
A Voice-Activated Switch for Persons with Motor and Speech Impairments:
Isolated-Vowel Spotting Using Neural Networks

Shanqing Cai1, Lisie Lillianfeld1, Katie Seaver1, Jordan R. Green1,2,3, Michael P. Brenner1,3,
Philip C. Nelson1, D. Sculley1

1Google Research, USA
2MGH Institute of Health Professions, USA

3Harvard University, USA

Abstract

Severe speech impairments limit the precision and range of
producible  speech  sounds.  As  a  result,  generic  automatic
speech  recognition  (ASR)  and  keyword  spotting  (KWS)
systems  fail to accurately recognize the utterances produced
by  individuals  with  severe  speech impairments.  This  paper
describes  an  approach  in  a simple  speech  sound,  namely
isolated open vowel (/a/), is used in lieu of more motorically-
demanding utterances.  A neural  network (NN) is trained to
detect  the isolated open vowel uttered by  impaired speakers.
The  NN  is  trained  with  a  two-phase  approach.  The  pre-
training phase uses samples from unimpaired speakers along
with samples of background noises and unrelated speech; then
the fine-tuning phase uses samples of vowel samples collected
from individuals with speech impairments. This model can be
built into an experimental mobile app to act as a switch that
allows users to activate preconfigured actions such as alerting
caregivers. Preliminary user testing indicates the vowel spotter
has  the  potential  to  be  a  useful  and  flexible  emergency
communication  channel  for  motor-  and  speech-impaired
individuals.
Index  Terms:  Speech  impairment,  keyword  spotting,
augmentative and alternative communication

1. Introduction

Individuals with severe speech and motor impairments have
limited  options  for  communicating  and  accessing  life-
improving  technologies.  Although  automatic  speech
recognition (ASR) technologies would be of great use to these
individuals, it is not a feasible option when speech is limited
to the production of only a few vocalizations [1].  Assistive
devices  that  require  physical  activation  may  also  be
unsatisfactory  when  movement  is  severely  restricted,  e.g.,
during the advanced stages of neurological diseases such as
amyotrophic lateral sclerosis (ALS). In these cases, alternative
modes  of  switch  activation  have  been  explored,  such  as
camera-  and  electromyography-based  approaches  [2-3],  as
well as approaches based on non-speech vocalization [4-6].

Voice-activated  interfaces  that  recognize  vocalizations
from a  distance  do not  occupy the  eyes  or  hands  and are,
therefore,  attractive  for  individuals  with  limited  speech,
mobility,  and  dexterity  [7-8].  Recent  advances  in  speech
technology  have  made  voice-activated  interfaces  more
ubiquitous.  Users’  utterances  of  keywords  such  as  “OK

Google”  are  detected  by  continuously-running  detectors
against background noise [9-11]. In this study, we describe a
speaker-independent, voice-activated switch that is triggered
by the isolated open vowel  /a/.  We test the efficacy of the
model for activating call-for-help signals. The open vowel ( /a/
in  phonological  notation)  sound  is  chosen  for  its  motoric
simplicity. /a/ is easy to produce through simple jaw opening
movements with minimal demands on other articulators such
as  the  tongue,  lips,  and  velum.  Previous  studies  showed
dysarthric  speakers  produce  open  vowels  with  greater
precision than mid and closed vowels such as  /i/  [12-13]. A
final reason for choosing the vowel  /a/ is its relatively high
sound intensity among vowels and voiced consonants (e.g., /i/
and  /m/),  which leads  to a  higher signal-to-noise  ratio and
benefits the quality of signal detectors.

Despite  the  simplicity of  /a/,  we  cannot  use  a  detector
trained on the samples from unimpaired speakers directly on
impaired speakers, due to the phonatory abnormalities often
present  in  impaired  speakers  (e.g,  [14]).  We  describe  the
approach in which an NN is trained to achieve signal-detection
qualities for impaired voice inputs when faced with a limited
amount of data samples from the target speaker population.

