De-Flake Your Tests

Automatically Locating Root Causes of Flaky Tests in Code At Google

Celal Ziftci
Google Inc.
New York, USA
celal@google.com

Abstract—Regression testing is a critical part of software
development and maintenance. It ensures that modifications to
existing software do not break existing behavior and functionality.

One of the key assumptions about regression tests is that
their results are deterministicc when executed without any
modifications with the same configuration, either they always
fail or they always pass. In practice, however, there exist tests
that are non-deterministic, called flaky tests. Flaky tests cause
the results of test runs to be unreliable, and they disrupt the
software development workflow.

In this paper, we present a novel technique to automatically
identify the locations of the root causes of flaky tests on the
code level to help developers debug and fix them. We study the
technique on flaky tests across 428 projects at Google. Based
on our case studies, the technique helps identify the location of
the root causes of flakiness with 82% accuracy. Furthermore,
our studies show that integration into the appropriate developer
workflows, simplicity of debugging aides and fully automated
fixes are crucial and preferred components for adoption and
usability of flakiness debugging and fixing tools.

Index Terms—Software maintenance, Diagnostics, Debugging
aids, Debuggers, Tracing, Test management, Flaky tests

I. INTRODUCTION

Regression testing is a critical part of software development
[1], [2]. When developers add new functionality to a system,
they run the regression test suite to ensure that their current
changes did not inadvertently change existing functionality. If
all tests in the regression test suite pass upon a code change,
developers typically consider the test results as a success and
continue to submit their change. However, if any of the tests
fail, they typically investigate the reasons for the failure [3].
As a result, regression tests provide developers with a critical
signal on whether they can submit their changes safely. The
same signal is typically used in additional steps downstream in
the development workflow, e.g. during release time, the new
version of the system is rolled out only if all tests in the
regression suite pass.

It is important that this signal is consistent and deterministic,
i.e. if the test suite is executed without any changes with the
same configuration parameters, they should either always pass
or always fail. Unfortunately, there might be non-deterministic,
so called flaky [4]-[9], tests in the test suite. Flaky tests
are problematic because they introduce noise into the signal
produced by the execution of the test suite [10]-[12].

Diego Cavalcanti
Google Inc.
New York, USA
diegotc @google.com

First, flaky tests can be hard to debug because they are non-
deterministic, so it might be difficult to reproduce their be-
havior during debugging. Second, they may cause developers
to waste time by failing on unrelated code changes [7], [10],
[12]. When developers change the code, run the test suite, and
observe failures, they typically try to debug it to understand
what caused the failures. If the failure is due to a flaky test,
and not their changes, the debugging time is wasted. Such
false signals can cause continuous wasted efforts across many
developers who change code that results in the execution of the
test suite containing flaky tests, especially in large monolithic
codebases like those used at Google [3], [12]. Third, flaky tests
decrease developers’ perception of trust on the test suite, and
may mask actual failures. Whenever a test fails, if developers
observe that test to have failed due to flakiness before, they
might ignore the results of that execution, and might actually
ignore real failures and accidentally introduce bugs into the
system.

Flaky tests along with the problems they cause have been
reported to exist in many systems, both by practitioners [4],
[51, [8], [9], [12]-[16] and researchers [6], [7], [11], [17]-
[26]. According to a recently published study by Luo et
al. [11], 4.56% of all test failures across test executions at
Google’s continuous integration (CI) system, named TAP [12],
[27], were reported to be due to flaky tests during a 15-
month window. Another study by Herzig and Nagappan [16]
reported that Microsoft’s Windows and Dynamics product had
an estimated 5% of all test failures due to flaky tests. Similarly,
Pivotal developers estimated that flaky tests were involved in
almost half of their test suite failures [28], while another study
by Labuschagne [24] reported that 13% of test failures in
TravisCI were due to flaky tests.

There are different strategies to deal with flaky tests and
their disruption of the developer workflow. A commonly used
one is to run a flaky test several times with the same configura-
tion, and declare it to pass if at least one execution passes, and
to fail if all runs fail. This strategy is used by Google’s TAP
system [4], [29], [30], and several open source testing frame-
works support a similar notion through various strategies, such
as annotations on flaky tests inside code, e.g. @FlakyTest in
Android [31], @Repeat in Spring [32], @RandomlyFails
in Jenkins [33], rerunFailingTestsCount property in
Maven [34]. However, this is not ideal, especially for large

codebases, since it wastes machine resources, and results can
still be noisy depending on “how flaky” tests are (i.e. test suites
that have a high probability of flaking require many more runs
to get a passing run) [35], [36].

Another strategy is to ignore flaky tests completely (e.g.
@Ignore in JUnit [37]) or separate tests that are known to
be flaky to a different test suite, and treat the results of the
execution of that test suite as “optional” for various software
development activities [4]. Developers then investigate if any
of the tests in the “optional” test suite start passing consis-
tently, i.e. they are now deterministic, and move them back to
the original test suite. This is also not ideal, because it requires
manual work from developers, and deterministic failing tests
can get lost in the noise among the other flaky tests in the
optional test suite causing real failures to be ignored.

These strategies have serious downsides, and work around
the problems introduced by flaky tests instead of fixing the root
causes. It is important to fix flaky tests as quickly as possible
to keep development velocity high and to produce a reliable
signal for software development and maintenance activities. In
this paper:

o We present a novel technique to automatically identify

the locations of the root causes of flakiness in code,

o We implement this technique in a tool and deploy it
across several products’ flaky tests at Google to notify
developers about the code location causing the flakiness,

o We assess the success of the technique on multiple case
studies,

o We report our learnings on user perception and expecta-
tions of the tool and the technique.

