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Abstract

We discuss control of bittide distributed systems, which
are designed to provide logical synchronization between
networked machines by observing data flow rates between
adjacent systems at the physical network layer and con-
trolling local reference clock frequencies. We analyze the
performance of approximate proportional-integral con-
trol of the synchronization mechanism and develop a sim-
ple continuous-time model to show the resulting dynam-
ics are stable for any positive choice of gains. We then
construct explicit formulae to show that closed-loop per-
formance measured using the Lo norm is a product of
two terms, one depending only on resistance distances in
the graph, and the other depending only on controller
gains.

1 Introduction

In this paper, we discuss control of the bittide synchro-
nization mechanism for distributed computing. The pur-
pose of this mechanism is to provide all of the machines
on a network with shared logical time. This notion of
time does not have to match physical time. Instead, the
discrete clocks of the machines on the network are tied
together in logical synchronization. This is distinct from
physical synchronization, where the processor clocks are
kept synchronized to physical time [4, 20]. Application
processes on this system coordinate their actions using
logical time, and do not need to reference physical time.
The bittide control system maintains perfect logical syn-
chronization using imperfect physical synchronization.

We view the network as an undirected graph where
each edge represents a pair of data links between nodes
(machines), one link in each direction. The synchroniza-
tion mechanism operates at the physical layer of the net-
work as follows. Frames of data received from each link
are appended at the tail of per-link queues called elas-
tic buffers. One frame is removed from the head of each
elastic buffer every local clock cycle and consumed by the
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corresponding compute core. One frame is also trans-
mitted on every outgoing link during every cycle. This
alignment of receive and transmit at each node reveals
the relative frequency between neighboring nodes. If the
elastic buffer at a node starts to fill up, then it must have
a lower clock frequency than its neighbor and vice versa.

For a network with n nodes, if node ¢ has d; neigh-
bors, then it has d; elastic buffers, one per node. Frames
are removed from all of the d; elastic buffers simulta-
neously, driven by the local clock. At each node i, the
local clock is driven by a physical oscillator, with un-
corrected frequency w;'. The uncorrected frequencies at
nodes will differ slightly in practice, and so additional
correction is necessary to ensure system stability. Each
node includes a feedback control system which measures
the occupancy of all local elastic buffers and adds a cor-
rection ¢; to the local oscillator frequency such that it
oscillates at frequency w; = ¢; + w}'. The purpose of
the control system is to prevent the elastic buffers from
overflowing or underflowing, even though the w;' are not
known exactly. Full details of this mechanism are pre-
sented in [18], where a mathematical model called the
abstract frame model (AFM) is developed.

Our focus in this paper is the use of proportional and
proportional-integral control for bittide synchronization.
To that end we approximate the abstract frame model
with a simple linear model, removing the effects of sam-
pling and quantization. We present simulations illustrat-
ing this approximation, and analyze the mathematical
properties of the resulting linear system. We show that it
is stable, and that certain closed-loop performance met-
rics can be expressed in terms of the resistance matrix of
the graph. Performance is measured using the Lo norm
of the buffer occupancies and frequency deviations, for
which we give exact formulae, in terms of the resistance
distances in the graph and the controller gains. These re-
sults directly relate the connectivity of the graph to the
performance properties of the bittide system.

Prior work. The synchronization mechanism of bit-
tide was first proposed in [24]. The abstract frame model
for the system was developed in [18], where a detailed
description of the dynamic behavior of the system was
given. Another widely-used synchronous network mech-
anism is SONET [27]. The use of coupled-oscillators to
model synchronization originates with Winfree [29].



In this paper, we approximate the bittide mechanism
with a linear model. Our focus is on proportional-
integral (PI) control, but the corresponding model with
purely proportional control is the widely studied Lapla-
cian dynamics, which has been extensively studied in the
literature, with applications including models of flock-
ing [14, 23], Markov chain averaging models [2, 13], con-
gestion control protocols [15], power networks [5, 25], ve-
hicle platooning [26], and consensus [22]. Nonlinear ver-
sions of Laplacian dynamics have been studied in [28],
and papers addressing PI control of Laplacian dynamics
include [1, 3, §].