Compared to studies aimed at improving the accuracy of
ASR systems on impaired speakers (e.g.,  [15]),  the  current
study  explores  the  alternative  approach  of  using  a  less
motorically demanding target utterance, in order to expand the
accessibility of  the  resultant communication aid  to  a  wider
range  of  speech-impaired  users.  Compared  to  vocalization
detectors that require sensors placed on the user’s body [5-6],
the vowel detector described in the current study is both more
convenient in that it requires no special sensor placement or
user  adaptation and more  accessible  due  to  its  use  of  the
commodity smart-phone platform.

2. Methods

2.1. Two-phase training and dataset

KWS  models  for  typical  speech  are  trained  with  a  large
number of positive examples (on the order of 10k-100k in [9-
11]). Due to the difficulty in recording from a larger number
of impaired speakers, the number of positive examples ( /a/)
available in this study is much smaller (<1k; see below). To
train a high-quality detector for the impaired /a/ sound, we use
a  two-phase  approach wherein  the first  phase trains  a  base
model on a larger corpus of positive examples from typical
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speakers and the second phase fine-tunes the base model on a
smaller corpus of positive examples from impaired speakers.
This  approach  is  similar  to  using  a  pre-trained  model  to
generate embedding vectors for sound, which has been shown
to be more data-efficient than starting from scratch in training
custom keyword classifiers [16].

As Table 1 shows, the pre-training phase uses the words
“on” and “up” from the Speech Commands dataset [17]. These
words are selected because they are the most similar to /a/ in
the Speech Commands dataset. In addition, we use 30 text-to-
speech voices from five  English  dialects  and both  genders
implemented  with  Tacotron  [18]  to  synthesize  samples  of
monosyllabic  sounds  similar  to  /a/.  Including  these
synthesized  samples  significantly  improves  the  validation
accuracy on  the  impaired speech samples  after  fine-tuning.
Using synthesized speech samples is not novel in the area of
custom KWS models [16].  Both types of positive examples
are augmented through mixing with noise examples at signal-
to-noise  ratios  of  30,  20,  and  10  dB,  in  addition to  pitch
shifting in the range of -2.5 to +2.5 semitones using the librosa
library [21].  This leads to a total  of 6.69 hours of positive
examples for the pre-training phase.

Table 1: Composition of the data used for pre-training.

Dataset name Description
Amount of data
train : validation : test 
(hours)

Positive subset

Speech  Commands
[17] subset

Words “on” and “up” 4.52† : 0.17 : 0.19

Synthesized speech
Words “ah”, “uh”, “um”, “I”
and  “R”  of 30  different
speech synthesizer voices

2.17† : 0.07 : 0.064

Positive subtotal 6.69 : 0.24 : 0.25

Negative subset

LibriSpeech Read speech [19] 40.0 : 5.0 : 5.0

Chime6
Conversation  (“dinner  party
scenario”) [20]

13.1 : 1.6 : 1.6

Speech  Commands
subset

Other  words  from  Speech
Commands  [17]  (i.e.,  not
“on” and “up”)

19.0 : 2.4 : 2.3

Cafeteria noises Cafeteria noises 5.5 : 0.68 : 0.68

Other noises Background noises 10.5 : 1.3 : 1.3

Music
Non-vocal  music  audio  of

various genres
34.0 : 2.0 : 1.4

YouTube audio
Non-speech  audio  tracks of
various YouTube videos

209.2 : 12.3 : 10.8

Negative subtotal 331 : 25.3 : 23.1

†: Includes augmented data

The composition of the  negative  dataset  for pre-training is
shown in the lower section of Table 1. It includes excerpts of
fluent,  read  speech  from the  LibriSpeech  dataset  [19]  and
casual, spontaneous speech from the Chime6 dataset [20]. No
effort is made to filter sounds that resemble “ah” from these

negative speech samples. This is based on the rationale that
the  trained  NN  should  learn  to  ignore  such  sounds  in
connected speech by using the surrounding acoustic context.
In addition, the remaining words from the Speech Commands
dataset are included in the speech subset of the negative set.
The non-speech examples of the negative dataset consists of
excerpts from five different datasets of environment sounds
and  other  types  of  non-speech  sounds.  These  include
recordings  made  in  noisy  cafeterias,  indoor  and  outdoor
environments,  music  sounds  of  various  genres,  and  non-
speech audio  tracks  of  200+  hours  of  YouTube videos.  In
addition to being used for pre-training, this negative dataset is
also joined with the dataset from atypical speakers to subserve
the fine-tuning phase.

