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Quantum advantage in learning from experiments
Hsin-Yuan Huang1,2*, Michael Broughton3, Jordan Cotler4,5, Sitan Chen6,7, Jerry Li8, Masoud Mohseni3,
Hartmut Neven3, Ryan Babbush3, Richard Kueng9, John Preskill1,2,10, Jarrod R. McClean3*

Quantum technology promises to revolutionize how we learn about the physical world. An experiment
that processes quantum data with a quantum computer could have substantial advantages over
conventional experiments in which quantum states are measured and outcomes are processed with a
classical computer. We proved that quantum machines could learn from exponentially fewer experiments
than the number required by conventional experiments. This exponential advantage is shown for
predicting properties of physical systems, performing quantum principal component analysis, and
learning about physical dynamics. Furthermore, the quantum resources needed for achieving an exponential
advantage are quite modest in some cases. Conducting experiments with 40 superconducting qubits
and 1300 quantum gates, we demonstrated that a substantial quantum advantage is possible with
today’s quantum processors.

H
umans learn about nature through ex-
periments, but until now our ability to
acquire knowledge has been hindered
by viewing the quantum world through
a classical lens. The rapid advancement

of quantum technology portends an opportu-
nity to observe the world in a fundamentally
different and more powerful way. Instead of
measuring physical systems and then process-
ing the classical measurement outcomes to
infer properties of those physical systems,
quantum sensors (1) will eventually be able to
transduce (2) quantum information in physi-
cal systems directly to a quantummemory (3, 4),
in which it can be processed by a quantum
computer. Figure 1A illustrates the distinction
between conventional and quantum-enhanced
experiments. For example, in a quantum-
enhanced experiment, multiple photons might
be captured and stored coherently at each
node of a quantum network and then pro-
cessed coherently to extract an informative
signal (5, 6, 7). In both the conventional and
quantum-enhanced settings, multiple copies
of the same quantum state are acquired. The
crucial distinction is that the copies are mea-
sured one at a time in conventional experi-
ments whereas entangling measurements
across multiple copies are allowed in quantum-
enhanced experiments.

Recent mathematical analyses performed
by some of the authors show that there exist
properties of an n-qubit system that a quan-
tummachine can learn efficiently whereas the
requisite number of conventional experiments
to achieve the same task is exponential in
n (8, 9). This exponential advantage contrasts
sharplywith the quadratic advantage achieved
in many previously proposed strategies for
improving sensing using quantum technology
(1). In this article, we propose and analyze
three classes of learning tasks with exponen-
tial quantum advantage and report on proof-
of-principle experiments using up to 40 qubits
on a Google Sycamore processor (10). These
experiments confirm that a substantial quan-
tum advantage can be realized even when the
quantummemory andprocessor are bothnoisy.
To be more concrete, suppose that each

experiment generates an n-qubit state r, and
our goal is to learn some property of r (Fig. 1).
We depict conventional and quantum-enhanced
experiments for this scenario in Fig. 1B. In
conventional experiments, each copy of r is
measured separately, the measurement data
are stored in a classical memory, and a clas-
sical computer outputs a prediction for the
property after processing the classical data.
In quantum-enhanced experiments, each copy
of r is stored in a quantum memory, after
which the quantum machine outputs the pre-
diction after processing the quantum data in
the quantummemory. We proved that for some
tasks, the number of experiments needed to
learn a desired property is exponential in
n with the conventional strategy, but only
polynomial in n using the quantum-enhanced
strategy. For suitably defined tasks, we could
achieve exponential quantum advantage using
a protocol as simple as storing two copies of r
in quantum memory and performing an en-
tangling measurement. We also showed that

quantum-enhanced experiments have a simi-
lar exponential advantage in a related scenario
shown in Fig. 1C, in which the goal is to learn
about a quantum processE rather than a quan-
tum stater. Advantages of entanglingmeasure-
ments over single-copy measurements have
been noticed previously (11, 12), but our work
goes much further by establishing an advan-
tage that scales exponentially with system size.
Building on previous observations (8, 13),