2 Modeling

We consider an oriented graph with n nodes and m edges.
Although the graph is undirected, each edge has an orien-
tation used purely to define the sign convention. For an
oriented graph we define the incidence matrix B € R™*™
by

1 if node i is the source of edge [
By=4¢-1

0 otherwise

if node i is the target of edge [

and this defines a numbering of the edges | = 1,... k.
The matrix L = BB is the Laplacian matrix of the
graph. We assume the graph is connected. It is then a
standard result that L has rank n — 1. There is exactly
one zero eigenvalue, with corresponding eigenvector 1.
See for example [10]. Choose U; to complete the basis,
so that U € R™*™ is an orthogonal matrix such that

U=[U; 1/yn]

Then we can write L in these coordinates so that
L o
UTLU =
o o
where L € RO=D*(n=1) g positive definite.

The abstract frame model. We briefly summarize
the abstract frame model [18]. We have n nodes. At
each node i there is a clock, whose value 6; € R is called
the clock phase. We say that 6; measures local time at
node 4, in units called local ticks. The rate of change for
0; is called the frequency of node i, denoted by w;. Every
time ¢ at which the phase 6;(t) is an integer, node ¢ sends
a data frame to each of its neighbors. The number of
frames in the elastic buffer at node j associated with the
link from node i at time ¢ is called the buffer occupancy,
denoted by 5;;(t). One can show that

Bij(t) = [0i(t — Lij)] — [0;(1)] + Aij

where )\;; € Z is a constant, and [;; is the latency of the
link from 7 to j. Every p local ticks, the controller at

node ¢ measures the buffer occupancies 3;; at that node.
After a delay of d local ticks, the controller sets the fre-
quency correction ¢;. The delay parameter d specifies the
time required by the controller to process the measure-
ments and choose the frequency correction and includes
the time for the frequency change to take effect on the
physical oscillator. The dynamic model is as follows. For
allt>0,7€V,and k € Z,,

0;(t) = cf +wi fort e [sh sF)
Bji(t) = [0;( — L50)] — [0:(8)] + g
0:(t;) = 07 + kp
0;(s¥) =0 + kp+d (1)

yf = {(4,B5(tF)) | j € neighbors(i)}

EY = fIO(EE ur)
o = (6 oh)
Because 6; is an increasing function, the third and fourth
equations above uniquely determine the sampling times
t# and the hold times s¥. The controller is given by a
discrete-time state-space system f{hsc, g?lsc at each node
which maps the history of these measurements to the
correction ¢;. The initial conditions of the model are
90 —2) e
O+t fort e [t 0]
0:(t) = 0 4wV § 2w~ (2)
D +w, 't forte0,d/w; ]
These conditions are determined by initial frequencies
wgfl) > W™t and w§72) > w™in " and initial clock phases
09 € RT\Z. We are also given the initial buffer occu-
pancies B?i € Z4, which together with (2) determine the
constants A;; such that

Bji(t) =B = 16;(t—153) | —16;(—1;5) ] — (16: ()| — [6:(0) )
A controller is called admissible if
g€, y) + >

for all 4, k and all measurements y and controller states &.
This ensures that w;(t) > w™® for all i,t. The time
t® < 0 is called the epoch, and it must satisfy

t° < —(lji +d/w™™) for all 4,5 € V

We have shown in [18] that the abstract frame model has
a unique solution under these conditions.

2.1 An approximate model

Our goal is to design a controller using a model for the
system that is as close to the AFM as possible. However,
in order to mathematically analyze and validate the con-
troller, we need to use a simplified model. We perform
two important simplifications. Section 4 includes sim-
ulations of both the AFM and the simplified model for
comparison.



Continuous-time approximation. The first simpli-
fication is that we design a continuous-time controller,
instead of designing a discrete-time controller that uses
sampled-data. Continuous-time control is not practi-
cally possible for bittide, and therefore in implemen-
tations we need to discretize the controller and subse-
quently validate that this does not adversely affect per-
formance. With a sufficiently fast sampling rate, stan-
dard approaches prove and demonstrate that this is an
effective design methodology.