As shown in Table 2, the fine-tuning phase uses a dataset
of the 717 examples (0.20 hours) of the /a/ vowel and similar
isolated monosyllabic utterances containing open vowels ( / /ʌ ,
/ m/ʌ ,  / p/ʌ ,  / /ɑ˞ )  collected  from  138  adults  with  speech
impairments  (age: 49±12; gender: 45F, 92M, 1 unknown)  in
collaboration with Project  Euphonia.  Data  is collected only
after  explicit  consent  has  been  granted  by  individuals  to
provide  speech  samples  for  the  purpose  of  research  and
improving speech-related technologies. We provide users with
clear information on the purpose of the data  collection and
scope of research. The severity of the speech impairments of
these  138  individuals  are  rated  by  three  certified  speech-
language pathologists (SLPs). Two of the speakers are rated as
profound, 47 severe, 45 moderate, 38 mild, and the remaining
six  close-to-typical.  Hence  a  majority  of  these  speakers
(68.1%) have a severity rating of moderate or higher.

Table 2: The underlying diseases of the impaired speakers
used for fine-tuning. 

Underlying
disease

# of speakers
(vowel 
samples)

Underlying disease
# of speakers 
(vowel 
samples)

ALS 48 (292) Cerebral palsy 28 (175)

Parkinson’s disease 16 (18) Down syndrome 14 (17)

Speech  in  hearing
loss

6 (37) Muscular dystrophy 4 (40)

Frederich's Ataxia 4 (27) Vocal fold paralysis 3 (12)

Spinal  muscular
atrophy

2 (20) Cleft palate 2 (14)

Stroke 2 (7) Ataxia telangiectasia 1 (18)

Primary  lateral
sclerosis

1 (12)
Childhood apraxia of
speech

1 (12)

Brain tumor 1 (11)
Vagal  nerve
stimulator usage

1 (1)

Idiopathic  familial

torsion dystonia
1 (1) Multiple sclerosis 1 (1)

Traumatic  brain
injury

1 (1)
Neuromuscular
disorder
(unclassified)

1 (1)

Total 138 (717)

No additive-noise or pitch-shift augmentation is performed on
this  relatively  small  positive  set.  To  compensate  for  the
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approximately 10x smaller amount of positive data in the fine-
tuning phrase relative to that in the pre-training phrase, the
positive examples from impaired speakers are oversampled by
a factor of 10 in the fine-tuning phrase. All training examples
are cropped into non-overlapping 1-second snippets consistent
with the Speech Commands dataset [17]. The 1-second audio
snippets  are  converted  to  a  log-Mel  spectrogram  with  43
temporal bins (46.4-ms wide Blackman window with 23.2-ms
stride) and 80 Mel frequency bins covering 20 - 5000 Hz. This
time window, which is slightly longer than what is used in
typical KWS systems [9-11], is selected based on the static
articulatory gesture and the resulting slow-varying spectrum of
the  target  open  vowels.  Each  log-Mel  spectrogram  is
normalized to a mean of 0 and standard deviation of 1.

2.2. Neural-Network Architecture and Training

Figure 1 is a schematic representation of the convolutional NN
(CNN)  trained  to  classify  the  43x80-shaped  spectrogram
inputs.  The  convolutional  architecture  has  been  used
successfully for KWS [11] and audio event detection [30]. The
model is a small CNN containing four 2D convolution layers
and associated max pooling layers as the feature extractor at
the bottom and a multilayer perceptron (MLP) at the top for
binary  classification.  Batch normalization [22]  and dropout
layers [23] are included in the CNN to counter overfitting. The
2D convolution and Dense layers use the exponential linear
units (elu) activation [24]. The model is written in TensorFlow
2’s Keras API [25-26]. The training of the model uses TPUv2
2x2 configuration based on synchronous gradient updates [27]
under the ADAM optimizer [28] with an initial learning rate
of 5e-4 and a decay of 0.95 every 5000 steps.

Figure 1:  The architecture of the convolutional NN.