we proved that for a task that entails ac-
quiring information about a large number
of noncommuting observables, quantum-
enhanced experiments could have an expo-
nential advantage even when the measured
quantum state is unentangled. Our work sub-
stantially reduces the complexity of the required
quantum-enhanced experiments, improving
the prospects for near-term implementation.
By performing experiments with up to 40
superconducting qubits, we showed that this
quantum advantage persisted even when
using currently available quantum proces-
sors. We also demonstrated quantum advan-
tage in learning the symmetry class of a
physical evolution operator, inspired by re-
cent theoretical advances (9, 13). Finally, in
a theoretical contribution we rigorously proved
that quantum-enhanced experiments have an
exponential advantage in learning about the
principal component of a noisy state, as pre-
viously indicated (14).
In our proof-of-principle experiments, we

directly executed the state preparation or pro-
cess to be learned within the quantum proces-
sor. In an actual application, the quantum
data analyzed by the learning algorithmmight
be produced by an analog quantum simulator
or a gate-based quantum computer. We also
envision future applications in which quan-
tum sensors equipped with quantum proces-
sors interact coherently with the physicalworld.
The robustness of quantum advantage with
respect to noise—validated by our experiments
using a noisy superconducting device—boosts
our confidence that the quantum-enhanced
strategies described here can be exploited
someday to achieve a substantial advantage
in realistic applications.

Provable quantum advantage

We present three classes of learning tasks and
the associated quantum-enhanced experiments,
each yielding a provable exponential advantage
over conventional experiments. Each result
is encapsulated by a theorem which we state
informally. Precise statements and proofs are
presented in the supplementary materials.
Our experimental demonstrations are dis-
cussed below in the section titled Demon-
strations of Quantum Advantage. The proofs
proceed by representing a classical algorithm
with a decision tree depicted at the center of
the gray robot in Fig. 1. The tree representation
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encodes how the classical memory changes as
we obtain more experimental data. We then
analyzed how the transitions on the tree differ
for distinct measured physical systems to pro-
vide rigorous information-theoretic lower
bounds. A general mathematical framework
building on (13) is given in supplementary
materials, section C.
The first task concerns learning about a

physical system described by an n-qubit state,
r. We suppose that each experiment generates
one copy of r. In the conventional setting, we
measure each copy ofr to obtain classical data.
The procedure can be adaptive, that is, each
measurement can depend on the data ob-
tained in earliermeasurements. In the quantum-
enhanced setting, a quantum computer can
store each copy of r in a quantum memory
and act jointly on multiple copies of r. In
both scenarios we require all quantum data
to be measured at the end of the learning
phase of the procedure so that only classical
data survives. After the learning is completed
the learner is asked to provide an accurate
prediction for the expectation value of one
observable drawn from a set O1;O2;…f g ,
where the number of observables in the set
is exponentially large in n. The observables
in the set can be highly incompatible, that is,
each observable may fail to commute with
many others in the set.
In prior work (8, 13), we required the learn-

er to predict exponentially many observables,
which is not possible in practice if the system
size is large. To demonstrate the advantage

in an actual device, we proved that predict-
ing just the absolute value of one observable
requires exponentiallymany copies in the con-
ventional scenario. By contrast, predicting the
entire set of observables can be achieved with a
polynomial number of copies in the quantum-
enhanced scenario. We thereby established the
following constant versus exponential separa-
tion. The proof is given in supplementarymate-
rials, section D.