We will use a continuous-time controller of the form

a& o
o= hleew)

ci(t) = 9i(&, i)

defined by functions f; and g; at node i. Notice here
that the independent variable is #;, not ¢t. This captures
the dependence of the controller dynamics on the local
oscillator frequency, which arises because the clock that
drives the discrete-time controller is provided by the os-
cillator at the node. We write this in terms of ¢ as follows.
Since 6; = wi, we have

&i(t) = wilt) fi(&(t), i 1))
ci(t) = gi(&i(t), yi(t))

The nodes in bittide cannot exactly execute arbitrary
dynamic control since they do not have access to a per-
fect physical time reference. Any integration or differ-
entiation performed by the controller will be scaled by
the current clock frequency w;, which the controller can-
not measure. Since the clock frequency is determined
by the controller, this introduces a nonlinear feedback
into the system. The magnitude of this effect depends
on the range of frequency variation experienced at the
node. This is in practice determined by the accuracy of
the physical oscillators used. If the oscillator frequency is
accurate to within a relative error of «, then only corre-
spondingly small relative corrections are required by the
controller, and therefore the term w; in equation (4) will
be constant to within a relative error « also. In a practi-
cal bittide implementation we might see o < 1072, which
is substantially below the gain margin typically used in
control design. Therefore this much uncertainty in the
controller parameters may be safely ignored. Hence we
can approximate the controller dynamics by

3)

(4)

§i = w fi&iyi)
ci(t) = gi(&, vi)
where w® is a constant approximation to the frequency
(and hence not node specific.)

()

Quantization. The second simplification that we ap-
ply to the model is that we remove the quantization of
frames. That is, instead of enforcing the physical prop-
erty that the elastic buffer contains an integer number of

frames, we modify the model to allow the buffer occu-
pancy to be non-integral. Replacing discrete-frames by
a continuum results in a so-called fluid model, often used
in analysis of stochastic models of queuing systems [17].
This corresponds to replacing the expression for occu-
pancy fj; by

Bji(t) = (Lab;(t — i) | — [abi(t)]) /a + Nji

and taking the limit as a — oo. Subject to mild tech-
nical conditions, if the controller is linear, then solution
trajectories converge in L. The limiting dynamics has
an approximate occupancy given by

Bji(t) = 0;(t — i) — 0i(t) + Nji

We can expect this to be a good approximation if the
frames are moving sufficiently quickly through the system
in comparison to the timescale of the controller.

Zero delays. A further approximation that we make
in this paper is that the computation delays d and the
latencies [;; are small enough to be neglected, and set to
zero. In practice this may or may not be the case; some
links have very long latencies. In other cases, such as
between machines in a datacenter, the latencies are very
short.

The assumptions that quantization, loop delays, and
sampling may be ignored for the purposes of design, are
well-studied in the literature and frequently used in prac-
tice. Mathematical techniques for handling the error due
to quantization exist, for example [9]. The problem of
multi-rate sampled-data systems has also been studied,
for example [12, 19]. Systems with multiple delays are
analyzed in [21]. In this case we have all of these phenom-
ena together with state dependent sampling rates and so
further analytical developments are required. Thus, in
this paper we do not validate the assumption that the
error induced by these approximations is small. We have
as yet performed neither the exhaustive numerical simu-
lations nor the mathematical analysis required to do so.
However, we present some simple numerical simulations
below that indicate the approximation error is very small
in some cases of interest.

Combining these approximations and applying them
to the abstract frame model gives the following model:

0i(t) = ci(t) + wy'

Bji(t) — BY; = 0,(t) — 67 — (6:(t) — 67)
yi(t) = {(j, Bji(t)) | j € neighbors(i)}  (6)
&it) = wofil&(1), wi(t)

ci(t) = gi(&(t), (1))

3 Controllers

The objective of the control design is to ensure that the
elastic buffers neither overflow nor underflow. That is,



we must ensure that 0 < §;;(¢) < g™ for all ¢ > 0
and 4,5 € V. The controller determines the frequency
correction ¢;(t), and must ensure that W™ < ¢;(t)+w} <
WM where w™" > 0 and w™® are the physical limits
of the oscillator.

