Learning Transferable Node Representations for Attribute
Extraction from Web Documents

Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds, Sandeep Tata
Google
Mountain View, USA
{yichaojoey,yingsheng,nguyenvo,nge,tata}@google.com

ABSTRACT

Given a web page, extracting an object along with various attributes
of interest (e.g. price, publisher, author, and genre for a book) can
facilitate a variety of downstream applications such as large-scale
knowledge base construction, e-commerce product search, and per-
sonalized recommendation. Prior approaches have either relied on
computationally expensive visual feature engineering or required
large amounts of training data to get to an acceptable precision.
In this paper, we propose a novel method, LeArNing TransfErable
node RepresentatioNs for Attribute Extraction (LANTERN), to tackle
the problem. We model the problem as a tree node tagging task. The
key insight is to learn a contextual representation for each node in
the DOM tree where the context explicitly takes into account the
tree structure of the neighborhood around the node. Experiments
on the SWDE public dataset show that LANTERN outperforms the
previous state-of-the-art (SOTA) by 1.44% (F1 score) with a dra-
matically simpler model architecture. Furthermore, we report that
utilizing data from a different domain (for instance, using training
data about web pages with cars to extract book objects) is surpris-
ingly useful and helps beat the SOTA by a further 1.37%.

CCS CONCEPTS

« Information systems — Web mining; Data extraction and
integration.

KEYWORDS

structured data extraction, web information extraction

ACM Reference Format:

Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds, Sandeep Tata. 2022.
Learning Transferable Node Representations for Attribute Extraction from
Web Documents. In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining (WSDM °22), February 21-25, 2022, Tempe,
AZ, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3488560.
3498424

1 INTRODUCTION

The World Wide Web contains vast amounts of information in a
semi-structured format. Translating this information into struc-
tured knowledge has long been an important research goal [6, 14].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WSDM °22, February 21-25, 2022, Tempe, AZ, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9132-0/22/02.

https://doi.org/10.1145/3488560.3498424

N <body>
:|Harry Potter and Cj :
:|the Sorcerer's Stone

 fo o]

: byl J.K. Rowling orcerer’s Ston

Title

+ Harry Potter's life is miserable. His

+ parents are dead and he's stuck with his
+ heartless relatives, who force him to live
+ ina tiny closet under the stairs ...more

Seed Websites
|

J.K. Rowling |Author

'—‘ <tr>
:
Transferable

.
.Extraction Model

: !
9780590353427 .

L. @«p ISBN13 |

HISBN 10: 059035342X Eublisher: -~ T ﬁ =

{ISBN 13: 9780590353427 L : :

‘Publisher: i Publisher:| . ime

‘Publication Date: 1999 : —

: Scholastic Paperback : -

‘Binding: Softcover QAT) | Unseen Websites
Web Page Dom Tree Task

Figure 1: Learning a transferable model based on HTML
DOM trees to extract attributes from unseen websites of var-
ious domains. Note that every web page is rendered from a
Document Object Model (DOM) Tree. All the attributes are
located in the leaf nodes of the trees.

Extracting structured objects with relevant attributes from semi-
structured HTML can power applications including large-scale
knowledge base/graph construction [10, 42], e-commerce product
search [3, 14], and personalized recommendation [41]. Attribute
extraction from web pages is complicated by the semi-structured
data format, noisy page contents, complex formatting, and imper-
fect alignment of the source and visual representations. Whereas
unstructured texts can easily be modeled as a sequence [25], web
pages demand more sophisticated techniques.

In this paper, we focus on the problem of extracting structured
objects with a given target schema (like a book, such as in Figure 1,
to extract attributes of interest like {title, author, isbn13, publisher})
using a small amount of labeled data (e.g. a few websites). We
consider two challenging scenarios in this paper, (i) intra-domain
few-shot extraction, where the training data consists of a few la-
beled seed websites from a given domain and the task is to extract
the structured object from unseen websites in the same domain; (ii)
cross-domain few-shot extraction, where the training data consists
of a few labeled seed websites from a given domain (say A) and addi-
tional labeled websites from a different domain (say B) and the task
is to extract structured objects from unseen websites in domain A.
The key difference in the cross-domain setting is the availability of
additional labeled websites from a different domain. At first glance,
one may wonder why training data about one domain (say books)
might help an extraction model on a completely unrelated domain

https://doi.org/10.1145/3488560.3498424
https://doi.org/10.1145/3488560.3498424
https://doi.org/10.1145/3488560.3498424

(say cars). The experimental evidence in this paper suggests that
this is indeed helpful. We believe this is because the model is able to
take advantage of this additional data to learn transferable contex-
tual representations for the nodes. Practically, this is of significant
value: the task of building each successive extractor is made easier
by leveraging the websites labeled for previous tasks.

Our proposed LANTERN model builds a rich representation for
each node in the DOM tree by focusing on contextual features. This
representation is then used to train a classifier to decide which
attribute type the node belongs to. A key insight in this paper is
an algorithm to simplify the DOM trees and identify “friend” and
“partner” nodes that are a particularly valuable context signal. For
instance in Figure 1, we notice that the closest text node to “J. K.
Rowling” contains information “by” which means “J. K. Rowling”
is likely to be the author of this book. Knowing that the node
containing “by” is a critical part of the contextual clue a human
rely on to determine that “J. K. Rowling” is the author of this book.

