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Abstract

We propose a number of potential approaches to enable Sales Lift measurement in a privacy-safe and
secure manner. We discuss these approaches in the context of digital publisher media channels, but in theory
these approaches can be extended to most types of media channels that has the ability to link media exposure
with outcomes. We discuss Sales Lift measurement both in the context of single publisher and multi-publisher
scenarios andweigh the trade-off of the different solutions in terms of utility, privacy, security, and computation
costs.

1 Introduction

There is an advertiser-led industry initiative to develop a neutral, cross-media measurement system that will
address advertiser needs, provide a global framework for consistency and allow for local market flexibility to
address market-level needs. Called the cross-media measurement framework (XMM), this initiative is being
developed under the auspices of the World Federation of Advertisers (WFA, (14)), in combination with national
advertiser associations and global advertisers. See (13) for a more detailed overview of this initiative.

XMM is intended to provide a framework fromwhich the publisher data, advertiser and/or third party outcomes
data can be bought together in a privacy-safe and securemanner, to enable measurement of ads effectiveness.
There is an effort to develop XMM solutions for brand measurement, such as Reach/Frequency. (8) outlines a
privacy-centric approach for cross-publisher Reach and Frequency estimation. Aside fromBrandmeasurement,
there is also outcomes-based measurement, examples of which include multi-touch attribution, Sales Lift and
MediaMixModels. See for example (7), which proposes an approach formeasuring lift in a privacy-safemanner,
based on A/B experiments.

Offline sales based outcomes is of particular interest to advertisers. Often, advertisers would like to measure
the incremental offline sales that occurs due to running an online ad campaign. This is a challenge as the offline
sales data needs to be linked with the online ad campaign data, which is a non-trivial task.
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If the offline sales occurs in retailer channels the advertiser does not own, then gaining access to the sales
data itself is another challenge. A prominent example of this is Consumer Package Goods advertisers, where
the sales of such products can occur in channels such gas stations, supermarkets and pharmacies. Such
advertisers rely on third party data aggregators to provide the sales data and/or to also provide the sales lift
measurement. Such third party data providers are referred to as TDP in this paper.

One approach to sales lift measurement is geo-based experiments (i.e. (15)). An advantage of this approach is
that it only relies upon aggregate sales data being provided by the third-party. However, there is setup complexity
and costs and also opportunity costs with running geo-based experiments.

This paper presents an outline of different potential approaches to enable a secure sales lift solution within the
XMM framework. However, the potential approaches outlined could also be applicable for lift measurement
outside of the XMM framework. For example, when a publisher and TDP would want to work together directly
to enable other types of lift measurement. Section 2 will briefly go through an overview of the XMM framework,
including the privacy and security considerations. Section 3 provides a short introduction to sales lift measure-
ment and some common solutions currently used by the industry today. Section 4 goes through the notation
that will be used through-out the paper. Section 5 then walks through the proposed solutions for the scenario
where we have one publisher and one TDP. Section 6 goes through the more complex scenario where we have
multiple publishers and one TDP. We conclude with a short remarks in Section 7.

2 Overview of Cross-Media Measurement Initiative

The goals of the XMM initiative is to connect data from advertisers, publishers and other third-parties on a
standardized platform that will be used as the basis for cross-media measurement. We refer to WFA as the
organization responsible for administrating the XMM framework. WFA will develop standards on data and
methods, thus making cross-media measurement more comparable. Although WFA is primarily addressing
cross-media measurement, there are benefits to using it also for single media measurement, on a platform
where data and methods can be standardized.

Partners will each contribute their assets to a central system but will still retain control and ownership of their
own assets. WFAwill maintain a common ID framework that will allow data from the various partners to be con-
nected together for measurement. The likelihood of re-identification of users increases when partners datasets
are combined, and technical measures, such as multi-party computation (6), are put in place to limit such re-
identification.

Additional methods such as encryption, k-anonymity and differential privacy will be further employed to ensure
measurement is done in a privacy safe and secure manner and no data in the clear is leaked across partners.
Depending on the measurement use-case, different technical and infrastructural execution will be needed.
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3 Sales Lift Measurement

In Sales Lift measurement, the advertiser is interested in measuring the incremental sales that occur due to
an ad campaign that was placed on a digital publisher’s web property. In this paper, we focus on the situation
where the advertiser’s products are sold through various retail channels and the advertiser relies upon a third-
party to provide their sales data. Consumer Packaged Goods manufacturers are one set of advertisers where
this is the case. We henceforth refer to such third-party data providers as TDPs.

Current Sales Lift solutions depend on the publisher sending in their ad impression data into a so called ”clean
room”. The TDP also sends their sales data into the secure clean room. We assume that there is sufficient
match rates between the publisher’s data and the TDP’s data to make measurement feasible. Within the clean
room, both the ad exposure data and sales outcome data are operated on in the clear and various lift estima-
tors can be used. Standard lift estimators that are used included matched ANCOVA, Doubly Robust Inverse
Propensity Weighted (DRIPW) and Targeted Maximum Likelihood (TMLE). See (5) for a comparison of various
lift estimators that are used in Sales Lift measurement.

In the solution described above, the data is allowed to be in the clear within the clean room. However, due to
security considerations with the XMM framework, even within a clean room, the data is not allowed to be in the
clear and must have some form of differential privacy and/or encryption applied to it. This makes for a more
secure and but more challenging measurement environment.

We limit the scope of this paper to looking at only one type of lift estimator, that is, the Doubly-robust Inverse
Propensity Weighted estimator, or DRIPW. We don’t consider matching based estimators such as matched
ANCOVA, as the need to add differential privacy, greatly degrades the performance of such estimators. Match-
based methods are also not as efficient as non match-based methods and do not have the doubly robust prop-
erty.

We also assume that there is a mechanism provided as part of the WFA framework that would allow us to
connect the ad exposure data with the sales outcome data.

