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Abstract

This paper addresses the cold-start problem
in online learning to rank (OLTR). We show
both theoretically and empirically that pri-
ors improve the quality of ranked lists pre-
sented to users interactively based on user
feedback. These priors can come in the form
of unbiased estimates of the relevance of the
ranked items, or more practically, can be ob-
tained from offline-learned models. Our ex-
periments show the effectiveness of priors in
improving the short-term regret of tabular
OLTR algorithms, based on Thompson sam-
pling and BayesUCB.

1 INTRODUCTION

Learning to rank (LTR) is an important problem with
many applications, such as in search (Liu, 2011), rec-
ommender systems (Falk, 2019), and ad placement
(Tagami et al., 2013). The goal is to present a set of
items to a population of users to optimize some utility,
be it effort to find a piece of information, satisfaction
with recommended results, or engagement with ads.
Given the dynamic nature of user needs and desires,
numerous online learning to rank (OLTR) algorithms
have been proposed to learn from user feedback and
adapt to user preferences (Radlinski et al., 2008; Jager-
man et al., 2019; Wang et al., 2019).

As with most online learning methods, one major
drawback of OLTR algorithms is the cold-start prob-
lem (Li et al., 2019). To guarantee asymptotic op-
timality, they need to explore at a certain rate. Al-
though this rate typically tapers off as they see more
data, they are generally overly exploratory earlier in
the learning process. This early phase of aggres-
sive exploration is often a hindrance to deployment of
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OLTR algorithms in practice. This is because a well-
performing offline policy often exists, which is prefer-
able to the exploration that OLTR algorithms inflict
upon users in the earlier stages. On the other hand, as
shown by our experiments, a significant loss is incurred
if an offline policy is used without any exploration.

In this paper, we propose a remedy for this cold-start
problem in tabular OLTR, also called stochastic rank-
ing bandits (Zoghi et al., 2017; Lattimore et al., 2018).
We show that prior knowledge on the quality of ranked
items can greatly improve the efficacy of ranking ban-
dit algorithms, both in theory and practice. There
are at least two methods for acquiring this prior: un-
biased estimation and offline models. An extensive
body of work exists on unbiased estimation of the qual-
ity of ranked items, either using click models trained
on logged data (Chuklin et al., 2015), counterfactual
evaluation (Li et al., 2015; Zoghi et al., 2016; Li et al.,
2018), or a combination of these (Dudik et al., 2014).
On the other hand, there have been great advances in
the quality of offline LTR algorithms (Qin et al., 2021;
Burges, 2010), raising the question of whether their
predictions could be used as priors for OLTR.

This work makes algorithmic, theoretical, and empir-
ical contributions. First, we adapt two algorithms
to OLTR, where the prior distributions on the utili-
ties of items are inputs: BayesUCB (Kaufmann et al.,
2012) and Thompson sampling (TS) (Thompson, 1933;
Chapelle and Li, 2012; Russo et al., 2018). Our work
is the first to apply BayesUCB to OLTR. While TS has
been applied to OLTR before (Zong et al., 2016; Che-
ung et al., 2019), we are the first to apply it to the
dependent click model (DCM) (Guo et al., 2009b), a
variant of the cascade model (CM) (Richardson et al.,
2007; Craswell et al., 2008) that accounts for both the
item and position bias.

Second, we derive novel prior-dependent Bayes regret
bounds for both BayesUCB and TS in three click mod-
els (Chuklin et al., 2015). The main challenges in our
derivations are an exponentially large arm space and
non-linear objectives (Theorem 2 and Corollary 3).

“The work started while being at Google Research.
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Our bounds are the first in OLTR that capture how
informative the prior is, which can be also observed
empirically (Section 7). The novelty of our bounds is
discussed more after Theorem 1 and in Section 8.

Finally, we evaluate our algorithms empirically with
the following observations: BayesUCB and TS outper-
form state-of-the-art baselines; our prior-dependent re-
gret bounds are practical and reflect the decrease in
regret due to informative priors; and BayesUCB and TS
can be integrated with a state-of-the-art LTR system
(Qin et al., 2021). This combined approach is evalu-
ated on thousands of queries with more than a hundred
items per query.