Summarizing node contexts using “friend” and “partner” sim-
plifies the inputs required to compute the node representation,
and allows us to leverage website-invariant features (e.g. seman-
tically informative expressions) and domain-invariant clues (e.g.
the co-occurrence of multiple attribute values). Nodes that contain
attribute values of interest are often close to one another, reminding
us to pay special attention to the neighbor relationship of DOM
nodes. Our contributions are as follows:

o To the best of our knowledge, this is the first work to learn
contextual representations for DOM tree nodes in a web
page by leveraging the local tree structure.

e We are the first to present the cross-domain, few-shot at-
tribute extraction task and demonstrate the improved per-
formance compared to the intra-domain setting.

o Extensive experiments show that LANTERN significantly out-
performs the SOTA by 1.44% (F1 score), and the out-of-
domain knowledge helps beat the SOTA by a further 1.37%.

e We open-sourced our implementations at https://github.com/
google-research/google-research/tree/master/simpdom to
provide a testbed for future research in this direction.

There’s a rich history of related work in this space which we
address in the next section. In particular, we distinguish our work
from the literature on wrapper induction [2, 19, 29] which relies
on the fact that many websites are created from Document Ob-
ject Model (DOM) tree [13] templates. These techniques have two
drawbacks: 1) They typically require a labeled example for each site
in the target domain to induce a wrapper for other pages on that
site, 2) The wrappers yield work well for exact copies of the DOM
structure but can be brittle in the face of minor structural variation
or web page evolution over time [30]. Thus considerable human
effort is required to periodically update templates. Our approach,
LANTERN eschews wrapper induction and learns attribute extraction
models from a limited amount of annotated data that are capable
of generalizing to web sites not present in the training data.

2 RELATED WORK

Web information extraction processes a vast amount of unstruc-
tured or semi-structured contents from the web and has drawn a lot
of attention from the data mining research community [6, 11, 22].

Four broad categories of web information extraction tasks can be de-
scribed: attribute (entity) extraction, relation extraction, composite
extraction, and application-driven extraction. Attribute extraction
attempts to identify named entity mentions such as book price,
phone number, movie title from web documents. Though this task
is intuitive to describe, the high-quality corpus annotation requires
time-consuming human-crafted rules and dictionaries [5, 14, 21, 31].
Relation extraction associates pairs of named entities and identifies
a pre-defined relationship between them. Closed relation extrac-
tion defines a closed set of relation types including a special type
indicating "no relation" while open relation extraction conducts a
binary classification of whether there exists a relationship between
the two entities [1, 25, 26]. Composite extraction aims to extract
more complex concepts such as reviews, opinions, and sentiment
mentions [7, 35, 38], while application-driven extraction includes a
broad spectrum of application scenarios such as web representa-
tion learning, PDF information extraction using OCR techniques,
anomaly detection of web-based attacks and so on [18, 27, 39].

Attribute extraction is a fundamental task in web information
extraction pipelines and enables a wide range of downstream appli-
cations [3, 41]. Ideally, attribute extraction methods should have
both high accuracy and strong transferability to new domains.

Traditional approaches [2, 4, 8, 12, 16, 19, 29, 36, 37, 45] have
long been based on wrappers which depend on the alignment of
DOM-tree based templates that are used to generate web pages.
These methods are brittle in the face of variation across pages
or evolution over time, requiring considerable human efforts to
periodically update templates and annotate new pages. Having a
wrapper for one domain contributes little to the task of building a
wrapper for another domain. For instance, FiVaTech [16] can only
generate the template for each website separately by comparing
the DOM trees of all its pages to detect fixed patterns. LANTERN by
contrast is robust to changes in DOM structure across websites so
long as the contextual relationship among attribute nodes don’t
change much and models trained in one domain can be generalized
to other unseen domains.

NLP-based methods, e.g. those utilizing sequence labeling,
have also been applied to the attribute extraction task [23, 34].
These techniques are limited to the information present in the tex-
tual content of the page however. LANTERN takes advantage of the
information in the DOM node types and semantics as well as the
structured contextual information present in the DOM tree itself.

Other work [5, 14, 26, 28] has explored leveraging visual fea-
tures of text nodes such as bounding box coordinates and the visual
distances to surrounding nodes on the web page. However, obtain-
ing these features requires a computationally expensive rendering
process and extra memory space to save the necessary images, CSS,
and JavaScript files that could easily be out-of-date or incompatible
with the prevailing browsers. LANTERN builds contextual informa-
tion directly from the DOM tree without the need for expensive
page rendering.

A recent approach called FreeDOM [21] avoids rendering-based
features and uses a two-stage model: a first stage that treats the
problem as a node-tagging task and a second stage that uses pair-
wise node relationships to post-process the output from the first
stage. In contrast, we propose a simpler, single-stage approach, re-
lying on a careful construction of the context of a node in the DOM

https://github.com/google-research/google-research/tree/master/simpdom
https://github.com/google-research/google-research/tree/master/simpdom

Semantic Similarity

Position Emb.

XPath Emb.

Leaf Type Emb.

Discrete Features

Convolutional Neural Network ©

Multi-class Classifier

L f Cross-domain
s : Yes/No Attribute Prediction

Binary Classifier

I Intra-domain
Predicted Attribute Type

Trimmed
Branches

Potter ..

/Friend " Partner

*
(xR Jlw)-[e] [l

1
|[x]-+ [Rowling

Character-level Emb.

Embedding Layers

i
i
Word-level Emb.]
i
|
i

i DOM Tree
i Simplification

i Module

Figure 2: The overall architecture of LANTERN. Nodes’ textual features are en- Figure 3: We extract the partner (by) and

coded by LSTM and CNN at the word-level and character-level respectively. A friends (Harry Potter and the Sorcerer’s
set of discrete features are built from the DOM trees including leaf type, XPath, Stone) for each node (J. K. Rowling) by trim-

and the relative position of each node. [- © -] denotes vector concatenation.

tree. Our approach not only improves the performance of FreeDOM
but also generalizes well to unseen websites.