Theorem 1 (Predicting observables): There
exists a distribution over n-qubit states and
a set of observables such that in the conven-
tional scenario, at least order 2n experiments
are needed to predict the absolute value of one
observable selected from the set, whereas a
constant number of experiments suffice in the
quantum-enhanced scenario.
The exponential quantum advantage can

occur even if the state r is unentangled. For
example, in our experiments we consider
rº I þ aPð Þ, in which P is an n-qubit Pauli
operator and a∈ �1; 1ð Þ. This state can be real-
ized as a probabilistic ensemble of product
states, each of which is an eigenstate of
P with eigenvaluea. Even if the state is known
to be of this form but P anda are unknown, the
exponential separation between conventional
and quantum-enhanced experiments persists.
Moreover, the quantum advantage can be
achieved by performing simple entangling
measurements on pairs of copies of r. That
the quantum advantage applies even when
correlations among the n qubits are classical

leads us to believe that the quantum-enhanced
strategy will be beneficial in a broad class of
sensing applications. In supplementary mate-
rials section G we extend this theorem, show-
ing that a sufficiently large quantum memory
is needed to achieve this task in the quantum-
enhanced scenario.
Our second ML task with a quantum ad-

vantage is quantum principal component
analysis (PCA) (14). In this task each exper-
iment produces one copy of r, and our goal is
to predict properties of the (first) principal
component of r, namely the eigenstate jyi of
r with the largest eigenvalue. For example,
we may want to predict the expectation values
of a few observables in the state jyi. This task
may become a valuable component of future
quantum-sensing applications. If an imperfect
quantum sensor transduces a detected quan-
tum state into quantummemory, the state is
likely to be corrupted by noise. But it is
reasonable to expect that properties of the
principal component are relatively robust with
respect to noise (15) and therefore highly in-
formative about the uncorrupted state. To per-
form quantum PCA, a learning algorithm was
introduced in (14) on the basis of phase esti-
mation, which requires fault-tolerant quantum
computers. One can also obtain information
about the principal component of r by using
more near-term algorithms, such as virtual
cooling (16), virtual distillation (17, 18), and
variational algorithms (19, 20).
Although the quantumPCAalgorithm in (14)

is exponentially faster than known algorithms
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Fig. 1. Illustration of quantum-enhanced and conventional experiments.
(A) Quantum-enhanced experiments versus conventional experiments. Quantum-
enhanced or conventional experiments interface with a quantum or classical
machine running a quantum or classical learning algorithm that can store
and process quantum or classical information. (B) Learning physical state r.
Each experiment produces a physical state r. In the conventional setting, we
measure each r to obtain classical data (the measurement could depend
on prior measurement outcomes) and store the data in a classical memory. In
the quantum-enhanced setting, r can coherently alter the quantum information
stored in the memory of the quantum machine (illustrated by the change in

color). With large enough quantum memory, the quantum machine can
simply store each copy of r. After multiple rounds of experiments, quantum
processing followed by a measurement is performed on the quantum memory.
(C) Learning physical process E. Each experiment experiences evolution under E.
In the conventional setting, the classical machine specifies the input state
to E by using a classical bitstring and obtains classical measurement data (33).
In the quantum-enhanced setting, the evolution of E coherently alters the
memory of the quantum machine: the input state to E is entangled with the
quantum memory in the quantum machine and the output state is retrieved
coherently by the quantum machine.
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based on conventional experiments, this ad-
vantage was not proven against all possible
algorithms in the conventional scenario. We
rigorously established the exponential quan-
tum advantage for performing quantum PCA.
The exponential quantumadvantage also holds
in some of the near-term proposals (16, 17). The
proofs are provided in supplementary mate-
rials section E.