To do this, we initialize the buffer occupancies in the
middle of the buffer, so that 89, = £™*/2 ( g™ is
even by construction.) We will then construct a feedback
signal using the offset

Bii(t) = Bji(t) — B
For convenience, we also define 0;(t) = 6;(t) — 69. We
will consider proportional and proportional-integral con-
trollers. Since each node may have a different number of
neighbors, we must aggregate the measurements of elas-
tic buffer occupancy at each node, and we do this simply

by summing the occupancies, so that the controller at
node i uses the feedback signal

TS

j€neighbors(z)

Bii(t)

Other choices for the measurement are possible. For ex-
ample, one might use the average buffer occupancy at
a node, or the maximum occupancy at a node. At this
point in the analysis it seems as though any of these
choices might work well. However it turns out that us-
ing the sum of occupancies results in the dynamics of the
closed-loop system being approximately equal to the well-
known Laplacian dynamics on the graph, which has many
good properties, including guaranteed stability with pro-
portional control.

So far we have used notation 5 € R™*™ to denote elas-
tic buffer occupancy, with 3;; the occupancy of the buffer
at node ¢ associated with edge (7,7), and 3;; the occu-
pancy of the buffer at the other end of the edge. Under
the zero-latency assumption, we have 3;; = —3;;. We
therefore define the relative buffer occupancy 6 € R™ by

8, = Bji if i is the source of edge [

and can replace 3 € R™*™ by the equivalent representa-
tion § € R™. We can now write the above dynamics as
follows.

4 Proportional-integral control

We approximate a proportional-integral controller as fol-
lows. The controller is

£(t) = wer(t)
c(t) = kr§(t) + kpr(t)

£0)=0

Choosing state coordinates z; = 0 and zy = £/w®, we
have, with z = (z1, z2),
& = Az + Bow" z(0)=0
w = Ciz + Dyw" (8)
0= ng

where for convenience a = kp, b = w®k; and

—alL bl 1
=[N e
Cl = [7CLL b[] D1 =1
Cy=[-BT 0

Figure 1 shows a comparison of the abstract frame
model (1) and the continuous-time ordinary differential
equation model (8). This is for a graph with 3 nodes, with
bidirectional links connecting every pair of nodes. The
system parameters are kp = 3 x 107, k; = 2 x 1077,
lj; = 500, p = 1000, d = 100, 9 = 0.1, w=2 = W,
wD = W and w® = 1. This simulation shows that,
for this choice of parameters, the continuous-time model
approximates the behavior of the AFM, at least qual-
itatively. A more in-depth analysis of this approxima-
tion shows that the effects of the quantization become
insignificant for large buffer occupancies. As might be
expected, the effects of the latencies and computational
delays are also negligible if the control gains are not too
large. We will not pursue this comparison further here,
but assume for the purposes of this paper that the pa-
rameters of the system are such that the AFM behavior
is well-approximated by the differential equation model.

5 System Behavior

The proofs of the results in this section may be found in
the Appendix. Using the change of coordinates

U, 0 U, 0].
0 U, 0 Upl”

xr =

we have the dynamics

—al I 0 0O uy
G| L 0 0 0. O]

0 0 0 bl Uy

0 0 0 0 0
w = [—aLUl bUu; 0 bUQ} T+ w"
§=[-B"U; 0 0 0]z

In these coordinates, we have immediately that 24 = 0,
since the initial conditions are & = 0. This then implies
that

Z3(t) = nzwet
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Figure 1: Comparison of trajectories from two different models

We now have the remaining dynamics

where & = (#1, &2) and

+ [—aL bl - [UT
[ aeld
Cy = [~alUy U] Di=1 (9)

Co=[-B'Uy 0] C= [ql]

Cso
We would like to show that these dynamics are stable,
which we state formally here.

Theorem 1. Suppose a >0 and b > 0. Then the matriz
A in (9) is Hurwitz.

Since A is stable, T converges to a steady-state value
Z(t) — Z°° as t — oo, and this is

5= —A ' Byt = { (10)

0 ]w“
U7

We can now make the following observations regarding
the behavior of this system, which follow immediately

from the above representation.

i) The phase 6 is the sum of a transient term which
tends to zero and a linearly growing term whose
growth rate is determined by the average frequency
error. We have

G(t) = Uz + UsZs
= U121 + w®8t1

where ;1 — 0 as t — oo.

ii) The sum of the phases grows linearly with time, since
1TU; = 0.

iii) The frequency w = é has an invariant sum
n
sz‘(t) =nw™®® for all ¢
i=1

and all frequencies converge to the average fre-
quency, that is w;(t) — w®'8 as t — 0.

iv) The relative buffer occupancies tend to zero, that is
0(t) = 0 as t — oo.

