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Abstract—We perform a rigorous evaluation of recent self
and semi-supervised ML techniques that leverage unlabeled data
for improving downstream task performance, on three remote
sensing tasks of riverbed segmentation, land cover mapping and
flood mapping. These methods are especially valuable for remote
sensing tasks since there is easy access to unlabeled imagery and
getting ground truth labels can often be expensive. We quantify
performance improvements one can expect on these remote
sensing segmentation tasks when unlabeled imagery (outside of
the labeled dataset) is made available for training. We also design
experiments to test the effectiveness of these techniques when the
test set has a domain shift relative to the training and validation
sets.

Index Terms—Deep Learning, Remote Sensing, Semi-
supervised Learning, Self-supervised Learning, Segmentation.

I. INTRODUCTION

OVER the recent years, many machine learning methods
have been proposed that leverage unlabeled data in order

to build high performing models using only small labeled
datasets [1]–[3]. This is both important for advancing our
understanding of how humans learn (e.g. we do not need
millions of labels to learn new concepts) as well as practical
applications, where labeling data is expensive and time con-
suming. Remote sensing tasks are especially good candidates
for leveraging unlabeled data for multiple reasons: (i) Labeling
can be expensive for certain tasks, requiring ground surveying
(e.g. crop type labeling [4]), (ii) Generalization issues/domain
shifts are common as the geographical context changes and
often needs additional labels when deploying models to a new
region of interest, and (iii) There is easy access to unlabeled
data that is well sampled across all domains. Our goal in
this work is to evaluate recently proposed ML techniques
that show promising and robust results in learning from small
labeled datasets, on remote sensing tasks. We specifically test
these methods on their ability to improve generalization across
domain shifts, and also augment all the supervised remote
sensing datasets with unlabeled images sampled from the same
satellite collections.

A. Review of ML Methods

There are two broad ML techniques that have shown
promising results using unlabeled image data in recent years:
Self-supervised learning and Semi-supervised learning.
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Self-supervised learning aims at learning image represen-
tations from unlabeled data by solving a pretext task which
doesn’t require manual labels. Solving such pretext tasks
forces the models to learn representations that can encode prior
knowledge of the input domain (i.e. satellite imagery in our
case). These representations can be used as feature extractors
or can be finetuned for a specific downstream task with small
amounts of labeled data. One category of self-supervised
pretext tasks drops a part of the input signal and trains the
network to predict it from the remaining information. Such
tasks include image-inpainting (i.e. predicting an artificially
cut out part of the image) [5], colorizing grayscale images
[6], predicting rotation angle [7], solving jigsaw puzzles (by
predicting the correct order of shuffled patches) [8] etc. More
recently, contrastive self-supervised methods have gained pop-
ularity where the network is trained to embed the augmented
versions of the same sample (positive pair) closer to each other
while pushing away the embeddings of other samples (negative
samples). Various contrastive self-supervised learning methods
(SimCLR [3], MoCo [9], BYOL [10], SwAV [11]) have a
similar setup and mainly differ in how they generate negative
samples. Representations learned by these contrastive models
perform on par with the representations learned using purely
supervised baselines on ImageNet classification and also show
SOTA (state-of-the-art) results for other vision tasks via trans-
fer learning [9] [11]. Self-supervised models can also improve
the robustness of the model against uncertainty and outliers
[12].

Semi-supervised learning methods work by encouraging the
model to better generalize to unseen data, usually done by
adding an extra loss function. The loss function is often one
of entropy minimization or consistency regularization. These
loss functions improve model generalization by regularizing
the model outputs on unlabeled data. Entropy minimization
encourages the model to output more confident predictions
for the unlabeled data: Grandvalet et al. [13] achieve this
by explicitly training the model to reduce entropy of the
predicted distribution on unlabeled data, while Sajjadi et al.
[14] enforce this via guiding the decision boundary to lie
on the low density space between the manifolds. Consistency
regularization, on the other hand, encourages the network to
output the same predictions for perturbations of the same
input data point (MixMatch [15], ReMixMatch [16], FixMatch
[2], [17]). With these recent advancements of FixMatch [2]
(and others, e.g. DivideMix [18]), semi-supervised learning
has established itself as a promising technique for utilizing
unlabeled data (especially in low label data regimes).

ar
X

iv
:2

11
1.

10
07

9v
1 

 [
cs

.C
V

] 
 1

9 
N

ov
 2

02
1



SUBMITTED ON ARXIV 2

B. Self-supervised and semi-supervised methods in Remote
Sensing

Self-supervised methods have been adopted for various
remote sensing tasks to learn rich image features from unla-
beled data and improve performance on specific downstream
applications like change-detection [19], hyperspectral image
super-resolution [20], scene classification via pretext multitask
learning [21], and land-cover classification using the pretext
task of colorization [22]. Lin et al. [23] use GANs (Generative
Adversarial Network) with mid and high level feature fusion
to learn image representations for several classification tasks.
Lu et al. [24] use unsupervised feature learning for scene
classification from high spatial resolution data. Jean et al.
[25] use triplet loss to enforce similarity in the representations
of neighboring tiles as their learning task. More recently,
Jung et al. [26], Stojnic et al. [27], Ayush et al. [28], and
Kang et al. [29] have explored and adopted state-of-the-
art contrastive self supervised methods for remote sensing
to learn better representations and improve transfer learning
performance. However, these papers have largely focused on
image-level classification tasks. Leenstra et al. [30] train a
self-supervised network to identify overlapping patches and
make their representations similar to each other, which is then
finetuned for change detection - a segmentation task. Li et
al. [31] train a multi-task self-supervised network with three
pretext tasks (inpainting occluded patch, predicting relative
transformation between two patches and contrastive loss) and
show better performance than ImageNet pretrained baseline
for finetuning on segmentation datasets.

Semi-supervised techniques have been used in remote sens-
ing tasks that use classical ML methods, e.g. SVMs for
image classification ( [32], [33], [34]) and segmentation (
[35], [36]). Semi-supervised learning has also been used for
Image retrieval: Chaudhuri et al. [37] use a graph-theoretic
method, and, Hu et al. [38] use semi-supervised manifold
alignment (SSMA), a multi-modal data fusion algorithm for
Manifold alignment while combining optical image and polari-
metric SAR Data. Semi-supervised methods have also helped
in the problem of dimensionality reduction of hyperspectral
data: Hong et al. [39] utilize iterative multitask regression
framework and Wu et al. [40] propose semi-supervised based
Local Fisher Discriminant Analysis. More recently, due to the
success of deep neural networks, deep learning based semi-
supervised methods have been used for a variety of remote
sensing tasks as well. These include adversarial hashing based
large-scale image retrieval [41], boundary-aware semantic
segmentation of very-high resolution images (BASNet) [42],
individual tree canopy detection [43] and high-resolution scene
classification [44]. A recent work by Hong et al. [45] explores
semi-supervised cross-modal learning between multi-spectral
data (MSI), synthetic aperture radar (SAR) data and small-
scale-hyperspectral data (HSI). This enables their model to
generalize well and it achieves better performance than the
state-of-the-art models at the task of classification.