2 SETTING

We start with introducing some notation. We define
[K] = {1,...,K}. For any vectors u € R? and v €
[d]™, we let u(v) € R™ be a vector whose i-th entry is
the v;-th entry of u, for any ¢ € [n]. We treat vectors
as sets when needed. We use O for the big O notation
up to logarithmic factors.

We have a ranking problem, with L ground items and
display a ranked list of K items. We denote the set of
all tuples of K distinct items out of L by IIx (L) and
call T € Tl (L) a list of items. Each item has some
utility, which we call an attraction probability. We
denote the attraction probability of item i by 6; € [0, 1]
and let 6 = (0;)L ;.

We formalize our OLTR, problem as follows. The
agent interacts with an environment, such as users
in a recommender system, over n rounds. In round
t € [n], the attraction of each item ¢ is drawn i.i.d. as
Y:+ ~ Ber(6;), across both the items and rounds. The
attractions can be viewed as unknown realized prefer-
ences of the user in round ¢. The agent recommends
a list of items I; € IIx (L) and the user examines it
sequentially from the first item. When the item is ex-
amined and attractive, the user clicks on it. Whether
the user is satisfied with the item, or proceeds to the
next item, depends on the model of user interaction.
Such models are known as click models (Chuklin et al.,
2015) and we examine several of them below.

Let Yr: = (Yl(k”)kK:l be a vector of realized attrac-
tions of all items in list I in round ¢. We define the
satisfaction with list I in round ¢, or reward, as f(Y7,),
where f : [0,1]% — Rq is a reward function to be de-
fined precisely later and R is the set of non-negative
real numbers. The mean reward of list I is

pur=E [f(Y]J)] = EY’NI_L.E] Ber(~;9i)[f<y/)] :

While this quantity depends on 6 and list I, it is in-
dependent of the round ¢ because the attractions of

items are drawn i.i.d. across the rounds. The optimal
list is I, = argmax jeyy, (1) #r and depends on 6.

Our objective is to maximize the satisfaction of users
with recommended lists over n rounds. We formalize
this problem as regret minimization. Let the expected
regret in round ¢ be R, = py, — pr,. Our goal is to
minimize its sum over n rounds, R(n) = E[>_} ;| Ry,
where the expectation is taken over the randomness in
the algorithm, attractions Y; ., and attraction proba-
bilities 8 ~ Py, where P, is the prior distribution over
attraction probabilities known by the learning agent.
The quantity R(n) is called the Bayes regret (Russo
and Van Roy, 2014). We use it as a metric because it
naturally captures the notion of side information P,
and can be utilized in both the algorithm design and
analysis (Russo and Van Roy, 2014). This would not
be possible with the so-called frequentist regret, where
0 is unknown but fixed.

The prior is factored as Py(0) = Hle Beta(0;; «;, 8;),
where «; and ; are the parameters of the beta prior
for 6;. We use the beta prior because it is a conjugate
prior to clicks, which are our observations. The beta
prior is also universal. Roughly speaking, Beta(a, )
can be viewed as a Gaussian with mean o/(a+ ) and
variance a3/((a+ B)?(a+ B+1)) on [0,1], and has a
comparable representational power.

3 ALGORITHMS

We present two Bayesian algorithms for OLTR, which
are motivated by BayesUCB (Kaufmann et al., 2012)
and Thompson sampling (Thompson, 1933; Chapelle
and Li, 2012; Russo et al., 2018). While Thomp-
son sampling has been applied to OLTR before (Zong
et al., 2016; Cheung et al., 2019), our work is the first
application of BayesUCB to OLTR. We call both pro-
posed algorithms by the name of the base algorithm,
BayesUCB and TS, since it is clear from context that
they are applied to OLTR in this work.

The key idea in our algorithms is to maintain a pos-
terior distribution over the attraction probabilities of
all items and then act optimistically with respect to
it. By the Bayes rule, the posterior in round ¢ is

L
Pi(0) = [ [ Beta(6i; i, Bis) (1)
=1
t—1
aig =0+ 0iYi,
=1

t—1
Bit = Bi + Z Oie(1=Yiys),
=1

where O, ¢ € {0,1} is an indicator that the attraction



Branislav Kveton, Ofer Meshi, Zhen Qin, Masrour Zoghi

Algorithm 1 BayesUCB for click models.

1: P+ Py

2: fort=1,...,ndo

3: Compute UCBs Uy = (U; 4)E
I; + Top K items with respect to U,
Recommend I; and get click feedback
Update posterior P,y

Algorithm 2 TS for click models.