Theorem 2 (Performing quantum PCA): In
the conventional scenario, at least order 2n/2

experiments are needed to learn a fixed prop-
erty of the principal component of an unknown
n-qubit quantum state, whereas a constant
number of experiments will suffice in the
quantum-enhanced scenario.
It is worth commenting on recent results in

(21, 22) showing that quantum PCA can be
achieved by polynomial-time classical algo-
rithms, which may seem to contradict Theo-
rem 2. Those works assume the ability to
access any entry of the exponentially large
matrix r to exponentially high precision in
polynomial time. Achieving such high preci-
sion requires measuring exponentially many
copies of r, which takes an exponential num-
ber of experiments and exponential time.
Hence, the assumptions of (21, 22) do not hold
here. See (23), which provides a detailed expo-
sition of these matters.
Another core task in quantum mechanics is

understanding physical processes rather than
states. Here, each experiment implements a
physical process E, and we can interface with
E through a quantum or classical machine in
the quantum-enhanced or conventional set-
ting; see Fig. 1C. We showed that a quantum
machine can learn an approximate model of
any polynomial-time quantum process E from
only a polynomial number of experiments.
Given a distribution on input states, the ap-
proximate model can predict the output state
fromE accurately on average. By contrast, we
would need an exponential number of ex-
periments to achieve the same task in the
conventional setting. The proof for general
quantum processes is given in supplementary
materials, section F.

Theorem 3 (Learning quantum processes):
Suppose we are given a polynomial-time phys-
ical process E acting on n qubits and a prob-
ability distribution over n-qubit input states.
In the conventional scenario, at least order 2n

experiments are needed to learn an approx-
imate model of E that predicts output states
accurately on average, whereas a polynomial
number of experiments will suffice in the
quantum-enhanced scenario.

Demonstrations of quantum advantage

The exponential quantum advantage captured
by Theorems 1, 2, and 3 applies nomatter how

much classical processing power is leveraged
in the conventional experiments. The conven-
tional strategy fails because there is simply no
way to access enough classical data to perform
the specified tasks if the number of experi-
ments is subexponential in n. However, these
exponential separations apply in an idealized
setting in which quantum states are stored
and processed perfectly. This leads us to ask
whether access to quantummemory unlocks
a substantial quantum advantage under more
realistic conditions.
For two different tasks, we have investi-

gated the robustness of the quantum ad-
vantage by conducting experiments with a
superconducting quantum processor. We
consider specialized tasks that maintain ex-
ponential quantum advantage and have bet-
ter noise robustness than the general tasks
described in the previous section. The first
task we studied pertains to Theorem 1. The
task is to approximately estimate the mag-
nitude for the expectation value of Pauli ob-
servables. The unknown state is an unentangled
n-qubit state r ¼ 2�n I þ aPð Þ, in which a ¼
T0:95, P is a Pauli operator, and both a and
P are unknown. After all measurements are
completed and learning is terminated, two
distinct Pauli operators, Q1 and Q2, are an-
nounced, one of which is P and the other of
which is not equal to P. We then ask the
machine to determine which of tr Q1rð Þj j and
tr Q2rð Þj j is larger.
In the conventional scenario in which cop-

ies of r are measured one by one, the best
known strategy is to use randomized Clifford
measurements requiring an exponential num-
ber of copies to achieve the taskwith reasonable
success probability (8, 24). In the quantum-
enhanced scenario, by contrast, copies of r are
deposited in quantum memory two at a time
and a Bell measurement across the two copies
is performed to extract a snapshot of the state.
In the quantum-enhanced scenario, we con-
sider two different methods for analyzing the
measurement data. The first method uses a
specialized formula for estimating tr Qrð Þj j ,
given in Appendix D2. Figure 2A depicts—as
a function of the system size n—the number
of experiments needed in the conventional
and quantum-enhanced scenarios to achieve
70% prediction accuracy, in which the data
from the quantum-enhanced experiments is
analyzed by this first method. Also shown is a
theoretical lower bound on the number of ex-
periments needed in the conventional sce-
nario, proven inAppendixD4. The firstmethod
is explicitly tailored to the structure of this
particular learning problem and so cannot
be applied readily to other problems. Our
second method is more flexible and hence
more broadly applicable; we make predic-
tions by feeding the measurement data to a
supervised ML model based on a recurrent