Given rapidly evolving self and semi-supervised ML tech-
niques (especially on camera imagery), there is a critical
need to have a systematic study of these methods on Earth

observation datasets, specifically with respect to label scarcity
and geographical domain shifts. Much of the existing work
either uses a fraction of the labeled data as unlabeled, or
uses small unlabeled datasets. In our work, we imitate a
more real world setting, where we augment labeled datasets
with additional unlabeled imagery from the same satellite and
domain. In addition, segmentation tasks have received less
attention compared to image-level classification tasks for such
techniques. In this paper, we test two popular approaches -
SimCLR [3] (one of the recent SOTA self-supervised methods)
and FixMatch [2] (one of the SOTA semi-supervised methods)
at the task of segmentation using the DeepLabv3+ neural
network architecture [46] (a recent SOTA semantic segmenta-
tion model). With extensive experimentation, we analyze the
improvements that these methods can provide by using large
unlabeled data sampled from the same satellites as the labeled
data, and studying the impact of label scarcity and domain-
shifts. We compare these methods against supervised finetun-
ing from ImageNet pretrained weights - a strong baseline not
only for consumer camera image based vision problems [47]
[48], but also for remote sensing tasks [49]. We also show
that the remote sensing tasks not only benefit from semi and
self-supervised training individually, combining them allows
us to reap even more benefits.

II. METHODS

We evaluate our unlabeled data techniques on the task
of semantic image segmentation (i.e. providing a class label
to each pixel in the image). The next section describes the
supervised DeepLabv3+ [46] segmentation model that is used
across all our experiments, followed by an overview of the
self-supervised representation learning model SimCLR [3] and
semi-supervised learning model FixMatch [2].

A. Supervised DeepLabv3+

DeepLabv3+ [3] is a widely used neural network architec-
ture for semantic image segmentation which has shown state-
of-the-art results on several computer vision segmentation
benchmark datasets (MSCOCO [50], PASCAL VOC [51]).
In traditional encoder-decoder based segmentation models
like SegNet [52], max-pooling and/or striding in encoder
CNN reduces the spatial resolution of feature maps, which
are then upsampled by deconvolution layers in the decoder.
DeepLabv3+ uses a similar architecture but utilizes atrous
convolutions [46] in its backbone encoder to learn deep fea-
tures without losing spatial resolution. These feature maps are
further processed by ASPP (atrous spatial pyramid pooling)
to learn features at different scales. The decoder consists of
an upsampling+convolutional layer with a skip connection to
the corresponding encoder layer. Figure 1 illustrates the high
level model architecture for Deeplab. Final feature maps are
upsampled to the original input size and projected to output
logits, and cross entropy loss is computed for each pixel
against the ground truth pixel label. For more technical details,
please refer [46].
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Fig. 1: Encoder-decoder architecture of DeepLabv3+(Courtesy
of Chen et al. [46]). A CNN feature encoder is followed by an
Atrous Spatial Pyramid Pooling layer to learn features at dif-
ferent scales. A decoder with one skip connection upsamples
the learned features before predicting the segmentation class
probabilities of each pixel.

Augmentations: Input augmentation is a standard practice
to prevent overfitting, regularize models and improve gener-
alization [53] [54]. Many semi and self supervised methods
rely on augmentations of input image as part of their learning
process as well. Hence it was important to ensure that the
augmentations used in the baseline model are thoroughly opti-
mized, to avoid conflating the benefits of self/semi-supervised
techniques with the augmentation improvements associated
with them. The final set of optimized augmentations used for
supervised DeepLabv3+ learning (and finetuning experiments)
is described below. See the Appendix for more details and
ablation on these augmentations.
• Random crop with distortion: We take a random crop

of predefined input size from the dataset image. Crop
distortion is set to s = 0.5 which means that each side
of the image is randomly stretched between (1 + s) and
(1− s) times the original size. This augmentation makes
the model robust to minor perturbations in resolution.

• Rotation/flips: Each cropped image undergoes random
horizontal flip, random vertical flip and random 90-degree
rotations.

• Appearance augmentation: Color jitter is applied with
0.5 probability. Color jitter randomly changes brightness,
contrast, saturation and hue of an rgb image. Saturation
and hue augmentations are, however, not meaningful for
non-rgb images. For such images, we replace saturation
and hue with per channel brightness and contrast augmen-
tations. As opposed to standard contrast and brightness

Fig. 2: SimCLR framework (Courtesy of [3]).

which apply augmentation on each channel by the same
strength factor, per channel brightness and contrast apply
augmentation on each channel with a separate randomly
chosen factor. This generalized color jitter - which in-
cludes brightness, contrast, per channel brightness and per
channel contrast - makes our model robust to variations
coming from the satellite sensor, post-processing and
domain of training data, and forces it to consider spatial
structures when making predictions.

B. SimCLR Self-supervised model

SimCLR [3] is a self-supervised learning method, which
maximizes the similarity between representations of differently
augmented views of the same image by applying a contrastive
loss [55]. Models pre-trained using SimCLR provide a much
better network initialization than random weights for down-
stream tasks, especially when labeled data is scarce. A ResNet-
50 [56] based SimCLR model [3] trained only on the images
of ImageNet (without labels) achieves 48.3% top-1 accuracy
when finetuned over 1% of labeled ImageNet data, surpassing
the supervised baseline (with random initialization) which
achieves only 25.4% top-1 accuracy.

The contrastive loss is defined per mini-batch of images.
Specifically, given a randomly sampled mini-batch containing
N examples, each image is augmented twice, resulting in
2N augmented images {xk, k ∈ [1, ..., 2N ]}. Each augmented
image {xi} has a corresponding positive example {xj} and the
remaining 2(N−1) images are considered negative examples.
These images are encoded with the encoder network f(.) to
generate feature representations {hk} (see Figure 2). Note that
we use the same encoder used in DeepLabv3+ in order to allow
transfer learning. These representations are fed to a non-linear
projection network g(.) to generate {zk}. For each positive pair
(i, j) of the mini-batch, SimCLR computes the contrastive loss
as follows:

li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k 6=i]exp(sim(zi, zk)/τ)
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where sim(zi, zj) denotes the cosine similarity between vec-
tors zi and zj . 1[k 6=i] ∈ {0, 1} is an indicator function evalu-
ating to 1 iff k 6= i and τ denotes the temperature parameter.
Intuitively, this loss maximizes the similarity between zi and
zj (coming from the augmented views of the same image) and
minimizes their similarities to other {zk, k /∈ {i, j}} coming
from different images of the same minibatch.

Augmentations: To generate augmented views of the input
image, SimCLR [3] uses random distorted crop, random
horizontal flip, random color distortion (color jitter and color
dropping), and random Gaussian blur. We use the same
augmentation policy for our work. However for non-rgb inputs,
we use general color jitter as explained in Section II-A. Further
details on the specific augmentation parameters are provided
in the Appendix.