Lastly, we note that in CPG Sales Lift measurement, the sales data provided by the TDP is typically collected at
the household level, whereas the ad exposure data is at an ID or user level. In order to do measurement here,
the ID-level exposure data needs to be rolled up to the household level and a household is considered exposed,
if any of its household members is exposed. In such situations, we assumed that we have a scheme to go from
ID level ad exposure statuses to household level ad exposure statuses in a private and secure manner.

There may be contamination in terms of households being identified as unexposed when in reality it was ex-
posed, or vice-versa due to incomplete or poor match quality. Such contamination may have a large effect, but
we don’t concern ourselves with it within the scope of this paper.

4 Notation and Setup

In this section, we describe the setup and notation used throughout the rest of the paper. For IDs i = 1, . . . , n,
the publisher’s data consist of exposure indicators Ti ∈ {0, 1}, where Ti = 1 if ID i is exposed to the ad campaign
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and Ti = 0 otherwise, and covariatesXi related to ID i’s demographics and and media-related activity, such as
impressions on desktop and mobile platforms.

The data owned by the TDP consist of Yi, a binary or continuous sales outcome of interest, and covariates Zi

related to the ID’s prior purchase activity or other factors that could affect the ID’s purchasing behavior such
as demographics. There could be an overlap in the set of covariates in X and Z. An example of a binary sales
outcome Yi would be the indicator of whether ID i purchased a product in a given period of time after the ad
campaign. An example of a continuous sales outcome Yi would be the dollar amount spent on a product.

The DRIPW estimator to estimate the sales lift of the ad campaign on the outcome of interest is defined as
follows:

τ̂ =

n∑
i=1

ŵiτ̂i

where

τ̂i =
Ti · (Yi − m̂ (Zi, 1))

b̂ (Xi)
− (1− Ti) · (Yi − m̂ (Zi, 0))

1− b̂ (Xi)
+ m̂ (Zi, 1)− m̂ (Zi, 0) .

Function m̂ approximates the conditional expected outcome function m (z, t) = E [Y | Z = z, T = t] and b̂(Xi)

is the estimated propensity functionwhichmodels the conditional probabilities of exposure to the ad campaign.

For the Average Treatment Effect (ATE), we have ŵi = 1/n and for the Average Effect on the Treated (ATT), we
have ŵi = b̂ (Xi) /

∑n
j=1 b̂ (Xj).

5 Single publisher Scenario

We first consider the scenario with a single publisher and a single TDP. The extent of a publisher or TDP’s
universe of IDs can also be sensitive data, sowe further break out this scenario into two sub-scenarios. Whether
or not it would be alright to expose the list of IDs from one party to another party. Even if all data from the sender
is privatized, the need to match IDs can potentially expose the universe of IDs from the sender to the receiver.

We propose a statistical-privacy approach for the scenario where the publisher is allowed to send its data to
the TDP, exposing its list of IDs. We propose a private-computing approach (see (6) for details) for the scenario
where the partners would not want to expose its list of IDs.
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5.1 ID list can be exposed

5.1.1 Solution

Our proposed solution in this setting proceeds in three steps. First, the publisher sends its exposure indicators
to the TDP with differential private noise added. To do this, the publisher randomly flips the exposure bits Ti
with probability q, independently, producing privatized exposure indicators T̃i. These are sent to the TDP in
unencrypted form, thus exposing the publisher’s ID list to the TDP, but not the exact values of the exposure
indicators.

Second, the TDP fits an outcome model to predict the outcome Yi given Ti and Zi. For example, when Yi is
binary, the outcome model may be a logistic regression: Yi ∼ Bernoulli(pi) where

logit(pi) = α+ βTi + γ>Zi.

When Yi is continuous, the outcome model may be a linear regression:

Yi = α+ βTi + γ>Zi + εi εi ∼ N(0, 1).

Since the TDP does not have access to Ti but rather to the noisy indicators T̃i, this is an errors-in-variables
regression problem (see (9), (11)), which can be fitted using maximum likelihood (10) or pseudolikelihood ap-
proaches (2). After fitting the outcome model, the TDP plugs in Ti = 1 and Ti = 0 for each user to produce
a pair of predicted counterfactual outcomes, m̂(Zi, 1) and m̂(Zi, 0), which are needed to compute the DRIPW
estimator.

Finally, given estimates of the outcome model parameters, the TDP and publisher jointly compute the DRIPW
estimator. Noting that the DRIPW estimator consists of inner products between data from the publisher and
data from the TDP, the estimator can be computed securely via homomorphic encryption. (See (1)). This allows
the final estimate to be computed only on the encrypted data from the publisher and the TDP.

5.1.2 Estimation of the outcome model

Estimation of the outcome model parameters can proceed by maximum likelihood (ML) (10) or pseudolikeli-
hood (2). To maximize the full likelihood, we propose using the expectation maximization (EM) algorithm (4).
To maximize a pseudolikelihood, we propose a regression calibration (RC) approach (see (3)). Further details
can be found in the Appendix.

5.1.3 Bootstrap Confidence Interval

Confidence intervals are helpful for decision makers to understand the level of uncertainty in the sales lift es-
timates. We propose to compute nonparametric confidence intervals of both outcome model coefficients and
the doubly robust estimator of ATE through bootstrap resampling. Though bootstrapping could be computa-
tionally expensive, we found that with the scope of this paper bootstrap confidence intervals: (i) are generally
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applicable to various types of outcome models; (ii) enjoy high reliability, for instance, demonstrating desired
coverage probability. In our implementation, a confidence interval is computed with 500 bootstrap resampling
replicates.