5.1 Performance and Resistance Distance

We now turn to performance measures of this controller.
Specifically, one of the primary controller objectives is to
keep 0 small. This means that the buffer occupancies will
remain close to the middle of the buffer 8°, reducing the
chance of the buffers overflowing or underflowing. We
consider here the 2-norm as a measure of the magnitude
of §. It will turn out that this quantity is related to the
connectivity graph of the system, and so this affords a
design strategy for the network topology. We can choose
topologies such that the norm of the buffer occupancy is
small. However, we note that this is simply a heuristic
for the specific objective of preventing buffer overflows
and underflows.

For convenience let w® be the steady-state frequency,
given by w® = w®®&1. We refer to the quantity w —w?'81
as the frequency deviation, and the first result concerns
its norm.

Theorem 2. For the dynamics as above, we have

”2 _ quLTwu

_ Ss —
oo = o

The second result concerns the norm of the buffer occu-
pancies.



Theorem 3. For the dynamics as above, we have
512 wTLfw®
o1 = a5 —
The effect of the controller. The above theorems
separate the effects on performance of the controller from
the effects of the graph. We see that increasing the pro-
portional gain a = kp improves both frequency and oc-
cupancy performance. However, increasing the (scaled)
integral gain b = w®k; improves occupancy performance,
but does not change the norm of the frequency deviation.

The effect of the graph. The matrix L' is the
pseudo-inverse of the Laplacian of the graph, and has a
well-known interpretation. Imagine a circuit constructed
according to the graph, with 1€ resistors along each edge.
Let R;; be the resistance of the resulting circuit between
nodes ¢ and j. This quantity is called the resistance dis-
tance of the graph. Then

Rij = (e —¢j) L1 (ei — ¢j)

where e; is the canonical basis vector [11, 16]. This in-
terpretation leads to several intuitive consequences. For
example, we have Rayleigh monotonicity, the fact that
adding an edge cannot increase any R;;. It is also im-
mediately clear that the resistance distance between any
two nodes is less than or equal to the path length between
those nodes.

Theorems 2 and 3 show that the effect of the graph
on the Lo performance of the bittide system is entirely
through the matrix LT of resistance distances of the
graph. In particular, we can see that adding edges can
only improve performance. If we add an edge to the
graph, then the resistance distance between any pair of
nodes cannot increase. Therefore, if the norms of fre-
quency deviation and relative buffer occupancy change,
they must decrease.

5.2 Two Disequilibrated Frequencies

An illustrative situation for a bittide synchronization sys-
tem is when the system is almost in equilibrium, except
for two nodes. Consider a system in which there are
two nodes, i and j, that have the frequencies 1 + a and
1 — «, respectively. All other nodes have uncorrected
frequency 1. That is

wh =14 ale; —ej)
Since LT1 = 0, we have
W T Lt = R;;
and using this, Theorems 2 and 3 give the performance

explicitly in terms of the resistance distance between
nodes 7 and j as

042Rij
2a

s ”2 _ QQRU
2ab

I8 =

|w—w

Interpreting these results, we see that the norm perfor-
mance for both frequency and occupancy scales with the
square root of the resistance distance between the nodes.
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Figure 2: Frequency for a system with two
closely-spaced disequilibrated nodes
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Figure 3: Frequency for a system with two dis-
tant disequilibrated nodes

For example, consider a bittide system on a 4 x 6 mesh
graph, and let o = 10~*. The parameters of this system
are kp = 2 x 1078, k; = 10715, [;; = 5000, p = 105,
d = 1000, 69 = 0.1, w2 = WD = WU and wW° =
1. We consider two examples, one in Figure 2 where
nodes ¢ and j have small resistance distance R ~ 0.700,
and another in Figure 3 where R =~ 2.262. In both figures
the graph is shown with node ¢ highlighted in red and
node j highlighted in blue. As a consequence, we have
for Figure 2

|w — w™||? ~ 0.175

and for Figure 3
|w — w™||? ~ 0.565

The greater resistance between the perturbed nodes in
Figure 3 leads to worse performance, as shown by the
slower convergence of frequency divergence in the figure.