1. P+ Py

2: fort=1,...,ndo

3: Sample §; = (0; 1)L, ~ P,
I; <+ Top K items with respect to 6;
Recommend I; and get click feedback
Update posterior P,y

of item ¢ is observed in round ¢. Roughly speaking,
o+ is the number of clicks on item 4 up to round ¢
increased by prior pseudo-counts «;, and analogously
Bi ¢ is the number of observed “no clicks”. Estimating
if the item is observed, O;, = 1, is a hard problem.
However, in the click models studied in this work, it
can be done for a subset of recommended items, which
is sufficient to design efficient learning algorithms. We
precisely define O; ¢, when we study these models.

Our algorithms are presented in Algorithms 1 and 2,
and work as follows. In round ¢, they recommend K
most attractive items I, in descending order of per-
item statistics derived from the posterior P;. Greedily
choosing most attractive items is a popular design in
OLTR (Kveton et al., 2015a; Katariya et al., 2016),
and can be extended to both context (Zong et al., 2016;
Liet al., 2016) and diversity (Hiranandani et al., 2019).
The per-item statistics in BayesUCB are upper confi-
dence bounds. The upper confidence bound (UCB) of
item ¢ in round ¢ is

1
U;+ = min {c € [0,1] :/ Beta(y; g, Bir) dy < 6} )
y

=c

This is the lowest value ¢ such that the probability of
event 6; > c is at most §, where & > 0 is a tunable
parameter. Note that U, is in [0,1]. The per-item
statistics in TS are posterior-sampled attraction proba-
bilities 0; ~ P;. After the list I; is recommended, both
algorithms observe clicks and update their posteriors
P,11, as defined in (1). How the clicks relate to the
attractions of items depends on a given click model,
which we discuss next.

4 DOCUMENT-BASED CLICK
MODEL

In this section, we derive regret bounds for BayesUCB
and TS in a simple click model, which sets stage for
more practical models in the following sections.

4.1 Click Model

The document-based click model (DCTR) (Craswell
et al., 2008; Chuklin et al., 2015) is one of the sim-
plest models of how a user interacts with a ranked list
of items I;. The model is defined as follows. The user
examines all positions in I;. If the item at position k
is attractive, Y7, (1), = 1, the user clicks on it.

A natural notion of reward in this model is the number
of clicks in a list. For any list I, this reward and its
expectation can be written as

f(Y14) = ZYIk)tv pr =E[f(Yr:)]0] =

Z Or(k) -

This objective is maximized by choosing the K most
attractive items. This model of reward and feedback
is known in online learning as semi-bandits (Gai et al.,
2012; Chen et al., 2013; Kveton et al., 2014, 2015b).

4.2 Regret Bound

We derive a regret bound for BayesUCB and TS for
any failure probability 6 > 0. Proofs of all technical
lemmas are deferred to Appendix A.

Theorem 1. The regret of BayesUCB and TS in DCTR
is bounded with probability 1 — ¢ as R(n) <

L

n 1
log(1 1 1+ — e
2K Lnlog(1/6) og( + L; :

OzlJrﬂi) +2Ln.

For § = 1/n, the bound is O(vVKLnlogn) and sub-
linear in the horizon n. The novelty of this result is
in its dependence on prior, in the second logarithmic
term above. Since y/logx is an increasing function of
x, the regret decreases when 1/(a; + ;) does for any i.
By Lemma 4 (Appendix A), this quantity is a scaled
sub-Gaussianity parameter of the prior distribution of
item ¢, which we call a prior width. Therefore, the re-
gret decreases whenever the prior width of any item
decreases, and we become more certain about its at-
traction probability. Since log(l + ) — 0 as z — 0,
the regret approaches zero when «; + 8; — oo for all
i € [L]. In this case, the problem instance becomes in-
creasingly more certain, and no exploration is needed
to find the optimal list.
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Our bound approaches infinity when «;, 8; — 0. This
can be fixed by recommending all items once initially.
The extra regret for this initialization is O(L) and con-
stant in n. After the initialization, we get priors that
satisfy a; + 8; > 1.