5.1.4 Simulation Results

In this section, we shownumerical results on simulated data to demonstrate the performances of two candidate
methods. More details about the data generating process for the simulated data can be found in the Appendix.
Holding the same data generating process, the magnitude of DP-noise added to exposure indicators varies
from 5% to 40%. We consider three variants of applying either ML or RC estimation procedure. These variants
only differ in (i) whether the TDP would include propensity score as a covariate in outcome modeling; and (ii)
whether the publisher would send an exact or privatized version of propensity scores to the TDP. First, a variant
is called ”standard” if the propensity score is excluded from the outcome modeling. Between the remaining
two variants that take propensity score into outcome modeling, the ”exact” variant represents the option that
publisher sends the exact propensity scores estimated with the real exposure indicators and covariate data,
while the ”private” variant means sending propensity scores estimated with randomly flipped exposures (i.e.,
real exposures adding DP noise). For convenience, we will denote all these six approaches with abbreviations
ML-std, ML-exact, ML-private, RC-std, RC-exact, and RC-private. It is unlikely that the ”exact” variant would
be used in practise, but is included here for comparison purposes. Simulation results for continuous sales
outcome are shown in Fig 1, Fig 2 and Fig 3. Simulation results for binary sales outcome are shown in Fig 4, Fig
5 and Fig 6.

To compare the performances of the six candidate approaches, we focus on three metrics in the evaluation:
(i) bias in the estimator of treatment effect, (ii) actual coverage probability of confidence interval, and (iii) the
average width of the confidence interval. A candidate method performs reasonably well only if minimal or
no bias can be observed in ATE. Confidence interval provides a plausible range of the ground-truth lift value.
Any decision upon this range is statistically reliable only if the actual coverage probability of these intervals is
greater than or equal to the nominal level (e.g, 90%).

Under these simulation scenarios, all candidate methods show none or minimal biases in estimating the treat-
ment effect. When the magnitude of DP noise increases to as high as 0.4, the three RC approaches seem
to perform more robustly in terms of reducing biases. This is possibly because the RC approach is usually
not impacted by computational issues such as EM algorithm convergence that may occur in running the ML
procedure. The actual coverage probabilities of these bootstrap confidence intervals approximately align with
the desired coverage values. This implies that we can draw valid statistical decisions on sales lift estimates
even though the exposure indicators are privatized with a substantial amount of DP noises. An increased CI
width is expected because DP noise brings a higher level of uncertainty to estimating the outcome model. It is
also expected that the level of widening is monotonically increasing with the magnitude of DP noise. However,
excluding the two standard variants, we only observe at most 20% relative increase in CI width compared to
the one that is computed without flipping exposure bits. It is worth noting that the CI with the variant exact
or private is consistently narrower than the width with variant standard where no propensity score information
is utilized in outcome model. It is likely that estimating an outcome model with propensity scores enhances
the likelihood of correctly imputing a true exposure give the positive correlation between publisher propensity
scores and the true exposure indicators.

Google 6 / 29



Approaches For Secure Sales Lift Measurement

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Probability of bit-flipping

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

Bi
as

methods
RC-exact
RC-private
RC-std
ML-exact
ML-private
ML-std

Figure 1: Biases of ATE estimator under linear outcome scenario.

Another notable observation is that the amount of CI increase is much smaller in the treatment effect com-
pared to the CI increase in any coefficients of the outcome model (listed in Appendix). This is possibly due to
the doubly-robust property of the DRIPW estimator, but further investigations would need to be carried out to
confirm this.

Lastly, we note that sending exact or privatized propensity scores would not impact these three metrics. This
is likely due to a positive correlation between the two sets of propensity scores.

5.2 ID list can’t be exposed

If the ID list can’t be exposed, then a secure multi-party computation approach such as ”Private Join and Com-
pute” (see (12)) can be used to join the data from the publisher and the TPD. The result of this approach is a
joined dataset consisting of only the rows from the intersection of the data from the publisher and the TDP. In
order for this to work, the TDP’s covariates needs to be privatized, and/or coarsened in such a way that makes
difficult to re-identify a user based on the covariates alone.

The only necessary information from the publisher is the exposure status, which is easily privatized. For the
TDP’s covariates, which can consist of a mix of numeric and categorical data, it can be a little more challenging
to privatize the data without losing too much information. Coarsening is one possible approach. Another ap-
proach would be to transform data, say by applying Principal Components and only taking the first X principal
components. The exact impact of various types of privatization on the covariates and the trade-off between pri-
vacy andmodel prediction accuracy is still an open research topic. It would be expected that ML-basedmodels
would be better able to work with such privatized covariates and recover the salient information for the model
fitting.

At this point, with the joined dataset, the outcome models can be fitted by the TDP, following a similar process
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Figure 2: Coverage probabilities of ATE confidence interval under linear outcome scenario.
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Figure 3: Relative widths of ATE confidence interval under linear outcome scenario. The relative width is defined
as the average width of ATE CI when estimating outcomemodel with noisy exposures T̃ divided by the average
width of ATE CI when estimating outcome model without DP-noise.
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Figure 4: Biases of ATE estimator under logistic outcome scenario.
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Figure 5: Coverage probabilities of ATE confidence interval under logistic outcome scenario.
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Figure 6: Relative widths of ATE confidence interval under logistic outcome scenario. The relative width is
defined as the average width of ATE interval when estimating outcome model with noisy exposures T̃ divided
by the average width of ATE when estimating outcome model without DP-noise.

as in Section 5.1.

6 Multi-publisher Scenario

In themulti-publisher setting, we again have a single TDPwhich owns the sales-related predictors and outcome
data, but there are now multiple publishers, each with their own ad exposure data. We will continue to assume
a common ID space on which the publishers and TDP can join their data.

Estimation of marginal treatment effects for each individual publisher can proceed as in the previous section,
but interaction effects are now of interest as well. Assuming two publishers A and B for concreteness, we may
want to estimate the effect of exposure to publisher A and publisher B, the effect of exposure to publisher A
or publisher B, or the effect of exposure to publisher A but not publisher B. Sample size considerations will
determine which interaction effects can be estimated.