The objective function of training is the binary-cross-entropy
loss calculated on the predicted and actual labels. However,
the datasets in both phases of training are highly imbalanced,
with a negative-to-positive ratio of 50 or greater, which makes
unweighted  binary-cross-entropy  loss  a  poor  metric  of  the
actual  signal-detection quality of  the model.  Therefore,  we
measure the accuracy of the model by using false positive rate
(FPR) at  a false rejection rate (FRR) of 0.1.  The operating
point of FRR=0.1 is chosen based on testing with testers with
motor speech disorders. For reporting, we convert FPR to false
positives  per  hour  (FPPH)  to  better  reflect  the  real-world
performance of the model. Google Vizier [29] is used to tune
the  hyperparameter  of the  base  model  based on the FPPH
metric.  The  tuned hyperparameters  include  the numbers of
filters in the Conv2D layers,  the size  of  the  hidden Dense
layer, dropout rates, the type of nonlinear activation, and the
initial value and decay rate of the learning rate. For each set of

hyperparameters, a total of 50 training epochs is performed. At
the end of the 50 epochs,  the epoch with the lowest (best)
FPPH metric is chosen. The final model has 528k weights.

Due to scarcity of the positive dataset in the fine-tuning
phase, we join the positive examples from impaired speakers
with the negative data and randomly split the data into 4 folds
for cross-validation. The folds contain non-overlapping sets of
speakers.  Hyperparameters  including  the  fine-tuning  initial
learning rate and learning-rate decay are tuned with Vizier on
the  cross-validation  sets.  The  result  of  the  tuning  is  then
evaluated on the  negative  test  set  joined with  the  positive
folds. The resulting ROCs from these test folds are averaged
to give rise to the final results (Figures 2-3).

2.3. On-device Inference and Android App

In order to turn the NN-based vowel detector into a useful
call-for-assistance mechanism for users with disabilities, we
create  a  cost-effective  and  portable  solution  based  on  an
Android  app.  Once  set  up  by  a  caregiver,  the  app  runs
continuously so the user can use it independently. The trained
model is  converted to the  TFLite  format and performs on-
device inference at a rate of 4 Hz.

Each  detections  of  the  positive  event  ( /a/)  triggers  a
preconfigured action such as messaging a caregiver to call for
attention. To reduce the effective false-positive rate, the app
can be configured to activate actions only when two positive
events happen within a 10-second time window. Quantitative
testing results and qualitative feedback is obtained from held-
out test speakers under their informed consent.

3. Results

3.1. Signal-Detection Quality

Figure  2:   Test  ROC curves  for  detecting  /a/ produced by
impaired speakers, with and without pre-training on data from
typical speakers.

Compared with training the  /a/ detector from scratch on the
relatively small number of positive examples from impaired
speakers, performing training from a base model pre-trained
on a larger corpus of positive  /a/-like examples from typical
speakers leads to substantial improvement. As Figure 2 shows,
the FPPH at the operating point of FRR=0.1 from pre-training
followed by fine-tuning is 2.9, which is 5.5x lower (better)
compared to training from scratch (16.0). This underscores the
importance  of  starting  from  properly  initialized  weights
through pre-trained checkpoint under the scenario of limited
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training data, an observation consistent with previous results
of training custom KWS models [16].

Figure  3:  ROC curves for the trained /a/ detector evaluated
on different negative subsets. The non-speech subset includes
all categories without discernible speech in Table 1 (combined
category of cafeteria, sound of silence, music, and YouTube
audio.) The other subsets include different styles of  speech,
including LibriSpeech, Chime6 and Speech Commands. Each
curve is an average from the 4-fold cross-validation.

To analyze  the  false-positive rates under different  types  of
acoustic background, we plot the ROCs curves for different
subsets of the negative examples in Figure 3. When only the
non-speech negative examples (cafeteria noise,  environment
sounds, music, and YouTube audio tracks) are evaluated, the
FPPH is  substantially lower  (0.61)  compared to  the  FPPH
computed on all negative data (2.9). Among the three speech-
type negative subsets, the LibriSpeech, i.e, fluent read speech
shows  the  least  confusability  with  the  positive  examples
(FPPH=3.4).  In  comparison,  Chime6  (casual  speech  in
household  settings)  and  Speech  Commands  (short  isolated
words) show much greater confusability. Speech Commands
shows the highest FPPH (15.4). Error analysis indicates that
isolated monosyllabic  words  with  vowels  that  resemble  /a/
from  the  Speech  Commands  dataset  (e.g.,  “house”  and
“wow”) contributed the highest portion of the false positives.