3 PROBLEM FORMULATION AND
APPROACH

3.1 Few-shot Attribute Extraction from
Semi-structured Websites

We tackle the problem of extracting structured objects from unseen
websites. Each domain V has a set of websites. Each website W is
composed of a collection of detailed pages which share a similar
template. This is a fairly typical assumption since most such web
pages are built by instantiating an HTML template with item details
that are actually stored in an underlying database.

Attribute Extraction. Given a set of attributes of interest for the
target domain, the task at hand is to extract a value (when present)
for each attribute from each web page. We make the simplifying
assumption that one node can correspond to at most one pre-defined
attribute type, consistent with prior work [14]. We formulate the
attribute extraction as a node tagging task. Given a detailed page p
with a set of variable nodes X, we aim to learn a model to classify
each node x € X into one of the given attributes (e.g. title, author,
isbn13, publisher) or none representing that this node does not
contain any attribute values.

Few-shot Intra-domain Extraction. Given a set of annotated
seed websites {W2, WZ“, Wi“} from domain V, we aim to learn a
model M to extract attributes from a larger set of unseen websites
{W¥, WZ“, e Wj”} from the same domain.

Few-shot Cross-domain Extraction. Given a set of annotated
seed websites {W4, WZ“, . Wl.“} from domain V7, we aim to learn a
model M to extract attributes from a larger set of unseen websites
Wi, wy, .., W]y} from the same domain. However, in this setting,

we also have access to annotated websites {W“/, WZ“', ey Wlf’} from
domain V5, where V2 # V3.

ming unrelated branches.

3.2 Approach Overview

Figure 2 shows the overall framework of the proposed LANTERN
model for the few-shot attribute extraction task. First, we extract
context features for each node called friend and partner nodes. Tex-
tual features corresponding to each node, its friends, and partners
are then fed into a text encoder to generate a dense semantic em-
bedding. We augment this with discrete features built from markup
information such as XPath and leaf node types. We then add the
relative position of each node as a global feature for the extraction
task. The combined node embedding is used for predicting the type
of a node. In the intra-domain scenario, we directly apply a multi-
class classifier to the node embedding and output the attribute type
probability distribution. In the cross-domain scenario, the attribute
sets differ from domain to domain. Therefore, we have to alter the
inference strategy to binary classification to achieve a matching
probability for each attribute type. We select the attribute with the
highest probability as the prediction.

Each page has a DOM tree T which contains a variable node
set X and a fixed node set Y, where text contents are stored, and
also a set of non-text nodes. Fixed nodes remain the same across
different detailed pages on the same website (boilerplate like the
site’s name, navigation elements, etc.) while variable nodes may
contain content specific to the object being described on the page.
Without loss of generality, we enforce the constraint that the fixed
nodes are always mapped to none.

4 NODE ENCODER AND CLASSIFIER

The node encoder consists of three components: a module to extract
friend and partner nodes from the DOM tree, the text encoder, and
a discrete feature module.

4.1 Friend and Partner Nodes

Given a node x in the DOM tree, we define two kinds of nodes
partner and friends that constitute the “friend circle” for the node.

Algorithm 1: Function ¥ for DOM Tree Simplification and
Friend Circle Extraction.
Input: DOM tree T variable node set X constant K; Output:
Dictionaries Dj, and Dy where each key is x € X and the values

are its corresponding partner and friend set;
Initialize Dy, Dy, Dy as three empty dictionaries;
for each variable node x € X do
Get the node’s XPath Py from T;
Generate the node’s ancestor set ANCy from P, and mark the
ordered closest K ancestors as ANC,If;
for each anc in ANCK do
‘ Add x to Dg[anc];
end
end
for each variable node x € X do
for each anc € ANCK do
DESC « Dglanc]\{x};
if there exists only one node x’ in DESC and both
Dp[x], Dg[x] are empty then
‘ Add x” to Dy [x];
Dylx] « Dy[x] UDESC;
end

end

The whole DOM tree is a collection of nodes that originate from
a unique starting node called the root. Recall that the set of nodes
A on the path from root to node x (not including x) are ancestors
of node x. The friends of x denotes a set of text nodes XF such
that for each x/ € XF , the distances from both xf and x to their
lowest common ancestor a € A is no more than a constant N. We
compute the distance by counting the number of edges on the path.
The partner x of x is a special friend node for which x and x? are
the only two text nodes in the tree that originate from their lowest
common ancestor. Note that each node has at most one partner in
the DOM tree while it could have zero or multiple friends. Usually,
partner xP is the closest friend to x in the DOM tree. The intuition
behind defining partner and friend nodes is simple — while real-
world DOM trees can be extremely complicated, most of the context
for a node is present in DOM nodes that are either friends, and
when there’s a partner, it contains particularly important context.
In Figure 4, we plot a common subtree structure (a) and its three
possible variants (b,c,d). With Algorithm 1, we can simplify and
normalize the three variants to (a) in order to extract the friend
circle features.

Function ¥, to extract the friend circle features, is described in
Algorithm 1. For each variable node x € X, we decode its XPath
information to record the K closest ancestors of x. For instance, if
the XPath of x is “/body/tr/td/”, we consider both “/body/tr/” and
“/body/” as the ancestor of x. Conversely, we can easily obtain all
the descendants of each ancestor node to construct the candidate
set for retrieving the partner and friends. By limiting the size of K,
we can narrow down the search area in the tree such that the noisy
textual features from distant branches can be efficiently trimmed,
as shown in Figure 3.

In the extraction process, we keep all the basic HTML element
tags like <tr> and <td> while remove the formatting and style tags

peys:

OO®® ®%®

SRLD

O Basic O Formatting Q Text —>Tree Edge

Figure 4: Subtree skeletons of web page DOMs including a
common structure (a) and its three possible variants (b), (c)
and (d). “Basic” denotes a set of basic HTML element tags,
while “Formatting” represents some formatting and style
tags such as and . The “Text” node has text
information. We aim to simplify all possible variants to (a),
in order to efficiently extract the partner (marked as P) and
friends (F) for each target node (T).

such as and . With partner and friends extracted
from the DOM tree for each node x, we feed the three sets of textual
features separately into the text encoder as described in section 4.2
to generate three representations ey, ep, and ey which are all d,,-
dimensional vectors. We derive the joint semantic embedding e
by simply concatenating the three representations as follows:

& = [exsepies].