II. INFRASTRUCTURE RELATED TO FLAKY TESTS AT
GOOGLE

To prevent and avoid the negative impact of flaky tests
during the development workflow, several systems have been
developed at Google. These systems have been integrated
together to bring attention to flaky tests inside the developer
workflow. Below we discuss a relevant subset of these systems.

TAP: This is the CI system at Google that runs unit-tests
[12], [27]. TAP runs tests continuously during the course of
a day at different versions. Developers are allowed to label
their tests as flaky, and TAP runs such tests several times to
check if at least one passing run can be obtained [38]. If so,
the test is deemed to have passed.

Flakiness Scorer: This system assigns a flakiness score to
each flaky test. It obtains information from TAP related to
all executions of flaky tests, with the more recent executions
having more weight. It then assigns a score indicating how
likely those tests are to fail due to flakiness in the future
and provides a web-based user interface to present that
information. We use flakiness scores in our tool discussed in
the next section.

EE85414998

-

EEEBB/shared/cz/client/impl:SmallTests is flaky

EEBEB8 BEBEB <EEEE@quoogle.com> #1 Jul 12, 2018 08:45PM

Created issue, assigned to w EEEE@google.com.
This test is flaky.

Last failure:
EEE8EEHRue_CzClientException: test request
at EEEEEEE.innerBuild(AutoValue_CzClientException.java:102)
at EEEBB8EBEE.shared.cz.client.CzClientE
[]

Fig. 1. Web-based user interface for Google Issue Tracker. Users typically
check Flakiness Scorer to see if they have flaky tests, then create an issue
in Google Issue Tracker to investigate the test.

Google Issue Tracker: This is the issue tracking system
used at Google [39]. Developers have the option to check if
they have any flaky tests identified by Flakiness Scorer. If
they do, they can then manually create issues and assign them
to a team member to debug and identify the root cause of
flakiness, shown in Figure 1. Once the root cause is identified
and the flaky test is handled (e.g. fixed or removed entirely),
they resolve the issue. In one of our case studies, we notify
developers on how to debug/fix flaky tests by automatically
commenting on the issues they created.

Critique: This is the web-based code review tool at Google
[40]. When a developer changes code, they create a change
with the modifications, and send it to other developers for
review. Upon sending for review, several automated tools and
regression tests run on the changed version of the code to
help the owner and the reviewers with suggestions and fixes
by showing notifications on relevant parts of the code, or the
entire change itself. If the owner of the change finds any
of these analyses unhelpful, they can provide feedback by
clicking a Not useful button. In one of our case studies, we
notify developers about flaky tests and how to debug/fix them.

III. FLAKINESS DEBUGGER

In this section, we introduce a novel technique that can
automatically identify the location of the root cause of a
flaky test, explain the tool that implements this technique, and
discuss its deployment across Google by integrating it into the
developers’ daily workflow.

A. Non-Determinism and Flakiness

There are many causes of non-determinism in tests, e.g.
concurrency and test order dependency [6], [11], [38]. In this
paper, we don’t target classifying the type of flakiness into a
taxonomy, distinguishing whether flakiness is in test code or
system code, or finding the root cause of any specific type of
flaky test. Instead, we propose to find the location of flakiness
for any flaky test either in test or system code, and to show a
report to developers to aid in debugging. Since developers are

1

import java.util.Random;

;3 final class RandomNumberGenerator {

private static final Random R = new Random() ;
/+ Generate 0 or 1 with this one weird trick. =/
public static int getRandomZeroOrOne () {
final int randomBtw0and99 = R.nextInt (100);
if (randomBtwOand99 < 50) {
return 0;
} else {
return 1;
}
}

Listing 1. Working example code.

import static org.junit.Assert.assertEquals;

> import org.junit.Test;

10

11

final class RandomNumberGeneratorTest {

/* Test that it always generates 0. =/

@Test

public void testGetRandomZeroOrOne () {
assertEquals (0, RandomNumberGenerator.
getRandomZeroOrOne ()) ;

}

Listing 2. Working example unit-test.

the domain experts of their own code, we leave it to them to
identify and fix the root cause based on the report.

Listing 1 shows a working example used in the
discussions throughout this paper. In Listing 1,
getRandomZeroOrOne () generates a random number
that is either 0 or 1, using another random number generator
internally. There is non-determinism in the code between
lines 8 — 13. Assuming R is a good uniform random number
generator, get RandomZeroOrOne () is expected to return
0 or 1 approximately 50% of the time respectively. In Listing
2, testGetRandomZeroOrOne () tests the functionality
of getRandomZeroOrOne () from Listing 1 by asserting
it always returns 0. This test is expected to fail 50% of the
time, making it a flaky test.

The full list of all flaky tests at Google are determined and
known by Flakiness Scorer.

B. Divergence

In this section, we propose the novel DIVERGENCE algo-
rithm to identify where flakiness first occurs in code. The
algorithm compares the execution traces of each failing run
to all passing runs to find the first point of divergence in the
control flow of the failing run from any of the passing runs,
i.e. the point where a failing run’s control flow has never
been observed in a passing run, described in Algorithm 1.
DIVERGENCE takes in a list of tests ¢ and their corresponding
passing and failing executions. For a failing execution f, we
find the passing execution, p, that has the longest common
prefix with f, and extract the common lines and the first

diverging lines between f and p. We store this information
for each flaky test.