A Bayes regret lower bound exists for a K-armed ban-
dit (Lai, 1987). However, it is unclear how to general-
ize it to structured problems, and even seminal works
on Bayes regret minimization do not match it (Russo
and Van Roy, 2014, 2016). Therefore, we validate the
tightness of our bounds empirically (Section 7). Our
experiments show that the bounds are just an order of
magnitude off for a wide range of prior widths, which
is tight relative to other regret bounds derived in the
literature.

Our analysis can be extended to misspecified priors.
Roughly speaking, when «; and §; are e-close to the
true values, we would get an O(en?) extra regret. This
claim can be proved by extending Lemma 5 in Kveton
et al. (2021), which shows in a Gaussian bandit that
the extra regret is O(en?) when the prior mean of all
arms is misspecified by O(g). The extension is possi-
ble because the beta distribution is sub-Gaussian with
variance proxy 0.25/(a+ 5 + 1).

4.3 Proof of Theorem 1

Before starting, we define some notation. The poste-
rior attraction probability and the corresponding con-
fidence interval width for any item ¢ in round ¢ are

i A4t

0;+ = m v Cii=Uiy — éi7t- (2)

For any list I in round ¢, Uy,
its UCBs, Crs = > c;
widths, and iy, =
means.

= > ;1 Uiyt is the sum of
C; ¢ is the sum of its posterior
el éi,t is the sum of its posterior
BayesUCB analysis: We start with decomposing the
regret by conditioning on history Hy, of all actions
and observations that define the posterior in (1). To

simplify notation, we introduce E;[-] = E[-| H] and
decompose the regret as R(n) = Y, E[E[R,| H]].
In round ¢,
B¢ [Re] = By [pr, — pr,]
<E [,LLI* - UI*,t + UIt7t - Iu’It}
=Ei[pr, —Ur ) +Ee U —pr] - (3)

The inequality holds because BayesUCB is optimistic,
meaning that Uy, ; > Uy, + conditioned on history H;.
Now we bound both terms above. Let

E, = {Vi e[L]:|0; — éi,t| < Oi,t} (4)

be the event that all confidence intervals in round ¢
hold. For the first term in (3), we have

Et [pr, —Ur 4] = Ee [pr, — fir, 4] — Ee [Cr 4]
<Ei [(pr, — . )W{E}] . (5)
The inequality follows from E; [(nr, — fir. +)1{E:}] <

E; [Cy, +]. From the union bound over all L items and
that C; ¢ is a (1 — ¢)-probability confidence interval,

B [(pr, — fur ) 1{E;}] < L6 (6)

An application of the above inequality to (5) leads to
E; [pr. — Ur, +] < Lé. An analogous line of reasoning
leads to an upper bound on the second term in (3),

Et [Ulmt - luIt] < QEt [Clt, - ﬂ]f)ﬂ{Et}]

< 2E; [le,,

¢ + Eq [(ﬂlt,t
¢+ Lo

Next we apply both derived upper bounds to (3) and
get R(n) <2E [}, , Cy, 4] + 2Lén.

The last step is an upper bound on the sum of con-
fidence interval widths C7, ;. First, note that Cy, ; is
a sum of K individual confidence interval widths of
items ¢ € I;. Then, by the Cauchy-Schwarz inequality,
we have

n L n
Y Cre<VEn > > 1{ie}C?,. (1)
t=1

=1 t=1

By Lemma 4 (Appendix A), we get that 6; — éi,t | H,
is o2-sub-Gaussian for 0% = 0.25/(c; + 8; + Ti¢ + 1),
where T} = z;i O; ¢ denotes the number of times
that item 7 is observed up to round t. As C;; is the
exact confidence interval that fails with probability &,
any other confidence interval must be at least as wide
for any fixed §. This is also true for the corresponding
sub-Gaussian interval, and thus

o < log(1/0) log(1/0)
vt= 2+ Bix+ 1) 2+ Bi+Tic+1)°

In addition, since no item is displayed more than once
per round, we have for any item 7 that

~ log(1/6) « 1
1 I} C?
tz:; {ZG t}Cz,tf 2 Sz::lai_‘_ﬁi'i_s

< o8I0

N

1+

n
a+8i)"

where the last step is by Lemma 5 (Appendix A). Now
we use the concavity of the logarithm and get

Zlog<1+ B)<Llog< Zil )
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Finally, we chain all inequalities and get the claim.