Note that the joint embedding is a 3d,,-dimensional vector.

4.2 Text Encoder

Node x contains a sequence of text S; = [w1, wa, ..., wr1], where
w; € W and L1 denotes the word sequence length. We can easily
split each word into a sequence of characters Sy = [c1, ¢2, ..., c12],
where ¢; € C and L2 is the character sequence length. ‘W and C
are vocabularies of words and characters. We employ a hierarchical
LSTM-CNN text encoder to encode the character-level and word-
level features.

We notice that the attribute values usually contain useful mor-
phological patterns in the character-level semantics [21]. For ex-
ample, (aa’bb ft) and (aa-bb ft) are two common patterns of height
attribute in the nbaplayer domain. Their character-level representa-
tion can be very important. Therefore, we leverage a Convolutional
Neural Network to encode the character-level embeddings (dimen-
sion d.) of each word w, resulting in h$,. We simply concatenate
h§, with its word-level representation g,, retrieved from external
pretrained word embeddings: h,, = [gw; h‘fw]

The LSTM [15] has been widely used as the unit of Recur-
rent Neural Network for learning the latent representation of se-
quence data [24]. Therefore, we feed the latent word representations
[Awys gy oo By, | into a bi-directional LSTM network, resulting

ineyx = [h{vorward; hléf”kward].
Similarly, we can achieve the semantic representations for the
node’s partner and friends, ep and e £

4.3 Discrete Feature Module

Xpath embeddings. Markup features such as XPath can be very
useful for node tagging. An XPath of a DOM node “/html/body/tr/td/”
can be seen as a sequence of HTML tags [<html>, <body>, <tr>,
<td>]. We learn a separate bi-directional LSTM to get the dense
representation ey g, of dimension dypq,p for each XPath sequence
such that it can make use of all the meaningful tags in the sequence.
Leaf node type embeddings. The tag type of the DOM leaf node
such as “<h1>” can also be meaningful. “<h1>" means the node is
likely to be the title of the page, highly correlating with the name
of a nbaplayer or the title of a book. We collect the vocabulary set
of the HTML tags and randomly initialize an embedding ej. ¢ of
dimension dj, s for each of them.

Position embeddings. We also leverage the relative position of
each node x as a discrete feature. This global information can benefit
the task. For example in the auto domain, the model usually lies
on the top of the page. We apply depth-first-search to traverse the
tree and get the occurrence position posy of each node. Then we

compute its relative position via [%ﬁ;s}]. Similarly, a random
X X

embedding epos of dimension djos is initialized for each position.
Semantic similarity. We notice that for each node x the text in
the partner node x” can help determine x’s attribute type and
modeling the semantic relation between the text in x” and the
attribute types allows us to best leverage this data. Specifically, we
compute the cosine similarity' between the partner embedding ep
and each attribute embedding e4; to model their semantic relations,
which results in a semantic similarity vector ecos of dimension M,
where M denotes the number of pre-defined attribute types.

Upon achieving these discrete features, we concatenate them into
avectorey = [expath§ €leafs €pos; ecos] of dimension dy pgsh+djear+
dpos+M.

4.4 Inference and Optimization

We design different inference strategies for the two scenarios. Under
the intra-domain scenario, the node embedding is connected to
a multi-layer perceptron (MLP) for multi-class classification, as
illustrated below:

én = [es;ed]
h = MLP(e,,),h € RM*+L,

where M + 1 denotes the number of pre-defined attribute types plus
a none type.

Under the cross-domain scenario, we notice that the MLP layer
for multi-class classification can no longer be used for different
domains which have different sizes of attribute sets. Therefore, we
alter the inference strategy to binary classification. Specifically for
each attribute type, we concatenate the node embedding e, to a
randomly initialized attribute embedding e4; of dimension d,. We
then feed it to a separate MLP and compute a score h; to denote
the probability of this attribute type:

ebiz[en;eai],lsiSM+l

h; = MLP(ebi), h; eR

ep-ea;

!We compute the scores via cosine_similarity (eps eui) = TeplleasT"
1

‘ Domain ‘ #Sites ‘ #Pages ‘ #Var. Nodes ‘ Attributes ‘

auto 10 17,923 130.1 model, price, engine, fuel
book 10 20,000 476.8 title, author, isbn13, pub, date
camera 10 5,258 351.8 model, price, manufacturer
job 10 20,000 374.7 title, company, location, date
movie 10 20,000 284.6 title, director, genre, mpaa
nbaplayer 10 4,405 321.5 name, team, height, weight
restaurant 10 20,000 267.4 name, address, phone, cuisine
university 10 16,705 186.2 name, phone, website, type

Table 1: SDWE Dataset Statistics

Under both scenarios, we lastly apply the softmax function to
normalize h and select the largest as the prediction ¥:
ehi .
Pi = SM+1 n, Y T ATEMAXP;-
Z j=1 e i
The loss function optimizes the cross-entropy between the true
labels y and the normalized probabilistic scores p.

|X| M+1

loss = — Z Z Ymn 108 Py

n=1m=1

5 EXPERIMENTS

In this section, we first introduce the dataset and evaluation met-
rics. We also explain the implementation details to guarantee the
reproducibility of our method. Then, a collection of baseline models
are introduced to compare with our model under the intra-domain
few-shot extraction scenario. We also conduct a series of ablation
studies to answer the following questions: (i) What are the contri-
butions from each set of features? (ii) Will sequence modeling work
well on DOM tree nodes? (iii) What is the performance of different
word embedding strategies? Lastly, we evaluate the effectiveness
of the out-of-domain knowledge under the cross-domain few-shot
extraction scenario.