Algorithm 1 DIVERGENCE algorithm

Require: 7 {(t, Pt, F'"): Test t, execution traces sorted by
control-flow time from passing runs P! and
failing runs F'*}

. Results + ()

: for all (¢, P*,F') € T do

for all f € F' do
P < argmazx,,c ptlongestCommonPre fix(p;, f)
commons < findCommonPrefizLines(p, f)
divergents < findFirstDivergentLines(p, f)
Results < Results U (t, commons, divergents)

end for

: end for

: return Results

R A A S

—
(=]

For an example, consider that the method
testGetRandomZeroOrOne () from Listing 2 is
executed several times to obtain a passing run and a failing
run. Figure 2 shows sample executions of that flaky test with
a passing run on the left and a failing run on the right. Lines
7 — 9 in getRandomZeroOrOne () are common to both
passing and failing runs. Line 10 for the passing run and line
12 for the failing run are the points of divergence between
the executions.

DIVERGENCE algorithm proposes to show the common
lines along with the first divergence point across passing and
failing runs to developers to help them understand where
flakiness first gets introduced. There is further divergence in
the control flow after the first divergence point, but those
are ignored, as they don’t add as much additional valuable
information as the first point.

C. Finding Divergence for Flaky Tests

We implemented a tool at Google that uses DIVERGENCE,
called Flakiness Debugger (FD). FD takes several steps to
find root causes of flakiness for tests across many product
groups at Google, summarized in Algorithm 2.

First, for FD to work for a project’s flaky tests, it needs to
be enabled by the owners of the project. FD finds all projects,
P, where it is enabled, and identifies their tests, 77 .

Second, for all tests in 77, FD queries Flakiness Scorer
to check which of those tests are flaky, called TF and what
their flakiness scores are. On a high level, for a given test
t, Flakiness Scorer calculates the flakiness score f(t) for
t by checking how many times it flaked recently during its
executions by TAP [38]. Using this score, FD skips ¢ if f(t) <
M, where M is a flakiness threshold that prevents running
tests that are rarely flaky, and would use too many resources
to get at least one failing run. We set M = 0.1.

Third, FD instruments the test ¢ and the respective non-
test code owned by the same team that owns ¢. This excludes
any code that is owned upstream (e.g. assertEquals in

common

1 import java.util.Random;

2

java.util.Random;

3 final class RandomNumberGenerator { final lass RandomNumberGenerator {
1 private static final Random R = new R dom () ; 1 pri te static final Random R = new Random();
6 /* Generate O or 1 with this one weir rick. */ ¢ / * erate O or 1 with this one weird trick. */
T public static int getRandomZeroOrOne () { 7 public static int getRandomZeroOrOne () {
8 final int randomBtwOand99 = R.nextInt (100); 8 final int randomBtwOand99 = R.nextInt (100);
9 if (randomBtwOand99 < 50) { 9 if (randomBtwOand99 < 50) {
10 return O; 10 return O;
11 } else { 11 } else {
12 return 1; |12 return 1;
13 ¥ 13 ¥
14 ¥ 14 ¥
15 } 15 }
divergence

Fig. 2. Common and divergence lines found by DIVERGENCE algorithm. When testGetRandomZeroOrOne () in Listing 2 is executed, if it passes, the
execution will follow the flow on the left, while when it fails, it will follow the flow on the right. There are common lines in both executions, and diverging

lines for passing and failing runs.

Algorithm 2 Flakiness Debugger (FD) algorithm

FS: Flakiness Scorer
M : Minimum flakiness score threshold for a test
FE: # times a flaky test is executed

Require:
Require:
Require:

1: P+ {p:FD is enabled for project p,Vp at Google}

2. TP < {t : Test ¢ belongs to p,Vp € P}
3. TF « {(t, f(t)) : FS reports t is flaky
with flakiness scoref(t),Vt € TT}
4 TEF <« {t: f(t) > M,V(t, f(t)) € TF}
5: Results < ()
6: for all t € TF do
7. P+ 0, F«0
8: fori=0to E do
9: (trace, passed) < Run t with instrumentation
10: if passed then
11: P+ P Utrace
12: else
13: F + FUtrace
14: end if
15: end for
16: if P#(QANF # () then
17: Results < Results UDIVERGENCE(¢, P, F)
18: end if
19: end for
20: return Results

Listing 2 and java.util.Random in Listing 1 are not in-
strumented), because developers want to understand and debug
their own code, and typically ignore the code in upstream
dependencies. Then, FD executes the test ¢ a total of F times
and collects dynamic execution traces for both passing and
failing test executions. We set £ = 50.

Finally, common and divergence points are found using the
DIVERGENCE algorithm as shown in Figure 2, and stored in
a backend database with a link to an html report to be shown
to developers later, as shown in Listing 3. Once enabled, FD

I import java.util.Random;

final class RandomNumberGenerator ({
private static final Random R new Random () ;

woE oW

6 /% Generate 0 or 1 with this one weird trick. =/
public static int getRandomZeroOrOne () {

R.nextInt (100)

8 final int randomBtwOand99
9 if (randomBtw0Oand99 < 50) {

return 0;
} else {

Listing 3. Report generated by FD using DIVERGENCE algorithm. The
common lines 7 — 9 executed on both passing and failing runs are gray;
line 10 is green since it was only in the passing execution; line 12 is red
since it was only in the failing execution.

executes without any action from developers, prepares reports,
stores and caches them.