An issue that arises in themulti-publisher setting is the estimation of joint propensity scores. Let TA
i and TB

i be
the indicators of exposure to publisher A and publisher B, respectively, for user i, and let b(XA

i ) and b(XB
i ) be the

corresponding propensity scores, obtained by regressing TA
i on predictorsXA

i and regressing TB
i on predictors

XB
i . The indicator of exposure to both publishers is TA∩B

i ≡ TA
i T

B
i . Under the restrictive assumption of

independence, the propensity score for TA∩B
i is the product of themarginal propensity scores. However, absent

the independence assumption, it is no longer sufficient for each publisher to compute a marginal propensity
score. Instead, we must fit a model that predicts TA∩B

i fromXA
i andXB

i .

We propose that each publisher will send noisy exposure indicators T̃A
i and T̃B

i , which have been randomly
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flipped with some known probability, to the TDP or to a semi-trusted party managed by WFA, along with predic-
torsXA

i andXB
i . To preserve privacy, the predictors should have some form of privatization applied to it. This

could include dimension reduction, hashing, or other forms of aggregation.

TheTDPorWFAwill then fit a regressionmodel to estimate the true joint propensity score,P (TA∩B
i = 1|XA

i , X
B
i ).

However, the TDP or WFA does not have access to TA∩B
i , only T̃A∩B

i = T̃A
i T̃

B
i . Therefore, the TDP or WFAmust

fit a propensity score model using noisy exposure indicators.

In the following section, we outline a method for accomplishing this task: estimating a propensity score when
the exposure indicator (in this case, TA∩B

i ), has been flipped with some probability. We show that by applying a
simple adjustment factor, it is possible to accurately estimate the true propensity score evenwhen a substantial
amount of noise has been added to the exposure indicators.

6.1 Propensity score estimation from noisy exposure indicators

For a binary exposure indicator T ∈ {0, 1}, the goal is to estimate the probability that T = 1 as a function of
predictor variablesX. The exposures are randomly changed to their complementary values T = 0/1→ T̃ = 1/0

with probability 0 < q < 1/2 to obscure their original values. The obscured values {T̃i}ni=1 are then used to train
the predictive model.

Given an original y-value with probability p = Pr(T = 1 | X) and flip probability q, one has

p̃ = Pr(ỹ = 1) = p(1− q) + q(1− p)

with corresponding odds
õ =

p̃

1− p̃
=
o+ q − qo
1− q + qo

(1)

and o = p/(1− p) being the odds of the corresponding unperturbed probability. Inverting (1) one obtains

o =
õ(1− q)− q
1− q(1 + õ)

(2)

Thus, for any perturbed value õ in the range

q

1− q
< õ <

1− q
q

(3)

one can use (2) to determine its corresponding original unperturbed value o. A first-order approximation to (2)
is

log(o) =
log(õ)

1− 2q
. (4)

Knowing the value of log(õ), one can directly calculate log(o) from (2). However the value of log(õ) is never
known. It is estimated from the (perturbed) training data by some machine learning procedure. Errors in such
estimates of log(õ) are translated into errors in log(o) through (2).

This is illustrated in Figure 7. One thousand equispaced log(o) values were generated in the range −5 < log(o)

< 5. These values were transformed to perturbed log(õ) values using (1). In order to simulate estimation uncer-
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Figure 7: Transformed perturbed log-odds with uncertainty versus true log odds, for flip probability q = 0.3. Red
points represent exact transformation. Blue points represent first order approximation. (a) Full range of log
odds. (b) Zoomed-in view for extreme log odds.
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tainty, errors were then added log(õ)→ log(õ)+0.05·εwith ε generated from a standard normal distribution. The
result was transformed back to unperturbed values via (2). Note that log-odds is the natural scale for adding
errors since that is what most machine learning procedures directly estimate.

Figure 7(a) shows a plot of estimated log-odds versus true (original) log-odds on the perturbed scale for the
1000 points. Red points represent using the exact transformation (2) whereas the blue points use the first order
approximation (4). The black line represents equality. Both approaches are seen to fail for extreme log-odds
| log(o)| > 2. The former (blue) has low variance everywhere but is highly biased at the extremes. The latter
(red) is roughly unbiased everywhere but exhibits high variance at the same extreme estimated values. The
truncated predicted values shown at the vertical extremes represent õ values estimated to be outside the range
(3).

In the sales lift setting, we are likely to see severe class imbalance, since the number of users exposed to the
intersection of multiple publishers is dwarfed by the number of unexposed users. Figure 7(b) zooms in on
log(o) < −1.39 (p < 0.2). Neither the exact (2) nor approximate (4) transformation provide satisfactory results
in this case.

Both the exact transformation and first order approximation provide relatively accurate predictions in the central
log-odds range −2 . log(õ) . 2. This suggests a strategy of centering the log-odds before perturbation.
This can be arranged by selecting equal numbers of each class in the training sample or by weighting the
observations so that the sum of weights in each class are the same. Training is performed on the balanced
perturbed sample and the resulting estimates transformed using (2) or (4). Finally the transformed estimates
are uncentered using the known original imbalance.

Figure 8 shows the result of this strategy on the same data shown in Figure 7. The result is seen to be dramat-
ically improved accuracy even at the most extreme log-odds.

6.2 Simulation studies

Simulation experiments were conducted to ascertain the loss of accuracy due to perturbation of the exposure
indicators, and the effectiveness of the centering strategy to help mitigate it in the presence of highly unbal-
anced training samples. In all experiments the data had K = 10 predictor variables generated from a joint
normal distribution with covariance matrix elements cij = 1 − | i − j |/K. The training data sample size was
N = 30K. The sample size of 30K was chosen to illustrate the removal of bias, and not be representative of a
typical campaign size. The label change probability was q = 0.3. All models were evaluated on an independent
test data set of 30, 000 observations. All plots show a random subsample of 1, 500 test observations so as to
see details more clearly.