5.1 Dataset

We rely on a public data set, SWDE [14] that consists of more
than 124,000 web pages from 80 websites of 8 domains to train
and evaluate the proposed model. Detailed statistics are shown
in Table 1. Each domain consists of 10 websites and contains 3 to
5 attributes of interest. We notice that the book and job domains
have the most variable nodes on average, roughly three times the
number of variable nodes in the auto and university domains. While
SWDE has been around for a while, it has been used in many recent
papers [14, 21, 25] and is still a useful dataset to understand the
relative merits of different approaches.

In the intra-domain few-shot experiments, we follow the method-
ology in FreeDOM [21] to select k seed websites as the training data
and use the remaining 10 — k websites as the test set. For example,
when k = 2, we build 10 training sets by picking 10 permutations
from all the 2-seed-website combinations such as (auto, book), (book,
camera), ..., and (university, auto). The corresponding test set for
the first training set is the remaining 8 websites from camera to
university. Note that in this few-shot extraction task, none of the
pages in the 10 — k websites have been visited in the training phase.
This setting is abstracted from the real application scenario where

only a small set of labeled data is provided for specific websites and
we aim to infer the attributes on a much larger unseen website set.

In the cross-domain few-shot experiments, we leverage one do-
main as the out-of-domain knowledge to train a model. Then we
conduct the same intra-domain extraction experiments by loading
the checkpoints from the pretrained model for parameter initial-
ization. We create this experimental setting to enable a broader
knowledge transfer across various domains, which can tackle the
scenario where the domain of the existing annotation is inconsistent
with the unseen websites.

5.2 Evaluation Metrics

We evaluate the extraction performance by page-level F1 scores,
following the evaluation metrics from SWDE and FreeDOM [14, 21].
Page-level F1 score is the harmonic mean of extraction precision and
recall in each page. Specifically, we evaluate the predicted attribute
values with the true values for each detailed page. We compute an
average F1 score over all the domains (Table 2) to compare with the
baselines. We also compute the average F1 score for each domain
(Figure 5) and each attribute (Figure 6) for detailed analysis.

5.3 Implementation details

For data pre-processing, we use the open-source LXML library? to
extract DOM tree structures from each page. Then, we follow the
simple heuristic in [21] to filter nodes whose values are constant
in all pages of a website. Thus most of the noisy page-invariant
textual nodes such as the footer and navigation contents are re-
moved and training speed is significantly accelerated. We use GloVe
pretrained representations [32] to initialize our word embeddings.
Other representations such as character embeddings and attribute
embeddings are all randomly initialized. We also truncate every
node’s text to a maximum of 15 words. We set both maximum edge
number N and maximum ancestor number K as 5 for extracting
friend circle features and only keep the closest 10 friends for each
DOM tree node by comparing their positions on the web page.
We conduct a grid search for all the hyper-parameters. We use
100 for both word embedding size d,, and character embedding
size dc. We select dpgrp, dieqf, dpos as 30,30, 20, respectively. For
the CNN network, we use 50 filters and a kernel size of 3. For the
LSTM network, we set the hidden layer size as 100. The model is
implemented in Tensorflow>. We train the model using 15 epochs
and a batch size of 32. We apply a dropout mechanism following
the MLP layer to avoid over-fitting issues. The dropout rate is 0.3.
We use Adam [17] as the optimizer with a learning rate of 0.001.
It takes less than 30 minutes to finish the complete training and
evaluation cycle for each domain with one NVIDIA V100 GPU.

5.4 Baseline Models

We compare against several baselines:

Stacked Skews Model (SSM). SSM [5] utilizes expensive hand-
crafted features and tree alignment algorithms to align the unseen
web pages with seed web pages. Attribute values are extracted from
each page of the unseen websites. Like our model, this method does
not require visual rendering features.

Zhttps://Ixml.de/
3https://www.tensorflow.org/

lModel\#SeedSites l k=1 lk:2 lk:3 lk:4 l k=5 ‘

SSM 63.00 | 64.50 | 69.20 | 71.90 | 74.10
Render-Full 84.30 | 86.00 | 86.80 | 88.40 | 88.60
FreeDOM-NL 72.52 | 81.33 | 86.44 | 88.55 | 90.28
FreeDOM-Full 82.32 | 86.36 | 90.49 | 91.29 | 92.56
LANTERN 83.06 | 88.96 | 91.63 | 92.84 | 93.75

Table 2: Comparing the extraction performance (F1) of five
baseline models to our method LANTERN using different num-
bers of seed sites k = {1,2,3,4,5}. Each value in the table is
computed from the average over 8 domains and 10 permuta-
tions of seed websites per domain (80 experiments in total).

Rendering-feature Model (Render-full). Render-full [14] em-
ploys visual features to express the distances between node blocks
rendered with the web browser. Visual distances have proven to
be a good method to encode the neighboring relationships among
nodes [26] but this method requires the time-consuming rendering
process and needs extra memory space to save the images, CSS, and
JavaScript that can easily be out-of-date. Render-full employs a
sophisticated heuristic algorithm to compute the visual distances,
which gives the best performance [14], compared to other variants
Render-PL and Render-IP.

Relational Neural Model (FreeDOM-X). FreeDOM leverages a re-
lational neural network to encode features such as the relative dis-
tance and text semantics. This method is composed of two stages.
The first stage model (FreeDOM-NL) learns a dense representation
for each DOM tree node via node-level classification. The rela-
tional neural network in the second stage (FreeDOM-Full) claims
to capture the distance and semantic relatedness between pairs of
nodes in the DOM trees. This two-stage model does not rely on
visual features but is hard to deploy in practice. Additionally, only
modeling the relatedness between pairs of nodes neglects the rich
structural information in the tree such as the friend circles. We
compare with both FreeDOM-NL and FreeDOM-Full because the
single-stage FreeDOM-NL is closer to our model and FreeDOM-Full
achieves the state-of-the-art experimental results.