IV. CASE STUDIES AND DISCUSSION

To evaluate the effectiveness of FD, we performed several
case studies. All of these case studies involve FD reports on
flaky tests, similar to the one shown in Listing 3. FD uses an
internal dynamic execution tracing technology at Google, with
certain limitations:

« It only works for tests that take shorter to finish executing
than a specific time limit, to prevent execution traces from
getting too large.

o It limits the total size of collected execution traces, to
prevent using too many resources.

« It only supports C++ and Java.

Due to these limitations, combined with the limit M used
in DIVERGENCE (from Section III-C), we have FD reports
only for a subset of all flaky tests across Google.

TABLE I 1
STATISTICS ON DEVELOPER INVESTIGATION OF FD REPORTS ON FLAKY

TESTS.
4
Developer 1 | Developer 2 5
FD reports analyzed 83 83 6
In C++ 39 39
In Java 44 44 8
Useful-Exact (U E) 43 36 9
Useful-Relevant (U R) 25 32 10
Not-Useful (NU) 15 15 1"

A. Case Study 1: Usefulness of FD Reports 5

16

In this study, we found a total of 83 historical issues that *
had been opened about flaky tests (as shown in Figure 1), have
since been resolved with one or more code changes tagged as
fixes for the issue, and for which FD produces reports. 39 of
the tests were in C++, 44 were in Java. These issues never ,,
received any feedback from FD, i.e. all had been manually
investigated and fixed by developers already. We then ran FD *
on these flaky tests at the version they had been identified to,
be flaky. Then we asked two developers, who are not in any of
the teams to which these 83 issues belong, to independently ™
inspect the FD report only (they did not have access to the ,
issue reports or how each issue has been resolved by the:
original teams), and predict the root cause of flakiness based
on that report in three categories:

1) Useful-Exact (U F): Flakiness is due to the exact lines’
pointed to by the FD report and can be fixed by changing
those lines.

Useful-Relevant (U R): Flakiness is relevant to the lines
pointed to by the FD report, but should be fixed in
another location in the code (e.g. the issue is due to
an RPC timeout, FD points to the RPC call site, the
fix is to increase the timeout defined as a constant in
another file).

Not-Useful (NU): FD report is inconclusive, hard to
understand, or not useful.

2)

3)

Developer’s responses are summarized in Table 1. Both
developers marked identical FD reports as NU, agreed on
the reports they found useful (UE + UR), but disagreed on
the categorization of the potential fix on 7 FD reports. We
investigated those reports and found that both developers are
correct in their categorization, as there may be several ways to
fix a flaky test. As an example, in Listing 4, either an order-
preserving Map implementation can be used in ItemStore,
or testGetItems can be changed to assert on equality of
unordered Collections.

After we gathered the two developers’ responses, we com-
pared their predictions with the original fixes submitted by
the developers on each issue report. The fixes for all of the
68 issues where our survey developers marked FD reports to
be useful (UE + U R) were fixed according to at least one of
their predictions, i.e. FD reports were useful predicting the fix
in 81.93% of the cases.

Furthermore, at the end of the study, after looking at
the actual fixes of the remaining 15 issues they marked as

*/

/% System code to store items.

> final class ItemStore {

final Map<String, String> items = new HashMap<>();

// Some business logic code
public void insertItem(String key, String value) {
items.put (key, value);

}

public Map<String,
return items;

String> getItems() {

/* Test ItemStore =/
final class ItemStoreTest {

@Test
public void testGetItems () {

Map<String, String> exp = {
"keyl": "iteml",
"key2": "item2"

bi

ItemStore store = new ItemStore();

for (Entry<String, String> e : exp.entrySet()) {
store.insertItem(e.getKey (), e.getValue());

}

Collection<String> v = store.getValues();

assertEquals (2, v.size());
assertEquals ("iteml", v.iterator () .next());
assertEquals ("item2", v.iterator () .next ().next ()

)
}
}

Listing 4. Flaky test testGetItems () can be fixed in two ways: (1)
ItemStore can use an order-preserving Map; (2) the test can accept random
traversal in its assertions.

NU, we determined that 4 of the reports were pointing to
code locations that could have been relevant (UR) if they
had more experience with the reports FD generates and the
projects’ codebase. The remaining 11 reports were for tests
that had long execution times and were terminated by the
test runner due to time limits, hence the locations pointed to
by FD varied depending on the time of termination, i.e. they
seemed random/unrelated in the FD reports, even though an
experienced FD user could still understand that the generated
reports might be related to terminations.

Finally, we asked the two developers for feedback on
their experience with FD reports, and received the following
responses.

“It takes some time to get used to the reports (colors,
divergence etc.), but once you do, it is so easy to
understand some of the root causes in subsequent
reports.”

“You might be able to automatically classify some
flakiness types and tell developers directly. This would
make things much easier for them: instead of trying to
understand how the tool works and what the colors are
for, they can be told things such as ‘you are likely using

39

an unordered map’ or ‘your RPC call is timing out’.

v FlakyTests
1:53 PM, Sep 12 FYI -- This change affects a test that has been flaky recently.

Actionable

Please find below a link to a report generated by FD (http://EE) that
might help you fix it:

+ EEEBE/shared/cz/client/impl:SmallTests
FD report: http://EEBEEE/?id=6fafc38712c7

If you need help understanding the report, please see hitp://
EEEEH or contact us at EEE@google.com.