To leverage SimCLR self-supervised training on down-
stream segmentation tasks, we initialize the encoder of the
DeepLabv3+ segmentation network with a trained SimCLR
encoder f(.) and finetune on the labeled dataset. The re-
maining parts of DeepLabv3+ architecture like ASPP layers
and decoder layers, which constitute a small fraction of total
parameters, are trained from scratch with random initialization.
For example in the Resnet-50 based DeepLabv3+ model,
24M encoder parameters are initialized with SimCLR pre-
trained weights and remaining 3M parameters are trained from
scratch.

C. FixMatch Semi-supervised model

FixMatch [2] is a label propagation based Semi-supervised
learning algorithm for image classification. It has shown state-
of-the-art performance in extremely low-data regimes across a
variety of standard image classification benchmarks, including
94.93% accuracy on CIFAR-10 [57] (a 10-way classification
task) with 250 labeled images and 88.61% accuracy with

40 labeled images (i.e 4 labels per class). The key idea in
FixMatch is to use unlabeled data for consistency regular-
ization ( [17], [58]): Each unlabeled image undergoes two
types of augmentations: weak and strong. Weak augmentations
refer to less deforming augmentations like horizontal/vertical
flipping, color jitter etc and strong augmentations refer to
more deforming augmentations like shear, rotation, solarize
and posterize. Pseudo-labels are generated using the model
predictions (with current weights) on weak augmentations of
unlabeled images. Only predictions that pass a threshold for
the predicted probability (implying a high model confidence)
are used as Pseudo-labels. These pseudo-labels are then used
as training labels for stronger augmentations of the same input
image via addition of an additional cross-entropy loss, the
semi-supervised loss. The total loss for the model is a weighted
average of supervised loss, using labeled samples, and semi-
supervised loss, using unlabeled samples. By only considering
pseudo-labels which are above a certain confidence threshold,
FixMatch avoids the careful balancing of these losses needed
by MixMatch [15], ReMixMatch [16], [59], and [60]. The
max probability across all classes is usually low during the
beginning of the training and increases as the training pro-
gresses, producing a curriculum effect in training. This allows
Fixmatch to be trained on datasets with as low as a single
labeled sample per class.

We extend the FixMatch algorithm from image level classi-
fication to pixel wise segmentation tasks. Unlabeled images are
passed through the DeepLabv3+ model to generate per pixel
pseudo-labels and valid masks are computed via thresholding
the probabilities. The additional step needed is to spatially
transform the prediction (and the validity mask) on the weakly
augmented image, to generate pseudo labels that are correctly
aligned with the strongly augmented image (see Figure 3).

Fig. 3: FixMatch architecture with the semi-supervised loss adopted for semantic segmentation. The model generates predictions
for weakly augmented unlabeled images. Weakly augmented images and their predictions undergo strong augmentations, with
only the spatial augmentations being applied to predictions to generate pseudo labels. Semi-supervised cross-entropy loss is
computed on this strongly augmented image and pseudo labels.
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Augmentations: The same augmentations used for super-
vised DeepLabv3+ learning (rotation/flipping and color jitter,
see Section II-A) are used as weak augmentations for Fix-
Match. For strong augmentations, we use the same config-
uration for the strong augmentations proposed by Cubuk et
al. in Autoaugment [61]: out of a list of many augmentation
functions (like Equalize, solarize, posterize, shear, rotation),
two are chosen and applied in succession, followed by a cutout
(removes a part of the image) – unlike FixMatch, which re-
moves a single large rectangle for cutout, we remove multiple
smaller rectangles. The complete details of the augmentations
can be found in the Appendix.

III. DATASETS

We selected datasets for model evaluation based on these
criteria: (i) The task is a pixel wise segmentation task, (ii) We
have the ability to sample unlabeled data outside of the dataset
using the same satellite sources, and (iii) Location information
is available per image so that the dataset can be split into ge-
ographically non-overlapping training/validation/test regions.

For each dataset, we create two types of train/validation/test
splits in order to test for domain generalization: (i) IID
(Independent and Identically Distributed) partition: Where the
train/validation/test splits are created by IID sampling the
entire dataset, and (ii) Domain-shifted partition: Where the
train/validation/test splits are sampled from different geo-
graphical areas.

The next three subsections give specific details on each
dataset that is evaluated in this work and Table I provides
a summary view of these datasets.

A. Riverbed Segmentation Dataset

Fig. 4: Riverbed segmentation task example with the RGB
image on the left and the segmentation groundtruth label (with
riverbed and cloud) on the right. The riverbed includes both
the water and the sandy portion of the river.

The segmentation task in this dataset is to demarcate
riverbeds from RGB satellite images sampled from Google’s
satellite imagery (see Figure 4). It consists of 26,112 satellite
RGB images of size 513x513 at 4m resolution sampled from
riverbed regions of five Indian rivers - Ganga, Brahmaputra,
Narmada, Krishna, and Kaveri (see Figure 5). Each image was
labeled by human operators, who classified each pixel into one

Fig. 5: (Left) The riverbed regions where satellite images were
sampled for the labeled dataset. As shown in the samples, each
riverbed has distinct characteristics. (Right) The regions where
the unlabeled dataset was sampled.

of the 3 classes – riverbed, clouds and background using a
polygon drawing tool.

The IID partition of this dataset was done in 60:20:20
ratio resulting in 15,708 train, 5,243 validation and 5,161
test images. The domain-shifted partition (Figure 11) sampled
15,504 training images from the Ganga and Brahmaputra
riverbed region (black polygons in Figure 5(Left)), 7,568
validation images from the Narmada riverbed (red polygon
in Figure 5(Left)), and 3,040 test images from the Krishna
and Kaveri riverbed (green polygon in Figure 5(Left)). Each
riverbed has distinct visual characteristics (both the water and
sandy portion), thus making it harder for models trained on
one region to generalize on the other.

The unlabeled data around riverbed regions of several rivers
of India (polygons in Figure 5(Right)) was sampled from
the same satellite imagery collection as the labeled data.
In total, 183,668 satellite RGB images of size 1024x1024
were sampled at the same 4m resolution. The same unlabeled
data was used for both semi-supervised and self-supervised
experiments.

B. Chesapeake Land Cover

Fig. 6: Chesapeake Land Cover task example with the RGB
image on the left and the segmentation groundtruth label on
the right. [Blue: Water, Light green: Low vegetation, Dark
green: Forest, Light yellow: Impervious land]

The publicly available Chesapeake Land Cover dataset [62]
is sourced from the Chesapeake conservancy region in the
United States. It covers an area of about 100,000 sq miles
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Riverbed Segmentation Chesapeake Land Cover Sen1Floods11

Source Google Earth NAIP Sentinel-1
Bands RGB RGB+NIR VV and VH
Resolution 4m 1m 10m
Image size 513x513 256x256 512x512
Label classes 3 (Riverbed, Clouds, Background) 4 (Water, Forest, Field, Impervious) 2 (Water, No-water)

Domain-shifted Partition

# Train images 15,504 50,000 275
# Validation images 7568 2500 83
# Test images 3040 42,762 88
Train regions Ganga, Brahmaputra West Virginia Ghana, India, Nigeria, Paraguay, USA
Validation regions Narmada Maryland Somalia, Sri-Lanka, Bolivia
Test regions Krishna, Kaveri New York, Pennsylvania, Delaware Mekong, Pakistan, Spain

IID Partition

# Train images 15,708 50,000 252
# Validation images 5243 2500 89
# Test images 5161 14,750 90

Unlabeled Dataset for FixMatch

Source Google Earth NAIP Sentinel-1
Image size 1024x1024 256x256 512x512
# Images 183,668 1,999,840 4384
Sampling regions All major rivers of India East half of mainland USA 11 flood events from Sen1Floods11

Unlabeled Dataset for SimCLR

Source

Same as Above

NAIP Sentinel-1
Image size 256x256 512x512
# Images 1,999,675 4384(above) + 63k
Sampling regions Mainland USA Global

TABLE I: Summary of various parameters for the three datasets used for evaluation. The first section outlines information
about the labeled dataset and image sources, followed by details about the domain-shifted partition, IID partition and unlabeled
dataset sampling for FixMatch and SimCLR.