5.5 Intra-domain Few-shot Extraction Results

Table 2 shows the overall comparisons between our model LANTERN
and all four baselines using different numbers of seed websites.
Our model achieves slightly worse performance when k = 1 while
it largely outperforms Render-Full when k = {2,3,4,5}. We can
conclude that the delicately crafted visual features can capture
more patterns in the scenario where extremely small training data
exists. However, they are not as transferable as the rich semantic
features extracted from our simplified DOM trees as k increases. Our
method also consistently outperforms the state-of-the-art method
FreeDOM-Full (an average improvement of 1.44% over all values of
k) and achieves a 3.47%-10.54% improvement over the single-stage
approach, FreeDOM-NL.

We plot the detailed performance of LANTERN on different do-
mains in figure 7. In general, the performance improves as k in-
creases. This is not surprising because more training data yields
better coverage of all possible instances. We also observe that the
rate of performance growth slows down and sometimes the F1

https://lxml.de/
https://www.tensorflow.org/

W w/o Friend Circle Feat. w/o Discrete Feat.

100.00

96.37
95.17
95.00

91.65 91.51

90.95
90.00

88.78
93.44}
85.00 IR
88.37
81.65

o

auto

80.00

university

camera movie

w/ Node Sequence Modeling

B SimpDOM M w/ Out-of-domain Knowledge

92.61 93.00
91.79
90.19 90.47 90.37

90.83

88.33 88.31

86.69

86.95

.I:m

job

89.724
82.32

88.47 89.29

85.56)

mis

book restaurant nbaplayer average

Figure 5: Ablation study results that demonstrate the contribution from different features and modules. We conclude that both
friend circle features and discrete features improve the extraction performance while adding a sequence modeling module
harms the performance dramatically. With the out-of-domain knowledge from a second domain, the model can do better for
each of them. We set k = 3 here. Similar results can be achieved with other k’s.

w/o friend circle feat. ® w/ friend circle feat.

auto book
100.00 100.00
90.00 90.00
80.00 80.00
70.00 70.00
60.00 60.00 I
50.00 50.00
model price fuel engine title author isbn13 pub date
job nbaplayer

100.00 100.00

90.00 90.00
80.00 80.00
70.00 70.00

60.00 60.00

name team height weight

title company date location

50.00 50.00

camera movie

100.00 100.00

90.00 90.00

80.00 80.00

70.00 70.00

60.00 60.00

50.00 50.00

model manufacturer price tile mpaa genre director

restaurant university

100.00 100.00

90.00 90.00
80.00 80.00
70.00 70.00

60.00 60.00

name website

name address cuisine phone

phone

50.00 50.00

type

Figure 6: Per-attribute F1 performance comparisons between LANTERN w/ and w/o friend circle features. We set k = 3 here.
Attributes like height in nbaplayer and title in movie get the largest performance improvements.

100.00 * auto
university
camera

95.00 .

® movie

x job
90.00 @ book

B restaurant

@ nbaplayer
85.00
80.00

k=1 k=2 k=3 k=4 k=5

Figure 7: Comparing the extraction performance (F1 score)
of different numbers of seed sites k = {1,2,3,4,5} per domain.

scores of some domains (e.g. nbaplayer and restaurant) even fluc-
tuate as more data is added to the training set (i.e. as k increases).
We surmise that the reason for this behavior is that the model

becomes more robust and less new knowledge can be transferred
from annotated websites to unseen websites in these domains.

5.6 Ablation Study

In Figure 5, we present an ablation study on different features of
LANTERN, including discrete features and friend circle features. We
find that both sets of features improve the attribute extraction
performance dramatically. For instance, the friend circle features in-
crease the F1 score of the nbaplayer domain from 82.18% to 91.37%
and the discrete features increase the performance on the book
domain by 8.51%. However, restaurant is a special case where the
score drops when we employ either of the two feature sets. We
believe the node texts in some attribute values such as name and
address are distinguishable enough and adding more features just
adds more noise to the classification. This is also corroborated by
Figure 6, which explains the detailed performance change when
adding the friend circle features per attribute. We observe that the

l Embedding Approach l F1 Performance Change ‘

GloVe Embedding Trainable 91.63 0

GloVe Embedding Fixed 91.25 -0.38
Randomized Word Embedding | 89.66 -1.97
Contextualied Embedding 81.83 -9.80

Table 3: Comparing different word embedding approaches
when k = 3.

improvement on height of nbaplayer is significant. The nodes con-
taining height value always share a similar pattern xx-yy* with
some other nodes on the same page. With the friend circle features,
we find that weight is always a friend node of height, which makes
height distinguishable from other nodes with similar text patterns.
The extraction of some attributes such as company in the job do-
main and address in the restaurant domain was not improved. We
believe this is caused by the comparatively diverse positions of
these attributes in different websites.

Another interesting ablation study is done with an additional
sequence modeling layer® which is commonly applied to sequence
labeling tasks such as named entity recognition on plain text [20, 43].
We first obtain a sequence of node embeddings before the MLP
classifier where all the nodes are from one web page. Then a new
representation can be achieved from the sequence model for each
node. The same classifier is used to predict the attribute type with
the updated node representation. As shown in Figure 5 (marked as
“w/ Node Sequence Modeling”), the additional sequence modeling
layer fails to optimize the node representations for all the domains
especially those with more variable nodes such as nbaplayer and job.
We believe that the information from all other DOM tree nodes can
be selectively attended to the current node with this mechanism,
however this introduces more noise than useful knowledge. This
further demonstrates the importance of utilizing the structure of
the DOM tree to eliminate noise from distant and irrelevant nodes.