Not useful

Fig. 3. Critique notification about existence of a flaky test displayed on code
changes and a FD report url to help debug and fix it.

TABLE II
STATISTICS ON FD NOTIFICATIONS DISPLAYED IN CRITIQUE ON CODE
CHANGES RELATED TO FLAKY TESTS.

projects with FD enabled 428

Critique notifications displayed | 8182

times a developer viewed a notification 501

unique developers that viewed a notification 79
times a developer clicked “Not useful” 2

“Some of these reports are very accurate, so accurate
that you may be able to automatically generate fixes for
them without involving developers, and that would be
much better for everyone.”

Based on these feedback, we conclude that, even though
the reports are not too complicated, developers might have
difficulty interpreting them when they see them for the first
time. Certain root causes of flakiness can be identified based
on the code fragments involved in the divergent lines, e.g.
for loops on a Map may point to an assumption on the Map
being order-preserving, and explicitly articulating it would be
beneficial to developers. Developers prefer more automation,
i.e. instead of helping debug flaky tests, it would be more
beneficial if a tool automatically fixes them.

B. Case Study 2: Critique Notifications

In this study, we obtained a list of all projects for which
FD has been enabled. For these projects, over 9 months, we
showed notifications in Critique, shown in Figure 3, about
existence of flaky tests and a url to debug them for every
code change that modifies any code relevant to the flaky test
or the flaky test itself. Table II summarizes metrics on the
engagement of developers with these notifications.

During this study, FD has been enabled for 428 projects.
We showed a notification for 8182 code changes to 79 unique
developers. Developers viewed the notifications 501 times
(6.12% of all notifications) and clicked on Not useful 2 times.
Based on our discussions with developers, there were two
common reasons for the low engagement rates:

« Notification was about a flaky test that is unrelated to
their current changes.

« Notification required extra action, i.e. they had to click
on the report and debug it. They preferred debugging

TABLE III
STATISTICS ON FLAKY TEST RELATED ISSUES OPENED BY DEVELOPERS IN
GOOGLE ISSUE TRACKER AND FD COMMENTS ON THOSE ISSUES.

issues on flaky tests opened by developers 28250
issues with a FD report 300

issues still open at the end of the study | 134

issues fixed at the end of the study 166
unique developers notified with a FD report 150

and fixing flaky tests during specific periods, e.g. fixits
[35], when they dedicate specific days/weeks to work on
maintenance activities in their projects.

These results agree with previous studies that reported debug-
ging flaky tests is time consuming [7], [10], [12], therefore
developers do not take action on them immediately, and
prefer to debug them in boxed / dedicated time windows. We
conclude that it is critical to integrate flaky test notifications
into the appropriate development workflow journeys to obtain
better engagement from developers.

C. Case Study 3: Google Issue Tracker Comments

In this study, we obtained the full list of all Google Issue
Tracker issues (shown in Figure 1) on flaky tests manually
opened by developers during a 16-month window. Summarized
in Table III, there were a total of 28250 such issues.

From this list, we generated FD reports for 300 supported
tests, i.e. FD is enabled for the project of the test, the test
is implemented in Java or C++, and the test is supported by
the dynamic execution tracer. We then commented on each of
the 300 issues with a link to the FD report. By the end of
our study, 166 of the tests with a FD report were fixed by
developers.

For the 166 fixed issues, we asked the 150 unique developers
who were assigned to fix those issues to give us feedback on
their experience regarding the integration of FD into Google
Issue Tracker. 18 developers responded, and provided posi-
tive feedback summarized below.

“I liked it! Overall, this is pretty cool. [...] in this case,
the test failure was pretty simple, [...] I hope to get
these in more complex situations, they seem like they
would really be helpful in the non-trivial cases.”

“l liked the report in general. And, it was very
pleasant to see someone chime in on [an issue] that I
filed, with suggestions :) I'll try to file these [issues] for
the rest of our [flaky tests] & see if we get generated
reports for those. Overall, I think the way the suggestion
comes (in form of the [issue] comment) is perfect. I liked
ir.”

We did not receive any negative feedback from Google Issue
Tracker users. We don’t know the reason behind this, but we
suspect that there may be responder bias where issues may get
several automated comments (e.g. reminders to fix/close them
if they are overdue), and only those developers that found the

TABLE IV
STATISTICS ON DEVELOPERS THAT PROVIDED FEEDBACK ABOUT
USABILITY OF FD REPORTS.

unique developers who were shown a notificaton in Critique in 79
Case Study 2

unique developers who were notified with a comment in their 150
Google Issue Tracker issues in Case Study 3

feedback reports we received 20
unique developers that provided feedback 18

FD reports useful may have responded to our survey, and the
rest of the users may have simply ignored it.

Based on the feedback, we conclude that, when integrated
into Google Issue Tracker, where developers willingly open
issues to debug and fix flaky tests themselves, notifications
with FD reports can be useful to them by providing additional
tooling support.

D. Case Study 4: Usability of FD Reports

In this study, we asked developers for feedback on their
perception of the FD reports through a free-form text survey,
summarized in Table IV. 79 unique developers have been
shown a notificaton in Critique in Case Study 2, and 150
unique developers were notified with a comment in their
Google Issue Tracker issues in Case Study 3. In total, 229
unique developers received a notification from FD and were
asked to provide feedback through our survey. We received 20
feedback forms from 18 unique developers, covering different
aspects of the usability of the reports. Below is a representative
sample of these feedback.