Fig. 7: The region where Chesapeake Land Cover data was
sampled, along with the domain-shifted partition and sample
images from each state.

that spans over 6 states: New York, Pennsylvania, Maryland,
Delaware, Virginia and West Virginia (Figure 7). The dataset
consists of multi-spectral imagery from the NAIP program [63]
at 1m resolution. Labels were created using semi-automated
feature extraction, rule-based clustering, followed by correc-
tions from experts. The complete details can be found on their
website [64]. Pixels are classified into 4 categories: (i) water,

Fig. 8: (Left) Unlabeled data from the mainland USA was used
to train the SimCLR model for Chesapeake dataset. (Right)
Unlabeled data from the east half of the mainland USA was
used to train FixMatch semi-supervised models.

(ii) forest, (iii) field, (iv) impervious surfaces (Figure 6). For
our experiments, we use the visual spectrum (RGB) and the
near-infrared band (NIR) images of size 256x256 pre-sampled
by the dataset creators. Each state has a pre-populated IID split
of 50,000 train samples and 2,500 validation samples per state.
The test split is provided as large tiff tiles (∼ 6000x7500),
which we slice into images of size 256x256.

For the IID partition, we use the data from the state of
Maryland, consisting of 50K training examples, 2,500 val-
idation examples and 14,750 testing examples(from 20 test
tiles) from the same state. For the domain-shifted partition,
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the training split consists of the training data from West
Virginia (50k examples), validation split uses the validation
data from Maryland (2.5k examples) and test split uses
the test data from New York, Pennsylvania and Delaware
(13,830+14,532+14,400=42,762 examples from a total of 60
tiles) (see Figure 12 for example imagery).

Unlabeled data for this task was sampled from publicly
available NAIP imagery (RGB+NIR) on Google Earth En-
gine [65]. For SimCLR training, approximately 2 million
256x256 sized images were uniformly drawn from the entire
region of the mainland United States from 2011 to 2014
(see Figure 8(left)). This dataset contains a rich variety of
geological features that is useful in representation learning
for the SimCLR model. A second sample of unlabeled data
containing approximately 2 million images was drawn from
the eastern half of the United States (see Figure 8(right)). We
observed that using the unlabeled data from the east half of
the US resulted in better performance for the Fixmatch semi-
supervised model. Our hypothesis for this behavior is that
semi-Supervised learning benefits more from unlabeled data
that is closer in distribution to the eventual test data.

C. Sen1Floods11

Fig. 9: The locations of 11 flood events where the flood data
of Sen1Floods11 was sampled (Courtesy of [66]).

Fig. 10: Sentinel-1 image (left), groundtruth floodmap (mid-
dle) and Sentinel-2 image (right) from Sen1Floods11 dataset.
Sentinel-2 image is only for visualization and not used during
training. Labels include water (yellow), no-water (cyan), and
masked out region (purple).

Sen1Floods11 [66] is a surface water dataset including raw
Sentinel-1 imagery with classified permanent and flood water.
A part of the dataset includes 4,831 Sentinel-1 images and
aligned Sentinel-2 images sampled during 11 flood events
from different regions of the world (see Figure 9). The dataset

authors create a flood map using the Sentinel-2 image by
thresholding over NDVI (Normalized Difference Vegetation
Index) and MNDWI (Modified Normalized Difference Water
Index). Out of these 4831 images, 446 were selected to be
hand corrected by experts yielding high quality water labels.
The final task is to perform flood segmentation using Sentinel-
1 images only (see Figure 10).

We carry out all our experiments on expert-labeled 446
images because they have high quality labels (curated by
experts) and to test self and semi-supervised methods on
the real world constraint of an extremely small dataset. The
authors provide an IID partition of this data containing 252
train samples, 89 validation samples and 90 test samples
(excluding the Bolivia flood event). The same partition was
used as the IID partition for our experiments. Our domain-
shifted partition includes 275 train images from 5 events
(Ghana, India, Nigeria, Paraguay, USA), 83 validation images
from 3 events (Somalia, Sri-Lanka, Bolivia) and 88 test images
from the remaining 3 events (Mekong, Pakistan, Spain) (see
Figure 13).

The 4385 images that were not labeled by experts, are
used as unlabeled data for FixMatch semi-supervised learning
(weak labels are not used). However, this unlabeled dataset is
quite small for SimCLR to learn rich features. So we sample
additional 63K sentinel-1 images randomly distributed across
the globe from the year 2019. This large dataset combined
with 4385 unlabeled images from Sen1Floods11 is used to
train the SimCLR model.

IV. EXPERIMENTS AND RESULTS

The next section describes the overall experiment design,
followed by a separate section each for dataset specific setup
and its results.

A. Experiment Design

For each dataset, we compare the performance of following
baseline models that only use labeled data:
• Supervised(Random) : Supervised training with ran-

domly initialized DeepLabv3+ network.
• Supervised(ImageNet) : Supervised training where the

DeepLabv3+ encoder is initialized with an Imagenet
pretrained checkpoint (as done in [46]).

and the following models that use unlabeled data:
• Supervised(SimCLR) : Supervised training with the

DeepLabv3+ encoder initialized from a SimCLR-
pretrained checkpoint.

• FixMatch(Random) : FixMatch training with a randomly
initialized DeepLabv3+ network.

• FixMatch(ImageNet) : FixMatch training with the
DeepLabv3+ encoder initialized with an Imagenet pre-
trained checkpoint.

• FixMatch(SimCLR) : FixMatch training with the
DeepLabv3+ encoder initialized from a SimCLR pre-
trained checkpoint, combining the benefits of both self
and semi-supervised learning.

To understand how performance varies with label scarcity,
we subsample the labeled part of the dataset at 1%, 10%
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Fig. 11: Randomly sampled images from train (top), validation (middle) and test (bottom) split of domain-shifted partition of
Riverbed segmentation dataset. It can be noticed that the riverbed differs in structure and color among the splits.