We also compare different embedding approaches for encoding
textual features. As shown in Table 3, we conduct experiments to
test the randomized word embedding, fixed GloVe word embedding,
and trainable GloVe word embedding. In the trainable setting we
can continue to optimize the parameters in the embedding layer,
initialized from GloVe, achieving the best performance. We think
that a specific “web-language” model can serve the web information
extraction tasks better. Drawing on recent developments in contex-
tualized language models, we also tried using BERT [9]° to generate
the contextualized embeddings but it decreases the performance by
9.8%. This is not surprising given that the context in each node is
very limited” and the huge size of parameters (110M in BERT-BASE)
for fine-tuning can easily cause an over-fitting problem.

5.7 Cross-domain Few-shot Extraction Results

We plot a heatmap in Figure 8 to denote the performance im-
provements from the out-of-domain knowledge. Each entry in the
heatmap relates to a pair of domains, where the domain in the upper
case is used as the out-of-domain knowledge while the domain in

4For instance, NBA player Kobe Bryant’s height (6-6) has the same value as his shooting
record (6-6) in one game. It is impossible to distinguish two nodes by the text.
SWe utilize Transformer [40] as the sequence modeling layer. LSTM is another option.
SWe choose BERT without loss of generality. We can also use ELMo or XLNet [33, 44].
7On average, each variable node contains only 2-5 words in different domains.

5%
auto - .

university - 4%

camera - .

movie -

- [l HHl
- 2%

book -

restaurant f. . - 1%

nbaplayer -

3%

- 0%

AUTO -
UNIVERSITY -
CAMERA -
MOVIE -

JOB -

BOOK -
RESTAURANT -
NBAPLAYER -

Figure 8: Heatmap denoting the performance improvements
per F1 score from the out-of-domain knowledge (k = 3).
We learn a transferable model with domains in upper case
(columns). Then we fine tune the model and predict on the
domains in lower case (rows). We observe that over 20 pairs
of websites improve the extraction performance by 1.5%.

the lower case is used to train and test the model. We do not plot the
scores in the diagonal because domains cannot serve as their own
out-of-domain resource. One interesting observation is that this
heatmap is roughly symmetric with respect to the diagonal, which
demonstrates a mutual relationship between pairs of domains. For
instance, job and movie, book and nbaplayer, restaurant and book can
all significantly improve the extraction performance for each other,
while auto and job, camera and nbaplayer seem to be irrelevant to
each other. We show the performance of each domain achieved by
using the most helpful out-of-domain knowledge in Figure 5. We
achieve the highest average F1 score of 93% over all the domains
(k = 3), which improves the performance of our intra-domain ex-
periment by a further 1.37% (absolute value). This evidence proves
our assumption that a better contextual node representation can
be learned from additional knowledge, which is extremely helpful
when only a few labeled data are provided for specific domains.

6 CONCLUSION AND DISCUSSION

In this paper, we present a simple but effective method, LANTERN, for
the attribute extraction task. LANTERN uses the tree structure of the
neighborhood around a node to learn a contextual representation
for each node in the DOM tree. This method does not require the
expensive generation of visual features and is more robust than
wrapper induction. This opens up interesting directions for future
investigation — since we’re able to exceed the accuracy of previous
SOTA without using visual features, are there other techniques
that better exploit visual features? When does the additional cost
of processing rendered visual features justify increased accuracy?

Additionally, we show that using training data from a different
domain is surprisingly useful and improves performance by a fur-
ther 1.37% relative to the SOTA method. These novel cross-domain,
few-shot extraction results demonstrate the potential of our ap-
proach to generalize across domains and the ability to use data
from an existing domain to rapidly bootstrap an extraction model
for new domains.

REFERENCES

(1]
(2]

(3]

[4

flaa

(11

[12]

[13

[14]

[17]

[18]

[19]
[20]

[21]

[22]

[23

1. Augenstein, D. Maynard, and F. Ciravegna. Distantly supervised web relation
extraction for knowledge base population. Semantic Web, 7(4):335-349, 2016.
M. A. B. M. Azir and K. B. Ahmad. Wrapper approaches for web data extraction:
A review. In 2017 6th International Conference on Electrical Engineering and
Informatics (ICEEI), pages 1-6. IEEE, 2017.

L. Bing, T.-L. Wong, and W. Lam. Unsupervised extraction of popular product
attributes from e-commerce web sites by considering customer reviews. ACM
Transactions on Internet Technology (TOIT), 16(2):1-17, 2016.

M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti. Extraction and integration of
partially overlapping web sources. Proceedings of the VLDB Endowment, 6(10):805—
816, 2013.

A. Carlson and C. Schafer. Bootstrapping information extraction from semi-
structured web pages. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 195-210. Springer, 2008.

C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey of web infor-
mation extraction systems. IEEE transactions on knowledge and data engineering,
18(10):1411-1428, 2006

W. Chen, L. Zong, W. Huang, G. Ou, Y. Wang, and D. Yang. An empirical study
of massively parallel bayesian networks learning for sentiment extraction from
unstructured text. In Asia-Pacific Web Conference, pages 424-435. Springer, 2011.
V. Crescenzi and P. Merialdo. Wrapper inference for ambiguous web pages.
Applied Artificial Intelligence, 22(1-2):21-52, 2008.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 601-610, 2014.

O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information extraction
from the web. Communications of the ACM, 51(12):68-74, 2008.

T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, C. Schallhart, and C. Wang.
Diadem: thousands of websites to a single database. Proceedings of the VLDB
Endowment, 7(14):1845-1856, 2014.