6.2.1 Linear model

In this study the true log-odds were taken to be a linear function of x

log
p(x)

1− p(x)
= β0 +

K∑
j=1

βjxj
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Figure 8: Transformed perturbed log-odds with uncertanity versus true log odds for asymmetric class counts
after class centering. Red points represent exact transformation. Blue points represent first order approxima-
tion.

with coefficients randomly generated from a uniform distribution βj ∼ U(−1, 1). The value of the intercept was
taken to be β0 = log(10) resulting in a global marginal class imbalance of Pr(y = 1)/Pr(y = 0) = 8.91.

The left frame of Figure 9 plots the true probability p(x) versus estimated probability p̂(x) using linear logistic
regression (GLM). The red line represents equality. The estimation process consists of applying GLM to per-
turbed the outcomes (q = 0.3) and then using (2) to recover estimates corresponding to the original scale. The
right frame shows corresponding results using the class centering strategy (Figure 9). GLM is trained on a per-
turbed sample with equal numbers of each of the two classes. Resulting estimates are transformed back to the
unperturbed scale (2) and then re-centered using the known class proportions in the original training sample.
The displayed average absolute error

AAE =
1

N

N∑
i=1

| p(xi)− p̂(xi) | (5)

is computed on aN = 30K test data set. Note that the axes in Figure 9 are plotted on the probability rather than
the log-odds scale so the large errors at the extremes seen in Figure 9 are less evident. The centering strategy
is seen here to reduce probability prediction error by almost a factor of two.

Figure 10 shows analogous results using gradient boosting (GBM) to estimate log-odds on the perturbed data.
As expected these estimates are somewhat less accurate than those of the correctly specified model (GLM)
seen in Figure 9. The centering strategy is still seen to provide some improvement.

Finally, Figure 11 shows corresponding results for random forest probability prediction. Both centered and non-
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Figure 9: True probability versus estimated probability using linear logistic regression (GLM) on perterbed (q =
0.3) linear log-odds model data. Left: no class centering. Right: with class centering.

0.70 0.80 0.90 1.00

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

Probability  Estimate

Tru
e  

Pr
ob

ab
ilit

y

GBM (8.94 0.3)   aae = 0.033

0.70 0.75 0.80 0.85 0.90 0.95

0.6
5

0.7
0

0.7
5

0.8
0

0.8
5

0.9
0

0.9
5

Probability  Estimate

Tru
e  

Pr
ob

ab
ilit

y

GBM (8.94 0.3)   aae = 0.028

Figure 10: True probability versus estimated probability using gradient boosting regression (GBM) on perturbed
(q = 0.3) linear log-odds model data. Left: no class centering. Right: with class centering.
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Figure 11: True probability versus estimated probability using random forest (RF) on perturbed (q = 0.3) linear
log-odds model data. Left: no class centering. Right: with class centering.

centered estimates are substantially less accurate that those of the other methods but centering still provides
substantial improvement.

6.2.2 Non-linear model

In this section the analysis of Section 6.2.1 is repeated on data simulated from a non-linear log-odds model.
All aspects are the same as above except that the true log-odds are a highly nonlinear function of the predictor
variables x. The simulated log-odds function is specified as

log
p(x)

1− p(x)
=

10∑
j=1

cj Bj(xj) / stdxj (Bj(xj) ) (6)

with the value of each coefficient cj being randomly drawn from a standard normal distribution. Each basis
function takes the form

Bj(xj) = sign(xj) |xj |rj (7)

with each exponent rj being separately drawn from a uniform distribution rj ∼ U(0, 2). The denominator in
each term of (6) prevents the suppression of the influence of highly nonlinear terms in defining log-odds.

Figures 12, 13 and 14 show the results for this nonlinear log-odds model analogous to Figs. 9, 10 and 11 respec-
tively for the linear model. In all cases the centering strategy substantially improved performance. Here none
of the estimationmethods is correctly specified. Asmight be expected gradient boosting (GBM) out performed
the linear log-odds model (GLM). Random forest probability prediction (RF) under achieved here.
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Figure 12: True probability versus estimated probability using linear logistic regression (GLM) on perterbed
(q = 0.3) non linear log-odds model data. Left: no class centering. Right: with class centering.
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Figure 13: True probability versus estimated probability using gradient boosting (GBM) on perterbed (q = 0.3)
non linear log-odds model data. Left: no class centering. Right: with class centering.
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Figure 14: True probability versus estimated probability using random forest (RF) on perturbed (q = 0.3) non
linear log-odds model data. Left: no class centering. Right: with class centering.

7 Remarks

There are many avenues of additional research identified in this paper that would need to be pursue in order
to build a fully operational secure sales lift solution under the XMM framework. For example, appropriate tech-
niques to privatize covariate data that would be used to build a joint propensitymodel and the trade-off between
privacy and model accuracy. The paper also makes many assumptions about the availability of functionality
that is yet to be built, for example, the common ID framework. However, it is hoped that enough of an outline
of potential approaches has been presented in this paper, to demonstrate that a secure sales lift measurement
solution is potentially feasible and within the range of statistical and computational techniques available today.
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9 Appendix

9.1 Expectation Maximization

The expectation-maximization (EM) algorithm obtains maximum likelihood estimates of parameters in a like-
lihood model with incomplete data. The algorithm iterates between computing the expected complete-data
likelihood at the current parameter estimates (the E step) and maximizing the expected complete-data likeli-
hood to update the parameter estimates (theM step). In this sectionwe explain how the EMalgorithmproceeds
for secure sales lift when the outcome model is a linear regression or logistic regression.

First, suppose a continuous outcome model: Yi = α + βTi + γ>Zi + εi. The complete likelihood model for
(Yi, Ti, T̃i) given Zi is determined by:

• the conditional distribution of Yi given Ti and Zi, specified by the regression model,

• the conditional distribution of T̃i given Ti, specified by the bit-flipping noise model,

• the conditional distribution of Ti given Zi, for which we assume a logistic regression model: logit(P (Ti =

1|Zi)) = η>Zi.