Fig. 12: Randomly selected images from train (top), validation (middle) and test (bottom) split of the domain-shifted partition
of the Chesapeake Land Cover dataset.
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Fig. 13: Randomly selected Sentinel-1 images from train (top), validation (middle) and test (bottom) split of domain-shifted
partition of Sen1Floods11 dataset.

and 100%. We sample five draws of 1% of the dataset
and three draws for the 10% dataset – these samples are
chosen only once and fixed for all experiments. However,
for Sen1Floods11, 1% of the labeled data amounts to only
3 labeled images which is too small for supervised learn-
ing/finetuning. Hence we conduct our experiments only on
100% and five samples of 10% dataset. The results on these
partial datasets are reported by mean and standard deviation
of the chosen metric. We run the 100% experiment three times
and report aggregated metrics similarly.

All models are trained and evaluated on both the IID
and domain-shifted partition of each dataset. The domain-
shifted partition often reflects real world deployment scenarios
more accurately, and provides a good test bed to quantify
improvements that come from using unlabeled data (as this
data provides an opportunity for the network to learn to gen-
eralize better). For each dataset partition, the neural network
weights are optimized on the training split, all hyperparameters
selection, checkpoint selection and experimental analysis is
done on the validation split. And once we have frozen our
model and all hyper-parameters, we finally report results by
running inference on the test split.

B. Training Details

Supervised: We use the Resnet-50 model as our backbone
encoder with the first 7x7 convolution layer replaced with
two 3x3 convolution layers (as done in DeepLabv3+ [46]).
We use batch normalization [67], batch size of 64, and
momentum optimizer with momentum set to 0.9. We also use
the exponential moving average of model parameters which
helps to stabilize the evaluation of the model throughout the
training. Atrous rates are set to (3, 6, 9) for all experiments.

The skip connection between encoder and decoder is applied
at the layer with downsampling factor of 4. Learning rate is
decayed with a polynomial schedule (with power 0.9) from
its initial value to zero. For each dataset, we set output stride
(the ratio of input image size and the spatial resolution of
intermediate feature maps) and input image size according to
the dataset image size (see Table II for these details). Refer
to Chen et al. [46] for more details on these hyper-parameter
values.

SimCLR: The same Resnet-50 backbone that was used for
the DeepLabv3+ based model is also used for SimCLR train-
ing to allow transferring weights. For each dataset, SimCLR
is trained on its corresponding unlabeled dataset with a setup
similar to the SimCLR paper [3]. We use the LARS optimizer
with momentum 0.9, weight decay of 0.0001, batchsize of
4096, initial learning rate of 2.4 and cosine learning rate
decay schedule. These parameters work well and we didn’t try
to optimize them per task, though it is possible that careful
tuning for each downstream task may further increase its
performance. For Riverbed segmentation, each large unlabeled
image of size 1024x1024 is split into tiles of size 256x256 and
then crop size of 224x224 is used to train for 160k steps. For
Chesapeake, crop size of 224x224 is used to train for 200k
steps. For Sen1Floods11, crop size 256x256 is used to train for
100k steps. After SimCLR pretraining is done on the unlabeled
data, the last checkpoint is used to initialize the model encoder
for Supervised(SimCLR) and FixMatch(SimCLR) .

FixMatch: For Semi-supervised experiments, a hyperpa-
rameter sweep is run over the confidence threshold with
values [0.75, 0.8, 0.85, 0.9, 0.95]. A threshold of 0.9 worked
best for pseudo label generation across all datasets. The train
batch consists of 32 labeled and 32 unlabeled images in
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Riverbed Segmentation Chesapeake Land Cover Sen1Floods11

Encoder ResNet-50 ResNet-50 ResNet-50
Batch size 64 64 64
Atrous rates (3,6,9) (3,6,9) (3,6,9)
Optimizer Momentum(m=0.9) Momentum(m=0.9) Momentum(m=0.9)
Decoder output stride 4 4 4
Train crop size 321x321 241x241 321x321
Output stride 16 8 16

Evaluation Metric Mean IoU of
Riverbed class

Average of mean
IoU of all classes

Mean IoU of
Water class

Number of train steps 60k for Supervised
120k for FixMatch

100k for Supervised
120k for FixMatch

20k for Supervised
120k for FixMatch

Partial datasets 1 sample of 100%
3 samples of 10%
5 samples of 1%

1 sample of 100%
3 samples of 10%
5 samples of 1%

1 sample of 100%
5 samples of 10%

Learning rate
weight decay

Decided by a sweep over learning rate values [0.3, 0.1, 0.03, 0.01, 0.003,
0.001] and weight decay values [0.001, 0.0001, 0.0003, 0.00001, 0.000001]
for each model on each dataset.

TABLE II: Training details of Supervised and FixMatch learning methods for all three datasets.

all cases. The total loss is the sum of supervised loss and
semi-supervised loss, optimized using Momentum optimizer
with momentum 0.9 and polynomial schedule (with power
0.9). Batch normalization parameters are updated only on
the labeled and the strongly augmented images. Table II
summarizes the other dataset specific hyperparameter choices.

Other details: For each dataset and for each model (except
SimCLR pretraining), we do a grid search to find out the
optimal values of learning rate from [3e-1, 1e-1, 3e-2, 1e-
2, 3e-3, 1e-3] and weight decay value from [1e-3, 1e-4, 3e-4,
1e-5, 1e-6] because their optimal values vary for each dataset
and model. The grid search is done on the 100% sample
of the domain-shifted partition and the same parameters are
used for the 1% and 10% data experiments as well as all IID
partition experiments. The exact hyper-parameters chosen per
dataset are documented in the Appendix. For each model, the
checkpoint with the best evaluation metric on the validation
set is chosen for testing. The Resnet-50 backbone used in all
models is fully convolutional [68], which allows us to transfer
weights from models trained on ImageNet and SimCLR using
different image sizes, as well as evaluate on image sizes that
are different from the training image sizes. For datasets with
non RGB inputs, whenever we initialize the model from an
ImageNet checkpoint, the first conv layer weights for each
non-rgb channel are initialized with the mean of RGB weights
of the first conv layer of the ImageNet checkpoint (averaged
across channels).

C. Results: Riverbed Segmentation

We use the pixelwise Intersection over Union(IoU) of
riverbed class to validate our model performance on this
dataset. Even though this dataset has another labeled class
(i.e. clouds), these annotations are ambiguous even for human
annotators as some images contain hazy clouds. In addition,
some of the validation and test splits had extremely small
number of cloud pixels (due to their geographical location),

which made metrics on cloud class unreliable. Hence, we run
our evaluation only on the riverbed class metric.

1) Domain-shifted partition: Figure 14(a) shows riverbed
IoU on the domain-shifted partition for Supervised(SimCLR)
, FixMatch(Random) and FixMatch(ImageNet) against the
baselines Supervised(Random) and Supervised(ImageNet) .
Because of in-domain pretraining, Supervised(SimCLR) pro-
vides better model initialization and consistently outperforms
Supervised(ImageNet) (7%, 10% and 4.5% absolute riverbed
IoU improvement in 1%, 10% and 100% labeled dataset re-
spectively). For semi-supervised learning, FixMatch(Random)
provides an absolute riverbed IoU improvement over Su-
pervised(Random) of 7% in 1% dataset, going down to 3%
in 100% dataset. FixMatch(ImageNet) shows a consistent
increase in the absolute riverbed IoU of 7%, 9.1% and 3.4%
over Supervised(ImageNet) in 1%, 10% and 100% of the
labeled dataset respectively.