Overall, several developers found the reports useful in
debugging and identifying the root causes of flakiness.

“The [FD] report helped me to identify the problem
much faster. Thank you!”

“The report is awesome. It provided me with suspicious
file and [...] suspicious line of code. It helped me locate
the issue of the [...] failure.”

“[FD] was useful to have a starting point for debugging.
It would have been harder to find the culprit without the
report.”

“l really like the idea behind these reports and
think it could help a lot of people.”

Furthermore, we received some negative feedback from several
developers, specifically when the FD report is of type Useful-
Relevant (from Section IV-A). They expected the FD reports to
directly tell them where flakiness should be fixed, as opposed
to where it manifests.

“The [report] pointed out the place where a system is
checked to see if it’s alive. The flakiness is in the system
startup however [...].”

“This is an

integration test. The flaky failure is

probably in another binary. So the report’s info seems
very wrong.”

We also received some negative feedback on the usability /
comprehension of the FD reports from several developers.

“I have no idea what the tool is trying to tell me without
reading the documentation.”

“[The report] needs superimposed word-bubbles
[...] and tooltips — not colors.”

Finally, we received recommendations on improving FD re-
ports, specifically by providing more automated insight into
the root causes, similar to the feedback we received from the
developers in Case Study 1.

“Could integrate with known testing code that is
often used in flaky tests, such as WaitForCondi-
tion.loopUntilTrue(), with suggestions (e.g. increase dead-
line, reduce time to predicate evaluating true in tested
code).”

These feedback suggest that FD reports can be useful to help
debug and fix flaky tests, can be improved and simplified
for easier comprehension, and can help developers further by
recommending fixes on a higher level than just pointing to
code locations.

V. THREATS TO VALIDITY

Our studies are empirical, and carry the common threats
of validity associated with such studies. Below we focus on
specific ones.

Choice of projects: All case studies depend on the projects
of the teams that enabled FD. The tool has been advertised
broadly inside Google, but we had no control over which
teams enabled it. However, overall, we assume that teams
that put importance on fixing flaky tests may have enabled it,
and this may have introduced bias in our results.

Programming languages: FD only supports C++ and Java.
This might have introduced bias on the conclusions of
our case studies if certain languages yield to less or more
flaky tests, and if we could get FD reports for more languages.

Choice of parameters: In our case studies, we set the
parameters M and E to specific values based on estimates
and experience at Google. These specific values may not
yield the same results outside Google, and they may yield
different results if set to different values. Therefore, the
values we chose may have introduced bias in our results.

Types of flaky tests: At Google, there are certain strategies
to deal with specific types of flaky tests. For example, some
test runners run tests in random order, so that test order
related dependencies can be caught and fixed. Therefore,
certain types of flaky tests have likely been fixed already and

did not make it to any of our case studies, potentially limiting
our conclusions to flaky tests outside that set.

Choice of flaky tests: FD reports are not generated for tests
that are rarely flaky due to the parameter M we used in
Section III-C to limit how many times we will run flaky tests
to obtain at least one failing run. Rarely flaky tests might
have different characteristics than the ones we obtained FD
reports for.

Manual analysis by developers: Case Study 1 depends
on the manual inspection of two independent developers to
understand and classify the root causes of flakiness. Although
these developers both have more than five years of experience
each in programming, they may have made mistakes, both in
identifying the root causes of flakiness, and classifying them.

Developer behavior: Case Study 3 uses issues manually
created by developers on flaky tests. Our results might be
biased since such issues are typically created by developers
who want to fix flaky tests, regardless of whether they are
easy or hard to fix.

Responder bias: In Case Studies 2, 3 and 4, we surveyed de-
velopers. First, we don’t know the qualities of the responders.
Second, the number of responses we received to our survey
is small. Therefore, there may be responder bias in feedback
responses and our conclusions from them may not generalize.

VI. RELATED WORK

Flaky tests. Flaky tests and various problems they cause have
been reported and discussed by both practitioners [4], [5], [8],
[9], [12]-[16] and researchers [6], [7], [11], [17]-[26]. Fowler
[6] reported that regression testing had recurring issues with
non-deterministic tests. Memon and Cohen [19] outlined
several reasons that cause GUI tests to be flaky. Lacoste [7]
reported several unwanted side effects of flaky tests. Memon
and Cohen [12] reported several difficulties created by flaky
tests in large scale continuous integration testing.

Flaky test categorization. There have been several recent
studies on categorizing flaky tests. Luo et al. [11] reported
an extensive study of flaky tests on 51 open source projects,
and classified root causes into ten categories. Palomba and
Zaidman [41] also studied flaky tests on 18 projects and
classified root causes into ten categories. Lam et al. [25]
reported a study where they classified flaky tests to be order
dependent or non-order dependent. Gao et al. [20] studied
open source projects focusing on concurrency related bugs
and flakiness, and classified their root causes into three
categories. In this paper, our focus is not on categorizing
flaky tests, but on helping developers debug and fix them.