Due to the built-in conditional independences of our problemsetting, the joint distribution factors as f(Yi, Ti, T̃i|Zi) =

f(Yi|Ti, Zi)f(T̃i|Ti)f(Ti|Zi), so the likelihood is fully specified. The second term, f(T̃i|Ti), can be ignored in pa-
rameter fitting because it does not involve any unknown parameters.

The complete-data log likelihood is

`(α, β, γ, σ2, η|Ti, T̃i, Yi, Zi) =

− n

2
log σ2 −

n∑
i=1

1

2σ2
(Yi − α− βTi − γ>Zi)

2

+

n∑
i=1

Ti log

(
exp(η>Zi)

1 + exp(η>Zi)

)
+

n∑
i=1

(1− Ti) log

(
1

1 + exp(η>Zi)

)

E step: Let θ denote the unknown parameters, θ = (α, β, γ, η). The expectation of the above likelihood at current
parameter estimates θ(t), conditional on the observed data (Yi, T̃i), is

E(`(α, β, γ, σ2, η|Ti, T̃i, Yi)|T̃i, Yi, θ(t)) =

− n

2
log σ2 −

n∑
i=1

1

2σ2
(Yi − α− β − γ>Zi)

2(µ1i(θ
(t))T̃i + µ0i(θ

(t))(1− T̃i))

−
n∑

i=1

1

2σ2
(Yi − α− γ>Zi)

2((1− µ1i(θ
(t)))T̃i + (1− µ0i(θ

(t)))(1− T̃i))

+

n∑
i=1

(µ1i(θ
(t))T̃i + µ0i(θ

(t))(1− T̃i)) log

(
exp(η>Zi)

1 + exp(η>Zi)

)

+

n∑
i=1

((1− µ1i(θ
(t)))T̃i + (1− µ0i(θ

(t)))(1− T̃i)) log

(
1

1 + exp(η>Zi)

)
,
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where

µ1i(θ) =
p ·N(Yi|α+ β + γ>Zi, σ

2) · expit(η>Zi)

p ·N(Yi|α+ β + γ>Zi, σ2) · expit(η>Zi) + (1− p) ·N(Yi|α+ γ>Zi, σ2) · (1− expit(η>Zi))
,

µ0i(θ) =
(1− p) ·N(Yi|α+ β + γ>Zi, σ

2) · expit(η>Zi)

(1− p) ·N(Yi|α+ β + γ>Zi, σ2) · expit(η>Zi) + p ·N(Yi|α+ γ>Zi, σ2) · (1− expit(η>Zi))
.

M step: Maximizing the expected complete-data log likelihood amounts to fitting two regressions. To obtain
α(t+1), β(t+1), γ(t+1), we perform a weighted least squares regression with 2n data points:

• The weights are µ1i(θ
(t))T̃i + µ0i(θ

(t))(1− T̃i) for i = 1, . . . , n, concatenated with (1− µ1i(θ
(t)))T̃i + (1−

µ0i(θ
(t)))(1− T̃i) for i = 1, . . . , n.

• The covariates are an intercept of length 2n, a binary covariate consisting of n ones followed by n zeroes,
and two stacked copies of Zi for i = 1, . . . , n.

• The outcome consists of two stacked copies of Yi for i = 1, . . . , n.

To obtain η(t+1), we performeither a “pseudo” logistic regressionwith fractional outcomesµ1i(θ
(t))T̃i+µ0i(θ

(t))(1−
T̃i) and covariates Zi, or equivalently, a weighted logistic regression with 2n data points, where the weights are
the same as above, the outcome consists of n ones concatenated with n zeroes, and the covariates are Zi

stacked on itself.

Second, suppose a binary outcome model: Yi ∼ Bernoulli(pi) where logit(pi) = α+ βTi + γ>Zi.

9.2 Regression Calibration Details

Regression calibration is one of the popular statistical methods to estimate a regression model which involves
measurement error in its covariates. It is known that the regression calibration produces approximately unbi-
ased estimates of regression coefficients. Measurement error in our application corresponds to DP noise that
is added to exposure bits in TDP outcome model.

We present the key components of applying regression calibration to secure sales lift problems by focusing on
the estimation procedure when TDP outcomemodel is linear. For other types of GLM, similar procedure should
still apply. The underlying outcome model on the i-th unit without noisy exposure bits is that:

E[Yi] = α+ βTi + γZi + λZi × Ti, (8)

recalling that Ti is real exposure indicator and Zi represents TDP covariates. The goal is to estimate all param-
eters α, β, γ, given that real exposure bits Ti cannot be observed on the TDP side. Take the expectation of Yi
conditioning on Zi and T̃i:

E[Yi | Zi, T̃i] = α+ β Pr[Ti = 1 | Zi, T̃i] + γZi+

λZi × Pr[Ti = 1 | Zi, T̃i].
(9)

This model above is called the calibrated outcome model. The regression calibration estimates are the least-
square estimates that solves calibrated model. Notice that the key difference between equation 8 and 9 is that
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the real exposure bits Ti is substituted by Pr[Ti = 1 | Zi, T̃i] which can be viewed as an ”imputed” value of
Ti by virtue of the correlation between Ti and the tuple (Zi, T̃i). We will discuss how to estimate this quantity
in the next section. In fact, for a variety of secure sales lift applications, we can utilize the following two-step
procedure to estimate TDP outcome model:

1. Build a prediction model that predicts T with tuple (Zi, T̃i). Find the quantity Pr[Ti = 1 | Zi, T̃i].

2. In outcome model without exposure bits (e.g., equation 8), replace Ti with the quantity Pr[Ti = 1 | Zi, T̃i].
In calibrated model (e.g., equation 9), proceed with the common estimation procedure in a GLM (e.g., the
least-square estimates for linear regression, maximum-likelihood estimation for logistic regression, and
etc.).