Our best model FixMatch(SimCLR) which combines the
benefits of SimCLR pretraining and FixMatch semi-supervised
training, significantly outperforms all other models: Fix-
Match(SimCLR) trained only on 1% labeled dataset has a
riverbed IoU of 61.0%, that matches the commonly used
Supervised(ImageNet) baseline trained on full 100% dataset
(60.9% riverbed IoU). This shows that combining self and
semi-supervised models can make deep learning extremely
data efficient for the riverbed segmentation task.

2) IID partition: Figure 14(b) compares the models on the
IID partition of the riverbed dataset in a similar way as the
domain-shifted partition. Initializing the model with ImageNet
or SimCLR pretrained weights always helps against random
initialization for both Supervised and Semi-supervised models.
When labeled data is available in enough quantity (i.e 10%
and 100%), in this easier problem setup, model performance
saturates and there isn’t much gain to be seen in using
self and semi-supervised techniques. But for the 1% labeled
data sample, Supervised(SimCLR) , FixMatch(ImageNet)



SUBMITTED ON ARXIV 11

Dataset Model Domain-shifted Partition IID Partition

1% 10% 100% 1% 10% 100%

Riverbed
Segmentation

(Riverbed mIoU)

Supervised(Random) 38.93± 3.0 53.17± 2.7 55.45± 0.8 61.46± 6.6 77.67± 1.5 83.00± 0.1
Supervised(ImageNet) 47.68± 5.1 53.39± 8.6 60.87± 2.3 68.26± 6.6 80.47± 0.9 84.70± 0.0
Supervised(SimCLR) 54.46± 2.0 63.24± 1.1 65.39± 1.3 71.14± 7.1 80.60± 0.3 84.57± 0.1
FixMatch(Random) 46.17± 2.7 54.21± 1.2 58.72± 0.5 67.49± 5.9 77.78± 1.1 81.95± 0.0

FixMatch(ImageNet) 54.76± 2.6 62.54± 0.9 64.27± 0.7 71.82± 7.5 81.88± 0.3 84.31± 0.1
FixMatch(SimCLR) 61.01± 1.9 67.22± 0.9 69.78± 1.2 74.29± 5.9 81.59± 0.2 84.39± 0.0

Chesapeake
Land Cover
(Avg. mIoU)

Supervised(Random) 63.63± 1.9 72.06± 1.0 76.89± 0.2 79.06± 2.3 82.18± 0.8 83.41± 0.2
Supervised(ImageNet) 62.48± 5.0 73.65± 1.0 78.31± 0.3 80.60± 1.1 82.60± 0.6 83.65± 0.1
Supervised(SimCLR) 65.89± 2.0 74.05± 0.8 78.51± 0.4 80.03± 1.5 82.43± 0.7 84.25± 0.3
FixMatch(Random) 67.72± 3.3 72.23± 1.6 76.34± 0.3 80.71± 2.0 81.81± 1.4 82.54± 0.2

FixMatch(ImageNet) 63.73± 5.7 75.38± 1.7 78.64± 0.3 80.86± 1.3 82.55± 0.4 83.80± 0.1
FixMatch(SimCLR) 69.15± 2.5 76.26± 2.1 79.01± 0.0 81.76± 0.7 82.86± 0.4 83.64± 0.1

Sen1Floods11
(Water mIoU)

Supervised(Random) 60.11± 10.3 67.77± 0.8 53.69± 9.7 63.51± 1.2
Supervised(ImageNet) 61.91± 7.6 67.43± 0.5 56.68± 1.9 64.79± 0.5
Supervised(SimCLR) 64.29± 3.9 70.95± 0.1 59.56± 3.0 66.92± 0.5
FixMatch(Random) 66.05± 3.5 71.56± 0.6 56.24± 5.2 62.61± 0.6

FixMatch(ImageNet) 66.46± 3.6 71.07± 0.3 59.17± 3.4 64.66± 0.4
FixMatch(SimCLR) 64.08± 6.3 70.63± 0.5 59.47± 1.6 61.35± 2.4

TABLE III: Results on test set of the domain-shifted and IID partitions of all three datasets. The numbers show the aggregated
mean and standard deviation of metrics.
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Fig. 14: Results on the test split of River segmentation dataset. Note that the y-axis range is different for the two dataset
partitions as the performance range is significantly different between the two.

and FixMatch(SimCLR) provide a 2.9%, 3.6% and 6%
absolute riverbed IoU improvement respectively over the Su-
pervised(ImageNet) baseline. It is interesting to note that on
100% dataset, FixMatch(Random) performance degrades by
1.1% absolute rivedbed IoU from the Supervised(Random)
baseline. Our hypothesis is that the FixMatch model might be
losing some accuracy on the labeled training data (which is
sampled from the same region as the test data) while learning
to generalize better on other regions of the unlabeled dataset.

D. Results: Chesapeake Land Cover

We use mean IoU (average of the pixelwise IoU of all 4
classes) to validate our model performance on this dataset as
done by [62].

1) Domain-Shifted partition: Figure 15(a) shows the mean
IoU on the domain-shifted partition of this dataset for all
models. Supervised(SimCLR) performs slightly better than
Supervised(ImageNet) baseline for 10% and 100% dataset.

However, the benefit of SimCLR pretraining is more pro-
nounced in the 1% labeled dataset where it outperforms
Supervised(ImageNet) by an absolute margin of 3.4% in mean
IoU and Supervised(Random) by 2.3% in mean IoU (9.1%
and 6.2% relative reduction in error rate).

FixMatch(ImageNet) provides an absolute improvement of
by 1.25% and 1.73% in 1% and 10% dataset respectively over
Supervised(ImageNet) . On the 100% dataset however, there
are no significant gains in using FixMatch(ImageNet) over
the baseline Supervised(ImageNet) . FixMatch(Random)
performs better than Supervised(Random) by 4.1% for the
1% dataset but is similar in performances for 10% and 100%
datasets.

The combined FixMatch(SimCLR) model outperforms all
other models, and provides an absolute mean IoU improve-
ment of 6.7%, 2.6%, 0.7% over Supervised(ImageNet) for
1%, 10% and 100% datasets respectively.

2) IID partition: Figure 15(b) compares all models on the
IID partition of this dataset. Supervised(SimCLR) outper-
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Fig. 15: Results on the test split of Chesapeake dataset. Note that the y-axis range is different for the two dataset partitions as
the performance range is significantly different between the two.

forms Supervised(ImageNet) in 100% by a small margin
of 0.6% absolute mean IoU, but lags behind the Super-
vised(ImageNet) baseline by 0.6% in the 1% dataset. Fix-
Match(ImageNet) and FixMatch(SimCLR) models, on the
other hand, match the Supervised(ImageNet) baseline in
100% dataset and outperform them in the 1% dataset by a
small margin (0.3% and 1.2% absolute mean IoU improvement
respectively).