3.2. On-Device Inference and User Testing

After converting to the TFLite format, the model runs at  a
sufficiently short latency (mean±SD: 26.4±0.1 ms) for real-
time inference on a Pixel 4a  phone. Five adults (four with
ALS and one with CP, 1F4M) who had moderate to severe
dysarthria but retained the ability to produce  the vowel  /a/
participated in the testing sessions. The data from these test
speakers was not used in the training or tuning of the model.
Each participant is introduced to the concept of the /a/ detector
and its potential  uses.  The experimenter performed a  quick
demonstration  of  the  /a/ sound  (<2  minutes).  Then  each
participant practiced the  /a/ sound a few times. Then 20-30
utterances of the /a/ vowel are collected with the phone placed
0.5 m in front of the user. The FRR of the model on the test
data from these speakers had a median of 0.103 (mean±SD:
0.168±0.065) at the operating point of FRR=0.1 calibrated on
the  validation  data.  Each  testing  session  lasted  for  20-30
minutes,  during  which  a  small  number  of  false  positives
occurred due to the experimenter uttering filler words such as
“uh”.  No  other  background noises  triggered false  positives
during the test sessions.

The use case of the app is to activate call-for-help signals
through text messages or HTTP requests to an in-house home-
automation server.  Due  to  the  relatively  high rate  of  false
positives,  the  app  runs  under  a  mode  that  requires
confirmation  through  repeated  activation  of  the  model.
Specifically, the user must use the  /a/ sounds to trigger two
positive detections by the model within a time window of 10
seconds in  order to  activate  the  output action.  A  detection
without an ensuing detection within 10 s was ignored. All five
test participants are able to activate the output actions through
repetition successfully. One of the test participants is currently
using  this  app  as  a  call-for-help  mechanism  daily  on  a
voluntary basis at the time of this writing and has been doing
so over three months. 

4. Discussion

We trained a CNN to detect isolated open vowels produced by
individuals with speech impairments. We are able to improve
the signal-detection quality of our model through pre-training
on a large corpus of typical voices followed by fine-tuning on
impaired samples. Like typical KWS systems, this model has
the  benefit  of  speaker  independence,  working  for  users
without requiring further  tuning. User testing in a real-world
setting  demonstrates  that  this  vowel  detector  enables
communication such as calling for attention from caregivers.
Compared with camera-based devices (e.g., [2]), such a voice-
triggered  device  is  less  prone  to  misplacement  and  less
sensitive to lighting conditions. For the call-for-assistance use
case, this is particularly important at nighttime.

The signal-detection specificity of the model is 1-2 orders
of  magnitude  lower  compared to  KWS  systems trained on
large  corpora of  typical  speech [9-11].  The  reason for this
difference is two-fold. First, in order to reduce the difficulty of
articulation, we choose a sound less complex and less specific
compared to  typical  keywords (e.g.,  “OK Google”).  These
open vowels occur in natural conversational speech as filler
words. This is a tradeoff we made for the accessibility of such
a detection system at the cost of specificity. Second, compared
with the data used to train KWS systems for typical speech,
we have two orders of magnitude less training data. Thus, it is
not  meaningful  to  directly  compare the  signal-detection
quality of our open-vowel detector and typical KWS sytems.

Future  directions  include  training  detectors  for  other
simple sounds producible by severely-impaired speakers, such
as /m/. A multi-class vowel detector can enable use cases such
as coding different actions using sound sequences. Individuals
with certain conditions often rely on assisted breathing devices
such  as  BiPap,  which  significantly  alters voice  quality.
Training a  model tolerant to such alterations will  make the
system accessible to these individuals. In the meantime, it is
also  worth  exploring  the  adaptation  of  KWS  with  typical
keywords such as “OK Google” for less-impaired speakers. 
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