S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. Dom-based content extraction
of html documents. In Proceedings of the 12th international conference on World
Wide Web, pages 207-214, 2003.

Q. Hao, R. Cai, Y. Pang, and L. Zhang. From one tree to a forest: a unified solution
for structured web data extraction. In Proceedings of the 34th international ACM
SIGIR conference on Research and development in Information Retrieval, pages
775-784, 2011.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

M. Kayed and C.-H. Chang. Fivatech: Page-level web data extraction from
template pages. IEEE transactions on knowledge and data engineering, 22(2):249—
263, 2009.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

F. Kocayusufoglu, Y. Sheng, N. Vo, J. Wendt, Q. Zhao, S. Tata, and M. Najork.
Riser: Learning better representations for richly structured emails. In The World
Wide Web Conference, pages 886—895, 2019.

N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper induction for information
extraction. University of Washington Washington, 1997.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360, 2016.
B.Y.Lin, Y. Sheng, N. Vo, and S. Tata. Freedom: A transferable neural architecture
for structured information extraction on web documents. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1092-1102, 2020.

M. T. A. Ling Liu. Encyclopedia of Database Systems. Springer New York, 2nd ed.
edition, 2018.

H. Liu, C. Chen, L. Zhang, and G. Wang. The research of label-mapping-based
entity attribute extraction. In 2010 IEEE International Conference on Progress in

[24]

[25]

[26

[27]

(28]

™~
29,

(30]

[31

[32

[33

&
=)

[35

[36]

(37

[38

(40]

[41]

[42]

[43]

[44

[45

Informatics and Computing, volume 1, pages 635-639. IEEE, 2010.

P. Liu, X. Qiu, and X. Huang. Recurrent neural network for text classification
with multi-task learning. arXiv preprint arXiv:1605.05101, 2016.

C. Lockard, X. L. Dong, A. Einolghozati, and P. Shiralkar. Ceres: Distantly
supervised relation extraction from the semi-structured web. arXiv preprint
arXiv:1804.04635, 2018.

C. Lockard, P. Shiralkar, X. L. Dong, and H. Hajishirzi. Zeroshotceres: Zero-shot re-
lation extraction from semi-structured webpages. arXiv preprint arXiv:2005.07105,
2020.

B. P. Majumder, N. Potti, S. Tata, J. B. Wendt, Q. Zhao, and M. Najork. Representa-
tion learning for information extraction from form-like documents. In proceedings
of the 58th annual meeting of the Association for Computational Linguistics, pages
6495-6504, 2020.

A. More. Attribute extraction from product titles in ecommerce. arXiv preprint
arXiv:1608.04670, 2016.

I. Muslea, S. Minton, and C. Knoblock. A hierarchical approach to wrapper
induction. In Proceedings of the third annual conference on Autonomous Agents,
pages 190-197, 1999.

A. Parameswaran, N. Dalvi, H. Garcia-Molina, and R. Rastogi. Optimal schemes
for robust web extraction. Proceedings of the VLDB Conference, 4(11), September
2011.

P. Pasupat and P. Liang. Zero-shot entity extraction from web pages. In Proceed-
ings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 391-401, 2014.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word repre-
sentation. In EMNLP 2014, pages 1532-1543, 2014.

M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.
Deep contextualized word representations. In NAACL 2018, pages 2227-2237,
2018.

D. Putthividhya and J. Hu. Bootstrapped named entity recognition for product
attribute extraction. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 1557-1567, 2011.

S. K. Shandilya and S. Jain. Automatic opinion extraction from web documents.
In 2009 International Conference on Computer and Automation Engineering, pages
351-355. IEEE, 2009.

H. A. Sleiman and R. Corchuelo. Trinity: on using trinary trees for unsupervised
web data extraction. IEEE Transactions on Knowledge and Data Engineering,
26(6):1544-1556, 2013.

S. Soderland. Learning information extraction rules for semi-structured and free
text. Machine learning, 34(1-3):233-272, 1999.

X. Song, J. Liu, Y. Cao, C.-Y. Lin, and H.-W. Hon. Automatic extraction of web
data records containing user-generated content. In Proceedings of the 19th ACM
international conference on Information and knowledge management, pages 39-48,
2010.

A. M. Vartouni, S. S. Kashi, and M. Teshnehlab. An anomaly detection method to
detect web attacks using stacked auto-encoder. In 2018 6th Iranian Joint Congress
on Fuzzy and Intelligent Systems (CFIS), pages 131-134. IEEE, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and L. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998-6008, 2017.

H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo. Multi-task feature
learning for knowledge graph enhanced recommendation. In The World Wide
Web Conference, pages 2000-2010, 2019.

S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and C. Ré. Fonduer:
Knowledge base construction from richly formatted data. In Proceedings of the
2018 International Conference on Management of Data, pages 1301-1316, 2018.
H. Yan, B. Deng, X. Li, and X. Qiu. Tener: Adapting transformer encoder for
name entity recognition. arXiv preprint arXiv:1911.04474, 2019.

Z.Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet: Gen-
eralized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

S. Zheng, R. Song, J.-R. Wen, and D. Wu. Joint optimization of wrapper generation
and template detection. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 894-902, 2007.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation and Approach
	3.1 Few-shot Attribute Extraction from Semi-structured Websites
	3.2 Approach Overview

	4 Node Encoder and Classifier
	4.1 Friend and Partner Nodes
	4.2 Text Encoder
	4.3 Discrete Feature Module
	4.4 Inference and Optimization

	5 Experiments
	5.1 Dataset
	5.2 Evaluation Metrics
	5.3 Implementation details
	5.4 Baseline Models
	5.5 Intra-domain Few-shot Extraction Results
	5.6 Ablation Study
	5.7 Cross-domain Few-shot Extraction Results

	6 Conclusion and Discussion
	References