9.2.1 Estimation of Pr(Ti = 1 | Zi, T̃i)

We assume that TDP covariatesZi are sufficiently informative to predict the real exposures Ti. We also assume
publisher propensity scorePSi as one dimension withinZi if the publisher sends propensity scores to TDP. This
is because publisher propensity scores are usually strongly correlated with Ti. Under the most extreme case
where Zi is strongly linked with Ti, we are capable of imputing the values of exact exposures almost perfectly.
In our implementation, we model the relationship between Zi and Ti through a logistic regression in which
Pr(Ti = 1 | Zi) = expit(η0 + η1Zi). For convenience, let us pretend to include an additional constant 1 inside
the covariates Zi, so that we can simplify this formula: Pr(Ti = 1 | Zi) = expit(ηZi).

When the probability of flipping exposure bits is q, the “sensitivity” probability Pr(T̃i = 1 | Ti = 1) = 1 − q; and
the “specificity” probability Pr(T̃i = 0 | Ti = 0) = 1 − q. Therefore, we should have Pr(T̃i = 1 | Zi) = Pr(T̃i =

1 | Ti = 1, Zi) Pr(Ti = 1 | Zi) + Pr(T̃i = 1 | Ti = 0, Zi) Pr(Ti = 0 | Zi) by integrating out Ti. Moreover, the
bit-flipping DP-noise is independent from covariates Zi. This further yields:

Pr(T̃i = 1 | Zi) = (1− q)expit(ηZi) + q(1− expit(ηZi)). (10)

We can now find out the maximum-likelihood estimators . The log-likelihood L is:

n∑
i=1

T̃i log((1− q)expit(ηZi) + q(1− expit(ηZi)))+

(1− T̃i) log(q × expit(ηZi) + (1− q)(1− expit(ηZi))).

(11)

In addition, ∂L/∂η, the first order derivative w.r.t η equals:

n∑
i=1

Zi(expit(−ηZi)−
qT̃i

q + (1− q)expit(ηZi)
− (1− q)(1− T̃i)

1− q + q × expit(ηZi)
). (12)

Wewill obtainMLE η̂ by finding the root to equation ∂L/∂η = 0. In our implementation, we utilize an optimization
approach that relies on both first and second order derivatives.

According to the Bayes’ rule, after finding MLE, we will have the following estimators:
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P̂r(Ti = 1 | Zi, T̃i = 1) =
(1− q)expit(η̂Zi)

(1− q)expit(η̂Zi) + q(1− expit(η̂Zi))

P̂r(Ti = 1 | Zi, T̃i = 0) =
q × expit(η̂Zi)

q × expit(η̂Zi) + (1− q)(1− expit(η̂Zi))
.

(13)

9.2.2 Validity of the regression calibration approach

In this section, we briefly introduce why this simple correction procedure yields approximately unbiased results
when we estimate an outcome model with noisy exposures.

First of all, the regression calibration estimator can be viewed as anMLE to an approximated likelihood function.
Suppose that the real likelihood contribution for the i-th unit can be written as:

Π(Yi, T̃i | Zi; θ, q, η) =

∫
π(Yi | Ti, Zi; θ)π(T̃i | Ti; q)π(Ti | Zi; η)dTi. (14)

We use notation to represent all parameters (α, β, γ, λ) in outcome model 8.

In the first step of regression calibration, we rewrite π(T̃i | Ti; q)π(Ti | Zi; η) as π(Ti | Zi, T̃i; q, η)×π(T̃i | Zi; q, η).
Then the likelihood becomes∫

π(Yi | Ti, Zi; θ)π(Ti | Zi, T̃i; q, η)π(T̃i | Zi; q, η)

= π(T̃i | Zi; q, η)×
∫
π(Yi | Ti, Zi; θ)π(Ti | Zi, T̃i; q, η)dTi,

(15)

in which the first term in the decomposition π(T̃i | Zi; q, η) no longer involves integral over Ti. Summing up this
term over i, we find η̂, the MLE to parameter η, based on the likelihood

∑
i π(T̃i | Zi; q, η).

In the second step of regression calibration, wewant to findMLE to θ basedon the likelihood
∫
π(Yi | Ti, Zi; θ)π(Ti |

Zi, Ti; q, η)dT i. This means the integral of π(Yi | Ti, Zi; θ) based on posterior density π(Ti | Zi, T̃i; q, η). This
quantity can be approximated by π(Yi | Ti, Zi; θ) in which we plug in T̂i, the posterior mean based on the poste-
rior density. The accuracy of the regression calibration estimator relies on a close approximation between the
quantity

∑
i π(Yi | T̂i, Zi; θ) and

∑
i

∫
π(Yi | Ti, Zi; θ)π(Ti | Zi, T̃i; q, η)dTi. Under various settings of GLM, (2)

summarized the impact of this approximation and concluded that regression calibration is most useful when:

• The true effects of the covariates measured with error (in our case, T̃ ) are moderate;

• Measurement error variance (in our case, magnitude of DP noise q) is small.

In fact, in many cases this approximation works well. The MLE to θ will then follow the standard analysis after
we substitute these noisy T with the posterior mean of T .

Google 22 / 29



Approaches For Secure Sales Lift Measurement

10 Simulation Appendix

10.1 Simulated Data Generating Process

Each simulated dataset consists of 100,000 (0.1 million) users. Data attributes of every individual user can be
represented as a tuple of the following elements:

• X : user’s online activity data that function as the predictors in publisher propensity model;

• T : real exposure indicator (1 indicates an exposed user and 0 indicates an unexposed user) that publisher
observes;

• T̃ : noisy exposure indicator which differs from T by adding DP noise;

• PS: propensity scores that publisher sends to third-party advertisers;

• Z: third-party measurements on users which serve as the covariates in outcome model;

• Y : the sales outcome (e.g., dollar spending of each user, conversion rate, and etc.) variable in outcome
model.

Among all, publisher possesses (X,T, T̃ , PS) and decides the manner to send these data to third-party ad-
vertiser. Therefore, we call these data publisher data. The process of generating publisher data is discussed
in section 10.1.1 Similarly, the remaining items are called third-party data. The corresponding data generating
process is discussed in section 10.1.2.