Flaky test detection & mitigation. Several recent studies
focus on automatically detecting specific types of flakiness.
Zhang et al. [22] discussed test order dependency, a common

reason for flakiness, studied real-world tests with dependency
issues, and proposed several techniques to detect such tests.
Muslu et al. [21] observed that isolating unit-tests during
execution can be helpful in detecting flakiness, but it can
be computationally intensive. Bell and Kaiser [17] proposed
tracking side-effects on shared memory objects and reversing
these between test-runs to detect flaky tests. Farchi et al. [42]
investigated concurrency bugs and proposed static analysis
to detect them. Lu et al. [43] also reported a study on
concurrency bugs discussing their patterns, manifestation and
fixes. Gyori et al. [44] proposed PolDet, a technique to detect
tests that leave a different environment state than when they
started, so they can detect order dependent flaky tests. Gambi
et al. [45] proposed PraDet, a technique that can detect flaky
tests due to test order dependencies. Bell et al. [23] proposed
that it is expensive to re-run tests to identify if they are flaky,
and instead proposed DeFlaker, a technique to use additional
code coverage during code changes to mark failing tests that
are unrelated to new code changes as flaky. Lam et al. [25]
proposed iDFlakies, an approach to automatically detect flaky
tests by reordering tests, and produced a corpus of flaky
tests for further research. The focus of our paper is not on
detection, but on debugging and fixing flaky tests instead.

Flaky test fixing. There have been recent studies that focus
on fixing specific types of flaky tests. Palomba and Zaidman
[41] investigated flaky tests that are caused by the code under
test, and proposed that fixing code smells in tests indirectly
helps fixing 54% of flaky tests. Our proposal in this paper
applies to both test code and system code related flakiness.
Shi et al. [26] proposed a technique, iFixFlakies, to use
helpers, code that sets the state, to automatically generate
patches to fix order dependent flaky tests. Our proposal in
this paper is not only geared towards order dependency but
also other reasons of flakiness.

Fault localization. There is a large body of literature on fault
localization, i.e. identifying the locations of faults in a system.
For an extensive survey in the field, we refer readers to the
recent study by Wong et al. [46]. Broadly, these techniques use
the results of multiple tests in a test suite to identify potential
code locations that are the likely causes of deterministically
failing tests. The work in this paper partially builds on the
Spectrum Based Fault Localization techniques [47]. However,
instead of using failure results from different deterministic
tests, we re-run a single test several times, to find the root
cause of a non-deterministic test. The first version of the work
in this paper adapted a technique similar to Tarantula by Jones
et al. [48] to show developers a ranked list of possible locations
of flakiness. However, during our initial studies, developers
reported confusion on how the ranked code locations were
related, and had difficulty interpreting the output. Based on
this feedback, we proposed the new DIVERGENCE technique,
as it is similar to how developers typically debug code.

VII. CONCLUSION

Regression testing is a critical part of software development.
Existence of flaky tests in the regression test suite can severely
undermine several software development activities. Therefore
it is important to have developers fix them quickly.

Prior work has studied existing software systems, shown
there are common categories of flaky tests, some of these
flaky tests can be automatically detected and some specific
types of flaky tests, such as order dependent flaky tests, can
be automatically fixed.

We present DIVERGENCE, a new technique that can auto-
matically identify locations of root causes of flaky tests. We
implemented and deployed this technique in a tool, FD, across
several products’ flaky tests at Google, and performed case
studies to assess its success and usefulness.

Our evaluation of the accuracy of FD on 83 fixed flaky
tests shows that it can point to the location of relevant code
involved in flakiness with 81.93% accuracy when compared to
the actual fixes submitted by developers. In another study, we
observed that developers are not motivated to fix flaky tests
that are unrelated to their current code changes, and prefer to
fix such tests during dedicated time windows for maintenance
such as fixits. In another study, we added FD reports as
comments on open issues, and observed that developers were
positive on the integration of FD reports into their workflow.
Finally, our assessment of the expectations and perceptions of
developers from a tool like FD shows that several developers
found the reports hard to understand, some expected the tool to
actually fix the flakiness automatically, while other developers
found it beneficial in debugging and fixing their flaky tests,
and wanted the reports to go further by providing suggestions
on the type of flakiness and for potential fixes.

VIII. FUTURE WORK

Based on feedback from several users, there are several
important future research directions we identified. First is
to increase the number of respondents to our surveys and
further study their traits (e.g. junior vs. senior developers,
C++ vs. Java developers), which may provide further insight.
Another is to further simplify the reports shown to developers
and to make the information easier to comprehend. Another
is to automatically classify flaky tests using more metadata,
e.g. involved code fragments, and convey this information to
developers directly on the reports. Finally, automatically fixing
flaky tests is an important area of research, as developers prefer
fully automated solutions over their personal involvement.

ACKNOWLEDGMENT

We thank Vivek Parikh for encouraging and supporting this
work at Google. We thank Xuchen Ma for his contributions
to the first prototype of FD. We also thank internal Google
reviewers as well as ICSME committee reviewers for valuable
discussions and feedback on this paper.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

REFERENCES

M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2016, pp. 426-437.

T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm,
“Continuous deployment at facebook and oanda,” in 2016 IEEE/ACM
38th International Conference on Software Engineering Companion
(ICSE-C). 1IEEE, 2016, pp. 21-30.

R. Potvin and J. Levenberg, “Why google stores billions of lines of code
in a single repository,” Communications of the ACM, vol. 59, no. 7, pp.
78-87, 2016.

J. Micco. (2016, May) Flaky tests at google and how we mitigate
them. [Online]. Available: https://testing.googleblog.com/2016/05/flaky-
tests-at-google-and-how-we.html

T. C. Projects. (2019) Flakiness dashboard howto. [Online]. Available:
https://bit.ly/21BHId5

M. Fowler. (2011) Eradicating non-determinism in tests. [Online].
Available: https://bit.ly/2PFHISB

F. J. Lacoste, “Killing the gatekeeper: Introducing a continuous integra-
tion system,” in 2009 agile conference. 1EEE, 2009, pp. 387-392.