Overall from Figure 15(b), we do not see much gains in
using unlabeled data techniques over the supervised baselines
in this partition. The change in absolute performance of
Supervised(ImageNet) between 1% and 100% of labeled data
is also fairly small (from 80.6% to 83.65%). Our hypothesis
is that in the IID setting, this task is easier than the domain-
shifted partition, and we have enough labels needed to get high
accuracy even at the 1% sample size (which corresponds to
500 labeled images). In addition, in our qualitative review, we
found that the ground truth labels on Chesapeake have some
errors, and it’s possible that at 100% sample size, we might
be at the limit of ground truth accuracy and cannot see further
model improvements.

E. Results: Sen1Floods11

The authors of this dataset used the mean of imagewise
IoU of the water class as their evaluation metric [66]. To keep
our metric consistent across other datasets above, we used the
mean IoU (computed pixelwise) of the water class to validate
our model performance on this dataset. Unlike the imagewise
IoU, this metric is more robust and is not sensitive to the
choice of the tile size and proportion of water pixels in a
particular image.

1) Domain-Shifted partition: Figure 16(a) compares the
performance of all models (using IoU of water class) on
the domain-shifted partition of the Sen1Floods11 dataset.
Supervised(SimCLR) provided modest gains over the Super-
vised(ImageNet) baseline in 10% and 100% dataset of 2.4%
and 3.5% absolute IoU respectively.

FixMatch(Random) outperforms Supervised(Random) by
6.0% and 3.8 % absolute IoU on the 10% and 100%

dataset respectively. With FixMatch(ImageNet) , we see
a gain of 4.55% and 3.6% absolute IoU over Super-
vised(ImageNet) on the 10% and 100% dataset respectively.
FixMatch(SimCLR) shows an improvement of 2.2%, 3.2%
over Supervised(ImageNet) for 10% and 100% datasets
respectively (matching Supervised(SimCLR) in each case,
but not providing any more gains than that).

2) IID partition: Figure 16(b) compares the performance
of all models on the IID partition of Sen1Floods11 dataset.
Similar to the domain shifted partition, Supervised(SimCLR)
provided modest gains over the Supervised(ImageNet) base-
line in 10% and 100% dataset of 2.9% and 2.1% absolute IoU
respectively.

Semi-supervised learning shows mixed results on this parti-
tion. FixMatch(Random) outperforms Supervised(Random)
by 2.5% on 10% dataset but shows a small degradation of 0.9%
for the 100% dataset. The other variants of FixMatch (i.e. Fix-
Match(ImageNet) and FixMatch(SimCLR) ) also show mixed
performance. FixMatch(ImageNet) improves performance
over Supervised(ImageNet) by 2.5% in 10% dataset and
matches it for the 100% dataset. FixMatch(SimCLR) matches
Supervised(SimCLR) in performance for 10% dataset but
decreases by 5.4% for the 100% dataset.

V. CONCLUSION

We evaluated the efficacy of using self and semi supervised
methods on three different remote sensing tasks, especially
in two real world settings: geographical domain shifts and
small amount of labeled data. One consistent trend observed
across all datasets was that in settings with small number of
labels, using both SimCLR and FixMatch techniques (and
combining the two as well) improved model performance
significantly. The gains were even more pronounced when
there are geographical domain shifts at test time, signifying
that these techniques can leverage unlabeled data to improve
model generalization. Such gains are especially useful in real
world deployments, where the test distribution is uncertain
and often contains such geographical domain shifts. In easier
scenarios where the performance of the purely supervised
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Fig. 16: Results on the test split of Sen1Floods11 dataset. Note that the y-axis range is different for the two dataset partitions
as the performance range is slightly different between the two.

model saturates, signifying that there is enough labeled data
for good generalization (e.g. the IID partition with 100% labels
on Chesapeake), such techniques do not provide significant
benefits (and FixMatch can sometimes lower the performance
over supervised baselines by small amounts). However, in
real world deployments where some amount of geographical
domain shifts is expected, using the self and semi supervised
techniques evaluated in this paper improve model generaliza-
tion significantly.
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APPENDIX A
HYPERPARAMETERS

Learning rate and weight decay significantly affect the
model performance, especially for domain-shifted partition.
Hence, we perform a hyperparameter grid search and arrive
at the following parameters for each model on each dataset.
All these hyper-parameters are selected using validation met-
ric score of the 100% dataset experiment of domain-shifted
partition.

A. Hyperparameters for Riverbed Segmentation Dataset
Model Learning rate Weight decay

Supervised(Random) 0.01 0.001
Supervised(ImageNet) 0.03 0.0001
Supervised(SimCLR) 0.003 0.0001
FixMatch(Random) 0.03 0.0001

FixMatch(ImageNet) 0.01 0.00001
FixMatch(SimCLR) 0.003 0.0001

B. Hyperparameters for Chesapeake Land Cover Dataset
Model Learning rate Weight decay

Supervised(Random) 0.03 0.0001
Supervised(ImageNet) 0.01 0.0003
Supervised(SimCLR) 0.03 0.0003
FixMatch(Random) 0.03 0.0003

FixMatch(ImageNet) 0.03 0.0001
FixMatch(SimCLR) 0.01 0.0001

C. Hyperparameters for Sen1Floods11 Dataset
Model Learning rate Weight decay

Supervised(Random) 0.01 0.0001
Supervised(ImageNet) 0.001 0.000001
Supervised(SimCLR) 0.01 0.0001
FixMatch(Random) 0.03 0.0001

FixMatch(ImageNet) 0.03 0.0001
FixMatch(SimCLR) 0.1 0.0001

APPENDIX B
AUGMENTATIONS

A. Supervised Training Augmentations

We use the following augmentation policy for supervised
training of the DeepLabv3+ models: Supervised(Random) ,
Supervised(ImageNet) and Supervised(SimCLR) . We also
use this same policy for weak augmentation in all FixMatch
models.
• Random distorted crop with 0.5 distortion.
• Random horizontal flip
• Random vertical flip
• Random rotation by a multiple of 90 degrees
• Color jitter with 0.5 probability:

– ColorJitterRGB with strength 0.4 for RGB images
– ColorJitterGeneral with strength 0.4 for non-

RGB images
Refer to Listing-1 below for the definition of
ColorJitterRGB and ColorJitterGeneral.

https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/
https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-cover-data-project/
https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ
https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ
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B. Ablation on Supervised Learning Augmentation

Our augmentation policy for Supervised(ImageNet) has
2 hyperparameters - distortion of crop and strength of color
jitter. On an initial ablation done on Sen1Floods11 dataset,
the crop distortion of 0.5 and color jitter strength of 0.4
worked the best. With this defined augmentation policy, we
carried out a formal ablation on the effect of augmentation
on Supervised(ImageNet) baseline model performance. For
domain-shifted partition of Riverbed segmentation dataset
and Sen1Floods11 dataset, we trained two more models:
(1) Supervised(ImageNet) with color jitter removed (i.e.
no appearance augmentation) and (2) Supervised(ImageNet)
with all augmentation removed (no geometric and appearance
augmentation). Hyperparameters were chosen again for these
new models with the same hyperparameter sweeps as dis-
cussed in Section IV-B. The results on test splits are shown in
the Figure 17 below. The figures clearly demonstrate that the
chosen set of augmentations significantly improve the overall
performance of Supervised(ImageNet) across datasets and
percentage splits, making it a strong baseline.
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Fig. 17: Augmentations ablation on the domain-shifted parti-
tion of Riverbed segmentation(top) and Sen1Floods11(bottom)
dataset.