5.3 Worse-Case Frequencies

Another application of Theorems 2 and 3 is that they
allow computation of the worst-case uncontrolled fre-



quency distribution w". The norm response of both oc-
cupancy and frequency deviation is proportional to

flw") =" TLfu"
We consider all uncontrolled frequencies such that
w2 <~

and seek to maximize f(w") over this bounded set.
Bounding the set is important for the problem to be
mathematically meaningful, since otherwise we can make
f(w") large simply by scaling w". However, the results
here are determined also by the way in which we have
chosen to bound w". Here we choose the Euclidean norm
primarily because for this choice we can compute exactly
the maximum of f and the corresponding worst-case w".
Such a choice could be motivated by assuming a Gaussian
probabilistic model for w". Alternatively, a deterministic
formulation might be better suited to an analysis using
the co-norm. We do not delve further into these alterna-
tives here, but instead view the choice of set as a rough
proxy for a more accurate model of the set of possible
uncontrolled frequencies.

The x that maximize a homogeneous quadratic func-
tion T Qx over z € R™ with ||z|| < 1 is given by x = v,
where v is the unit eigenvector of ) with largest eigen-
value. Here we consider Q@ = L. The second smallest
eigenvalue of L is called the algebraic connectivity of the
graph, and the corresponding unit eigenvector is called
the Fiedler vector [7]. Since exactly one eigenvalue of L is
zero, and the others are strictly positive, the eigenvector
v that maximizes 2" Qz is the Fiedler vector.

Figure 4: Worst-case uncontrolled frequencies

Figure 4 shows the corresponding worst-case frequency
distributions for three example graphs. Here red shows
positive values of w{ and blue shows negative values; the
exact scale is omitted since it is an arbitrary consequence
of the magnitude of w®. Notice that for the rectangular
grid graph shown, the worst-case distribution varies from
top-to-bottom, whereas for the square grid it varies diag-
onally, even though the greatest resistance between any
two nodes on the rectangular graph is achieved by diag-
onally opposite corners.

6 Conclusions

In this paper we have analyzed the performance of bit-
tide synchronization using the 2-norm of the frequency

deviation and relative buffer occupancies. When using PI
control, we have shown these quantities are determined
in a simple way by the control gains and by the graph re-
sistances. We used these results to analyze and illustrate
some simple examples, showing the utility of resistance
as a performance indicator in these systems.
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Appendix: Proofs

Consider the dynamics & = Ax, with output y = Cz and
Lyapunov equation

ATX+XA+CTC =0

We will need the following two standard results from lin-
ear systems theory.

Lemma 4 (Theorem 4.1 in [6]). If A is Hurwitz, then
the Lyapunov equation has a unique solution X € R"*"
and [[y|3 = x(0)T X2(0).

Lemma 5 (Proposition 4.2 in [6]). If CTC > 0 and X >
0 satisfies the Lyapunov equation, then A is Hurwitz.

First, to reduce the system (9) to this form, we need
to remove the non-zero limiting value of the state, which
is induced by the constant forcing term w". Define z =
T — 2% and @ = w — W™ then we have dynamics

i= Az z(0) = A7 Bow"
o=0C%
0= Agf

Now we can solve the Lyapunov equations. Define

at b
sL+ a1

b
_2[]

b |
-5 gLt

X =

Proof of Theorem 1. First we show that null(C) =
{0}. This follows because

é— —aLU1 bU1
“|-B"U; 0

The 1,2 block satisfies null(U;) = {0} since U; has or-
thonormal columns. The 2,1 block satisfies

null(BTU;) = null(U] BBTU,) = null(L) = {0}

Therefore CTC > 0. Now one can verify that with X =
X1+ X5, wehave ATX+XA+CTC = 0. Finally, X; > 0



(via the Schur complement condition) and X» > 0, and
hence by Lemma 5 the matrix A is Hurwitz. [

Proof of Theorem 2. One can verify that ATXlA +
XA+ CJCy = 0. Using Theorem 1 we know that A is
Hurwitz, and hence Lemma 4 implies that

o] = (A Byw") ' X3 A Byw"
1
— %quLTUJu
as desired. [
Proof of Theorem 3. One can verify that ATX, +

ngl + C’;—éQ = 0. Using Theorem 1 we know that Ais
Hurwitz, and hence Lemma 4 implies that

||(5||2 = (A—lewu)TXzA—1E2wu
iquLTwu
2ab

as desired. ]
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