neural network (25, 26, 27), as depicted in
Fig. 2B. In contrast to the first method, the
MLmethod does not require prior knowledge
about the learning task. We train the neural
network with noiseless simulation data for
small system sizes (n < 8). We then use the
neural network tomake predictions when we
are provided with experimental data for large
system sizes 8 ≤ n ≤ 20. We report the predic-
tion accuracy, which is equal to the probability
for correctly answering whether tr Q1rð Þj j or
tr Q2rð Þj j is larger. Figure 2C shows the per-
formance of the ML model as we train the
neural network. Despite the noisy storage
and processing in the experimental device,
we observed a substantial quantum advan-
tage using both the specialized andMLmeth-
ods. Notably, when using ML, training on
smaller systems sufficed for making good pre-
dictions on larger systems, a further indication
that the measurement data in the quantum-
enhanced scenario is so revealing that no
special-purpose method is needed to extract
a clear signal.
The second taskwe studied, which pertains

to Theorem 3, was inspired by the recent ob-
servation that quantum-enhanced experi-
ments can efficiently identify the symmetry
class of a quantum evolution operator, where-
as conventional experiments cannot (9, 13).
An unknown n-qubit quantum evolution op-
erator is presented, drawn either from the
class of all unitary transformations or the
class of time-reversal-symmetric unitary trans-
formations (i.e., real orthogonal transforma-
tions). We consider whether an unsupervised
ML can learn to recognize the symmetry
class of the unknown evolution operator
on the basis of data obtained from either
quantum-enhanced experiments or conven-
tional experiments. An illustration is shown
in Fig. 3A.
In the conventional scenario, we repeatedly

apply the unknown evolution operator to the
initial state j0i�n and thenmeasure each qubit
of the output state in the Y-basis. Under
T-symmetric evolution the output state has
purely real amplitudes; hence the expecta-
tion value of any purely imaginary observ-
able, such as the Pauli-Y operator, is always
zero. By contrast the expectation value of
Y after general unitary evolution is generically
nonzero but may be exponentially small and
hence hard to distinguish from zero. In the
quantum-enhanced scenario we make use of
n additional memory qubits. We prepare an
initial state in which the n system qubits are
entangled with the n memory qubits, evolve
the system qubits under the unknown evo-
lution operator, swap the system and mem-
ory qubits, evolve the system qubits again,
and finally perform n Bell measurements,
each acting on one system qubit and onemem-
ory qubit.
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A B C

Fig. 2. Quantum advantage in learning physical states. (A) Quantum
advantage in the number of experiments needed to achieve ≥70% accuracy.
Here, Q corresponds to results running the best-known strategy for quantum-
enhanced experiments, described in Appendix D2, and C corresponds to results
running the best-known conventional strategy. The dotted line is a lower
bound for any conventional strategy (C, LB) as proven in Appendix D4. Even
running on a noisy quantum processor, quantum-enhanced experiments are seen
to vastly outperform the best theoretically achievable conventional results
(C, LB). (B) Supervised ML model based on quantum-enhanced experiments. n
repetitions of quantum-enhanced experiments are performed and the data is
fed into a gated recurrent neural network (GRU) (25, 26). The neurons in the

GRU are aggregated to predict an output. (C) Training process of the supervised
ML model. We train the supervised ML model to determine which of two
n-qubit Pauli operators has a larger magnitude for the expectation value in an
unknown state r with noiseless simulation for small system sizes (n < 8). We
consider the cross entropy (34) as the training loss. Then we use the supervised
ML model to make predictions with data from noisy quantum-enhanced
experiments running on the Sycamore processor (10) for larger system sizes
(8 ≤ n ≤ 20). We consider the probability to predict correctly as the prediction
accuracy. The purple (Q) and gray (C) dots on the y-axis are the accuracy of
the best-known quantum-enhanced and conventional strategy considered in (A).
Random guessing yields a prediction accuracy of 0.5.