C. SimCLR Augmentations

For RGB images, we use the same augmentations proposed
by SimCLR [3]. For non-RGB images, we replace RGB color
jitter with general color jitter. For color dropping, we use
the mean of all channels for Chesapeake Land Cover dataset
(RGB+IR images). But the notion of color dropping is not
defined for Sentinel-1 images. Hence for Sen1Floods11, we

don’t use color dropping and instead adjust color jitter proba-
bility to 0.85. Below is the full list of SimCLR augmentations
used:
• Distorted bounding box crop
• Random horizontal flip
• Random vertical flip
• Color jitter with 0.8 probability (probability 0.85 for

Sen1Floods11)
– ColorJitterRGB with strength 0.8 for RGB images
– ColorJitterGeneral with strength 0.8 for non-

RGB images
• Color dropping with 0.2 probability

– Riverbed segmentation: tf.image.rgb to grayscale for
RGB images

– Chesapeake Land Cover: Taking mean of all channels
– Sen1Floods11: No-operation

• Random Gaussian blur
Refer to Listing-1 below for the definition of
ColorJitterRGB and ColorJitterGeneral.

D. FixMatch Augmentations

Augmentations are used for all 3 version of images during
the training pass: labeled, weakly-augmented and strongly-
augmented. For the labeled images and weakly augmented
images, the augmentation policy for supervised DeepLabv3+
models (defined in Appendix B-A) is used. For strong aug-
mentations, two simple augmentation functions are applied
successively, followed by a random cutout to generate a strong
augmentation. For the cutout augmentation, while FixMatch
[2] only removes a single large rectangle, we remove multiple
smaller rectangles. Table V lists the compositions of these
augmentations. For each image one of the composition is
randomly selected and the individual functions are applied
successively.

E. Pseudo Code

We follow AutoAugment [61] and SimCLR [3] for the im-
plementation of most augmentation functions. Please refer to
the papers and their public implementations for specific details.
Listing-1 contains pseudo code for remaining augmentation
functions that we use.

Listing 1: Pseudo-code for augmentations using Tensorflow

def BrightnessPerChannel(image, strength):
channels_list = split_channels(image)
aug_channels_list = [
Brightness(channel, strength) for channel in
channels_list]

return stack_channels(aug_channels_list)

def ContrastPerChannel(image, strength):
channels_list = split_channels(image)
aug_channels_list = [
Contrast(channel, strength) for channel in
channels_list]

return stack_channels(aug_channels_list)

def ColorJitterRGB(image, strength):
# We also randomize the order of these
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Function Parameter Description

AutoContrast Maximizes the image contrast by setting the darkest (lightest) pixel to black (white).
Brightness S Change the brightness of all channels by a random factor in [1− S, 1 + S].

Color C Controls the contrast of the image. A C = 0 returns a gray image, C = 1 returns the original image.
Contrast S Change the contrast of all channels by a random factor in [1− S, 1 + S].
Equalize Equalizes the image histogram.

Hue S Change the hue of RGB image by a random factor in [1− S, 1 + S].
Invert Adjusts each pixel value p to (255− p)

Posterize B Reduces each pixel to B bits.
Rotate θ Rotates the image by θ degrees.

Saturation S Change the saturation of RGB image by a random factor in [1− S, 1 + S].
ShearX R Shears the image along the horizontal axis with rate R.
ShearY R Shears the image along the vertical axis with rate R.

Solarize T Inverts all pixels above a threshold value of T .
SolarizeAdd A, T Add A to each pixel then invert each pixel with value above the threshold T .

TranslateX λ Translates the image horizontally by (λ× image width) pixels.
TranslateY λ Translates the image vertically by (λ× image height) pixels.

TABLE IV: Functions used in data augmentation policies for training the models.

Augmentation 1 Augmentation 2

Equalize(0.8, .1) ShearY(0.8, 0.4)
Color(0.4, .9) Equalize(0.6, 0.3)
Color(0.4, .1) Rotate(0.6, 0.8)
Solarize(0.8, .3) Equalize(0.4, 0.7)
Solarize(0.4, .2) Solarize(0.6, 0.2)
Color(0.2, .0) Equalize(0.8, 0.8)
Equalize(0.4, .8) SolarizeAdd(0.8, 0.3)
ShearX(0.2, .9) Rotate(0.6, 0.8)
Color(0.6, .1) Equalize(1.0, 0.2)
Invert(0.4, .9) Rotate(0.6, 0.0)
Equalize(1.0, .9) ShearY(0.6, 0.3)
Color(0.4, .7) Equalize(0.6, 0.0)
Posterize(0.4, .6) Autocontrast(0.4, 0.7)
Solarize(0.6, .8) Color(0.6, 0.9)
Solarize(0.2, .4) Rotate(0.8, 0.9)
Rotate(1.0, .7) TranslateY(0.8, 0.9)
ShearX(0.0, .0) Solarize(0.8, 0.4)
ShearY(0.8, .0) Color(0.6, 0.4)
Color(1.0, .0) Rotate(0.6, 0.2)
Equalize(0.8, .4) Equalize(0.0, 0.8)
Equalize(1.0, .4) Autocontrast(0.6, 0.2)
ShearY(0.4, .7) SolarizeAdd(0.6, 0.7)
Posterize(0.8, .2) Solarize(0.6, 1.0)
Solarize(0.6, .8) Equalize(0.6, 0.1)
Color(0.8, .6) Rotate(0.4, 0.5)

TABLE V: Augmentation strategy proposed in
AutoAugment [61] used as strong augmentation for
FixMatch training. Each augmentation is specified as
function(probability, strength). For non-RGB inputs like
Sen1Floods11 we replace the Color augmentation with
ColorJitterGeneral.

# augmentations each time.
image = Brightness(image, strength)
image = Contrast(image, strength)
image = Hue(image, strength/4)
image = Saturation(image, strength)
return image

def ColorJitterGeneral(image, strength):
# We also randomize the order of these
# augmentations each time.
image = Brightness(image, strength)
image = Contrast(image, strength)
image = BrightnessPerChannel(image, strength/2)
image = ContrastPerChannel(image, strength/2)
return image

APPENDIX C
VALIDATION SPLIT PLOTS

Figures 18, 19, 20 show the results of experiments on
the selected hyper-parameters on the validation split of the
datasets.
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Fig. 18: Results on the validation split of River segmentation domain-shifted partition (left) and IID partition (right).
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Fig. 19: Results on the validation split of Chesapeake domain-shifted partition (left) and IID partition (right).
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Fig. 20: Results on the validation split of Sen1Floods11 domain-shifted partition (left) and IID partition (right).
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