tailored to optimize the F-measure.

7.4. Maximizing Black-box Fairness Metric

We next handle a black-box metric given only query access
to its value. We consider a fairness application where the
goal is to balance classification performance across multi-
ple protected groups. The groups that one cares about are
known, but due to privacy or legal restrictions, the protected
attribute for an individual cannot be revealed (Awasthi et al.,
2021). Instead, we have access to an oracle that reveals the
value of the fairness metric for predictions on a validation
sample, with the protected attributes absent from the train-
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Figure 2: (a) Elicited (class) weights for CIFAR-10 by PI-EW for the default basis (Sec. 7.1); (b) Run-time for FW-EG and Adaptive
Surrogates (Jiang et al., 2020) vs no. of grouping features on proxy label task (Sec. 7.2); (c) Effect of quality of the base model 7" on
Adult (Sec. 7.2): as the base model’s quality improves, the test accuracies of PI-EW also improves; (d) Effect of the validation set size on
Adience (Sec. 7.3): PI-EW performs better than fine-tuning even for small validation sets, while both improve with larger ones.

ing sample. This setup is different from recent work on
learning fair classifiers from incomplete group information
(Lahoti et al., 2019; Wang et al., 2020b), in that the focus
here is on optimizing any given black-box fairness metric.

We use the Adult dataset, and seek to predict whether the
candidate’s income is greater than $50K, with gender as the
protected group. The black-box metric we consider (whose
form is unknown to the learner) is the geometric mean of
the true-positive (TP) and true-negative (TN) rates, evalu-
ated separately on the male and female examples, which
promotes equal performance for both groups and classes:

gD [h] _ (TPmale [h] TNmale [h]) TPfemale[h] TNfemale [h]) 1/4 .

We train the same logistic regression models as in previous
Adult experiment in Section 7.2. Along with the basis func-
tions ¢%f, pP¥ and ¢"" we used there, we additionally in-
clude two basis ¢ and ¢“ based on features ‘relationship-
husband’ and ‘relationship-wife’, which we expect to have
correlations with gender.> We include two baselines that can
handle black-box metrics: Plug-in [train-val], which tunes
a threshold on 7)'* by querying the metric on the validation
set, and Adaptive Surrogates. The latter is cross-validated
on the same set of clustering features (i.e., basis functions
in our method) for computing the surrogate losses.

As seen in Table 5, FW-EG yields the highest black-box met-
ric on the test set, Adaptive Surrogates comes in second, and
surprisingly the simple plug-in approach fairs better than the
other baselines. During cross-validation, we also observed
that the performance of FW-EG improves with more basis
functions, particularly with the ones that are better corre-
lated with gender. Specifically, FW-EG with basis functions
{p% gPV PV pW phs) achieves approximately 1% bet-
ter performance than both FW-EG with ¢%' basis function
and FW-EG with basis functions {¢%f, ¢P¥ "%},

7.5. Ablation Studies

We close with two sets of experiments. First, we analyze
how the performance of PI-EW, while optimizing accuracy

The only domain knowledge we use is that the protected group
is “gender”; beyond this, the form of the metric is unknown, and
importantly, an individual’s gender is not available.

for the Adult experiment (Section 7.2), varies with the qual-
ity of the base model 7)'*. We save an estimate of 7)'" after
every 50 batches (batch size 32) while training the logistic
regression model, and use these estimates as inputs to PI-
EW. As shown in Figure 2(c), the test accuracies for PI-EW
improves with the quality of 7)'" (as measured by the log loss
on the hyper-train set). This is in accordance with Theo-
rem 2. One can further improve the quality of the estimate
1" by using calibration techniques (Guo et al., 2017), which
will likely enhance the performance of PI-EW as well.

Next, we show that PI-EW is robust to changes in the vali-
dation set size when trained on the Adience experiment in
Section 7.3 to optimize accuracy. We set aside 50% of 68
age bucket data for testing, and sample varying sizes of vali-
dation data from the rest. As shown in Figure 2(d), PI-EW
generally performs better than fine-tuning even for small
validation sets, while both improve with larger ones. The
only exception is 100-sized validation set (0.8% of training
data), where we see overfitting due to small validation size.

8. Conclusion and Discussion

We have proposed the FW-EG method for optimizing black-
box metrics given query access to the evaluation metric on
a small validation set. Our framework includes common
distribution shift settings as special cases, and unlike prior
distribution correction strategies, is able to handle general
non-linear metrics. A key benefit of our method is that it
is agnostic to the choice of 7', and can thus be used to
post-shift pre-trained deep networks, without having to re-
train them. We showed that the post-shift example weights
can be flexibly modeled with various choices of basis func-
tions (e.g., hard clusters, RBF kernels, etc.) and empirically
demonstrated their efficacies. We look forward to further
improving the results with more nuanced basis functions.
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