A B C D

Fig. 3. Quantum advantage in learning physical dynamics. (A) Unsupervised
MLmodel. We perform 500 repetitions of quantum-enhanced experiments (each
accessing Ek twice) for every physical process Ek and feed the data into an
unsupervised ML model (Gaussian kernel PCA) (28) to learn a 1D representation
for describing distinct physical dynamics E1; E2;…. Similarly, we also consider
applying unsupervised ML to data obtained from 1000 repetitions of the
best-known conventional experiments (each accessing Ek once) for every
physical process Ek. (B) Representation learned by unsupervised ML for 1D
dynamics. Each point corresponds to a distinct physical process Ek. The vertical

line at the bottom shows the exact 1D representation of each Ek. Half the
processes satisfy time-reversal symmetry (blue diamonds) whereas the other
half do not (red circles). When fed with data from quantum-enhanced
experiments, the ML model accurately discovers the underlying symmetry
pattern. By contrast, the ML model fails to do so when fed with data from
conventional experiments. (C) Representation learned by unsupervised
ML for 2D dynamics. (D) The geometry implemented on the Sycamore processor
(10). We consider two different classes of connectivity geometry for
implementing 1D (top) and 2D (bottom) dynamics.
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Each evolution operator is a one-dimensional
(1D) or 2D n-qubit quantum circuit as shown
in Fig. 3D. After sampling many different
evolution operators from both symmetry clas-
ses (and obtaining data from each sampled
evolution multiple times), we used an unsu-
pervised ML model (kernel PCA) (28) to find
a 1D representation of the evolution oper-
ators. The representations learned by the
unsupervisedMLmodel are shown in Fig. 3, B
and C. By using the quantum-enhanced data,
the ML model discovers a clean separation
between the two symmetry classes, whereas
there is no discernable separation into classes
when using data from conventional experi-
ments. The signal from the quantum-enhanced
experiments was strong enough that the two
classes were easily recognized without access
to any labeled training data.
In supplementary materials section A4, we

analyzed the measurement data using the
best-known special-purpose method specifi-
cally designed to distinguish general unitary
transformations from real orthogonal trans-
formations. We found a quantum advantage
similar to that obtained with the ML model.
The revelation that unsupervised learning
yields results that are competitive with amore
customized analysis highlights the potential
for discovering previously unknown phenom-
ena with quantum-enhanced measurement
strategies. Properties that are blurred beyond
recognition by single-copy measurements
are brought into sharp relief by two-copy
measurements.

Outlook

We have investigated how quantum technol-
ogy can enhance our ability to discover un-
known phenomena occurring in nature. For
a variety of tasks, we proved that quantum-
enhanced strategies that use quantummem-
ory and quantum processing can predict
properties of physical systems using exponen-
tially fewer experiments than conventional
strategies. This exponential advantage is
achievable even if the amount of classical
processing used in the conventional strategies
is unlimited and when the physical system
exhibits only classical correlations. Although
many previous studies of quantum advan-
tage have focused on computational tasks with
known inputs, our work focused instead on
learning tasks in which the goal is to learn
about an a priori unknown physical system.
This work provides a new approach to under-
standing and achieving quantum advan-
tage in quantum ML (29,30) and quantum
sensing (1).
Our experiments with up to 40 qubits in a

superconducting quantum processor showed
that a substantial quantum advantage is
already evident when using today’s noisy
intermediate-scale quantum platforms (31).

These experiments demonstrated that super-
vised and unsupervised ML models (27, 32)
employing data obtained from quantum-
enhanced experiments could predict proper-
ties and discover underlying structure in
physical systems that are beyond the scope
of conventional experiments.
We envision that future quantum sensing

systems will be able to transduce detected
quantum data to a quantum memory and
then process the stored data with a quan-
tum computer. Although for now we lack
suitably advanced sensors and transducers,
we have conducted proof-of-concept experi-
ments in which quantum data were directly
planted in our quantum processor. Never-
theless, the robust quantum advantage we
have validated highlights the potential for
advancing quantum platforms to unlock
facets of nature that would otherwise remain
concealed.
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