P. Sudarshan. (2012) No more flaky tests on the go team. [Online].
Available: https://thght.works/2ko7qBD
G. T. Blog. Tott: Avoiding flakey
https://bit.ly/2m5yF4h

M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in 2018
IEEE 18th International Working Conference on Source Code Analysis
and Manipulation (SCAM). 1EEE, 2018, pp. 1-23.

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp.
643-653.

A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming google-scale continuous testing,” in Proceedings
of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track. 1EEE Press, 2017, pp. 233-242.

S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 235-245.

H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm?
automatic cause analysis for test alarms in system and integration
testing,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). 1EEE, 2017, pp. 712-723.

K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 1. 1EEE Press, 2015, pp.
483-493.

K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in Proceedings of the 37th International Con-
ference on Software Engineering-Volume 2. IEEE Press, 2015, pp.
39-48.

J. Bell and G. Kaiser, “Unit test virtualization with vmvm,” in Pro-
ceedings of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 550-561.

T. Lavers and L. Peters, Swing Extreme Testing. Packt Publishing Ltd,
2008.

A. M. Memon and M. B. Cohen, “Automated testing of gui applications:
models, tools, and controlling flakiness,” in Proceedings of the 2013
International Conference on Software Engineering. 1EEE Press, 2013,
pp. 1479-1480.

Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang, “Making
system user interactive tests repeatable: When and what should we
control?” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. 1EEE, 2015, pp. 55-65.

K. Muslu, B. Soran, and J. Wuttke, “Finding bugs by isolating unit tests,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
2011, pp. 496-499.

S. Zhang, D. Jalali, J. Wuttke, K. Muglu, W. Lam, M. D. Ernst, and
D. Notkin, “Empirically revisiting the test independence assumption,” in

tests. [Online]. Available:

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, 2014, pp. 385-396.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: automatically detecting flaky tests,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 433-444.

A. Labuschagne, L. Inozemtseva, and R. Holmes, ‘“Measuring the
cost of regression testing in practice: a study of java projects using
continuous integration,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, 2017, pp. 821-830.
W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “idflakies: A framework
for detecting and partially classifying flaky tests,” in 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST).
IEEE, 2019, pp. 312-322.

A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “ifixflakies: a
framework for automatically fixing order-dependent flaky tests,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2019, pp. 545-555.

J. Micco, “Tools for continuous integration at google scale,”
Google Tech Talk, Google Inc, 2012. [Online]. Available:
https://www.youtube.com/watch?v=KH2_sB1A6IA

M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
offs in continuous integration: assurance, security, and flexibility,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 197-207.

A. Kumar, “Development at the speed and scale of google,” QCon San
Francisco, 2010. [Online]. Available: https://bit.ly/2kup7PZ

J. Micco, “Continuous integration at google scale,” 2013. [Online].
Available: https://bit.ly/2SYY4rR

A. Reference. (2019) Flakytest annotation. [Online]. Available:
https://bit.ly/2kcW4;j1
S. Reference. (2019) Repeat annotation. [Online]. Available:
https://bit.ly/2kC5tKG
J. G. Repository. (2017) Randomlyfails annotation. [Online]. Available:
https://bit.ly/2kst2gb
A. Maven. (2018) Rerun failing tests. [Online]. Available:

https://bit.ly/21IsbrN

J. Micco, “The state of continuous integration testing @google,” 2017.
[Online]. Available: https://bit.1ly/3glb8nw

C. Ziftci and J. Reardon, “Who broke the build?: Automatically identify-
ing changes that induce test failures in continuous integration at google
scale,” in Proceedings of the 39th International Conference on Software

Engineering: Software Engineering in Practice Track. 1EEE Press,
2017, pp. 113-122.

JUnit. (2019) Ignore annotation. [Online]. Auvailable:
https://bit.ly/2mb6nFH

J. Micco and A. Memon, “Test flakiness @google - predicting
and preempting flakes,” Google Test Automation Conference, 2016.
[Online]. Available: https://www.youtube.com/watch?v=CrzpkF1-VsA
Google. (2018) Google issue tracker. [Online]. Available:
https://developers.google.com/issue-tracker

C. Sadowski, E. Soderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: a case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice. ACM, 2018, pp. 181-190.

F. Palomba and A. Zaidman, “Does refactoring of test smells induce
fixing flaky tests?” in 2017 IEEE international conference on software
maintenance and evolution (ICSME). 1EEE, 2017, pp. 1-12.

E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns and how to test
them,” in Proceedings International Parallel and Distributed Processing
Symposium. 1EEE, 2003, p. 286.

S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in ACM SIGARCH Computer Architecture News, vol. 36, no. 1. ACM,
2008, pp. 329-339.

A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: detecting
state-polluting tests to prevent test dependency,” in Proceedings of the
2015 International Symposium on Software Testing and Analysis. ACM,
2015, pp. 223-233.

A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,”
in 2018 IEEE 1lth International Conference on Software Testing,
Verification and Validation (ICST). 1EEE, 2018, pp. 1-11.

[46]

(471

(48]

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707-740, 2016.

F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
a large-scale software system,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS). 1EEE, 2017, pp.
114-125.

J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. 1EEE, 2002, pp. 467—
477.