10.1.1 Publisher data

Online activity data on the i-th unit, Xi, are drawn from an independent 3 dimensional Gaussian distribution
with zero mean and heterogeneous variances:

Xi = (Xi,1, Xi,2, Xi,3) ∼ N((0, 0, 0), diag(1, 1, 3)). (16)

The probability of a given user receiving ads exposure, Pr(Ti = 1), is generated by a logistic model:

Pr(Ti = 1) = sigmoid(c0 + c1Xi,1 + c2Xi,2 + c3Xi,3), (17)

where sigmoid(x) = (1+e−x)−1. To ensure that our simulated datamimic real applications, we deliberately pick
c0 = log(2/23), c1 = 0.5, c2 = 0.3, and c3 = −0.2. Under this scenario, approximately 10% users are assigned to
the exposed group while the remaining 90% are unexposed users.

Noisy exposure indicator T̃i is generated from real exposure Ti by randomly flipping the exposure status with
probability q, which is equivalent to the following transition rule:(

Pr(T̃i = 0 | Ti = 0) Pr(T̃i = 1 | Ti = 0)

Pr(T̃i = 0 | Ti = 1) Pr(T̃i = 1 | Ti = 1)

)
=

(
1− q q

q 1− q

)
. (18)
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In this equation, probability q quantifies the magnitude of DP noise added to the exposure indicator. In simu-
lation studies, we select 8 q values: 5%, 10%, 15%, 20%, 25%, 30%, 35% and 40%. Although the scenarios that
correspond to q = 35% ( ε = 0.62) and 40% (ε = 0.41) could be practically infeasible, we include them to examine
the robustness of candidate methods.

Propensity score is the last component in publisher data. We consider two variants of propensity score. First,
the exact score is the predicted value of Pr(Ti = 1), after fitting a logistic regression model with Ti andXi. The
other variant, private score, corresponds to the predicted value of Pr(T̃i = 1) after fitting a logistic regression
model with T̃i and Xi. Based on empirical study, we observed a significant amount of deviation between the
two variants, but also a positive correlation between them in general.

10.1.2 Third-party data

In outcome model, covariates on the i-th unit Zi = (Zi,1, Zi,2, Zi,3) are drawn separately from an independent
3 dimensional Gaussian distribution with unit variance, depending on whether this user receives treatment or
not. That is:

Zi | Ti = 0 ∼ N((0, 0, 0), diag(1, 1, 1))

Zi | Ti = 1 ∼ N((0.2, 0.1,−0.1), diag(1, 1, 1))
(19)

Suppose that Yi(1) and Yi(0) denote outcome value under the exposed and unexposed condition respectively.
Although in reality a variety of outcome models could be useful in estimating sales lift, we focus on two partic-
ular types of outcome models: (i) linear model in which outcome is a continuous variable, such as consumer
spending; and (ii) logistic model in which outcome is a binary variable, such as whether or not customer pur-
chases a specific item.

In linear outcome model, the conditional expected exposed outcome

E[Yi(1) | Zi] = 11 + 2Zi,1 + Zi,2; (20)

and the conditional expected unexposed outcome

E[Yi(0) | Zi] = 10 + Zi,1 + Zi,2 + Zi,3. (21)

It is easy to see that the average exposed outcome is 11.5 while the average unexposed outcome is 10. Mean-
while, the treatment effect at a specific user τ(Zi) = E[Yi(1) | Zi] − E[Yi(0) | Zi]. Following the definition of
ATE, the expected sales lift ATE can be written as

Pr(Ti = 1)E[τ(Zi) | Ti = 1] + Pr(Ti = 0)E[τ(Zi) | Ti = 0]

= 0.1× (1 + E[Zi,1 | Ti = 1]− E[Zi,3 | Ti = 1]) + 0.9× 1 = 1.03
(22)

Finally, the observed outcome variable Yi is generated by the process:

Yi | Ti = t, Zi ∼ N(E[Yi(t) | Zi], 5
2), for t = 0, 1, (23)

where the definitions of conditional exposed and unexposed outcome are in equations 20 and 21.
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Figure 15: Biases of estimator for β (the model coefficient that corresponds to exposure bits) under linear
outcome scenario.

In logistic outcome model, for convenience, let us assume that the outcome variable means whether to pur-
chase an item. Then the conditional probability of making a purchase for an exposed user

Pr(Yi(1) = 1 | Zi) = sigmoid(−2.3 + 0.4Zi,1 + 0.2Zi,2); (24)

and the conditional probability of making a purchase for an unexposed user

Pr(Yi(0) = 1 | Zi) = sigmoid(−2.5 + 0.2Zi,1 + 0.2Zi,2 + 0.2Zi,3). (25)

Treatment effect at a specific user τ(Zi) = Pr(Yi(1) = 1 | Zi) − Pr(Yi(0) = 1 | Zi). Following the same
arguments in equation 22, the sales lift ATE based on this logistic model is approximately 2%.

10.2 Additional Simulation Results
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Figure 16: Coverage probabilities of confidence interval for β (the model coefficient that corresponds to expo-
sure bits) under linear outcome scenario.
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Figure 17: Relative widths of confidence interval for β (the model coefficient that corresponds to exposure bits)
under linear outcome scenario. The relative width is defined as the average interval width when estimating
outcome model with noisy exposures T̃ divided by the average interval width when estimating outcome model
without DP-noise.
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Figure 18: Biases of estimator for β (the model coefficient that corresponds to exposure bits) under the logistic
outcome scenario.
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Figure 19: Coverage probabilities of confidence interval for beta (the model coefficient that corresponds to
exposure bits) under logistic outcome scenario.
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Figure 20: Relative widths of confidence interval for β (the model coefficient that corresponds to exposure bits)
under logistic outcome scenario. The relative width is defined as the average interval width interval when esti-
mating outcomemodel with noisy exposures T̃ divided by the average interval width when estimating outcome
model without DP-noise.
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