Thompson sampling analysis: The only difference
is that the inequality in (3) becomes an equality. The
reason is that the upper confidence bound is a deter-
ministic function of H;, and that I, and I; are i.i.d.
conditioned on H;. The latter is by the design of TS.

5 CASCADE MODEL

The cascade model (CM) (Richardson et al., 2007;
Craswell et al., 2008) is a popular click model that
captures item bias, in that lower ranked items are less
likely to be clicked due to higher ranked items. The
model is defined as follows.

5.1 Click Model

The user examines the first position in I; with proba-
bility 1. If position k is examined and the item at that
position is attractive, Y7, &) = 1, the user clicks on it
and does not examine any other position. If the user
does not click, they examine the next position k + 1.

A natural notion of reward in this model is a click on
the list (Kveton et al., 2015a; Zong et al., 2016; Li
et al., 2016), an indicator that at least one item in the
list is attractive. For any list I, this reward and its
expectation can be written as

K

f(Y1) =1~ H(l = Yrye)
k=1 )
pr=E[f(Yr:)]0] =1~ H(l —011)) 5
k=1

where the last equality follows from the independence
of attractions (Section 2). As in Section 4, p is max-
imized by the K most attractive items.

The main difference from Section 4 is that the user
exits upon a click. Therefore, the item attractions are
only observed up to that click. We formally define the
clicked position as S; = min{k: € [K]: Yy = 1},
where min() = K. Thus S; = K when the user does
not click on anéy item. Using this definition, we have
that O;; = > 7", 1{i = I;(k)} is the indicator of ob-
serving item ¢ in round t.

5.2 Regret Bound

We derive a regret bound for BayesUCB and TS for any
failure probability ¢. It is sublinear in n for § = 1/n.

Theorem 2. The regret of BayesUCB and TS in CM

is bounded with probability 1 — 6 as R(n) <

L

n 1
2K Lnlog(1/5), |log [ 1+ =
nlog(1/9) og<+L;ai+5i

) + 2Lén .

The above bound is the same as Theorem 1. This is
surprising, as the learning agent gets less feedback in
the CM than in the DCTR; and so we would expect a
higher regret. This does not happen since the range of
rewards also changed, from [0, K] to [0,1]. Theorem 2
also cannot significantly improve upon Theorem 1 be-
cause the CM behaves similarly to the DCTR when
the item attractions are low. In this case, for any list
I,1- HkK:1(1 —O0rky) = Zszl O1(x) and all items in I
are likely to be examined. We compare this result to
prior works in Section 8.

Theorem 2 is proved using a novel regret decomposi-
tion, which differs from prior works. In Kveton et al.
(2015a), the optimal and recommended lists in round
t are fixed given the history. Under this assumption,
there exists a deterministic regret decomposition of a
recommended list into the regret of individual items in
it (Lemma 1 therein). This cannot be done here. In
BayesUCB, the optimal list is random given history. In
TS, both the optimal and recommended lists are ran-
dom given history. This means that the regret decom-
position is random and a different approach is needed.
To address this issue, we carefully introduce an upper
bound on the probability of clicking on a list, which is
a deterministic function of the history, and propagate
it through the regret decomposition. This requires a
two-sided version of Lemma 1 in Kveton et al. (2015a),
which is Lemma 7 in Appendix A.

5.3 Proof of Theorem 2

BayesUCB analysis: To simplify notation, we define
Urt =1—Lie;(1 = Uiy). Our first step is the regret
decomposition in (3). Then we bound E; [us, — Ur, ]
and E; [Uy, , — pr,] as follows. We start with an upper

bound on
pr = U= 1[0 -0 - T -0
iel. iel.
K k—1
=> < [[a- 91*(;'))) Or. ) — UL (k),t)
k=1 \j=1
K
< (T 0-Vipa).
j=k+1

where the last equality is from the second claim in
Lemma 7 (Appendix A). Note that 1 — 60 (;) and 1 —
Ur, (j),t are in [0,1]. Moreover, when event £ in (4)
occurs, 07 ) — Ur k) < 0 for all k € [K]. Hence we
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get pur, — Ur, + < 0 on event E;. On the other hand,

as in (6), event E; occurs with probability at most Ld.
It follows that

Ei[pr, — Ur 4] = Ee [(pr, — Up, ) 1{E}] +
Et I:(/j/[* — UI*,t)]]-{Et}:I S Lé.

We continue with an upper bound on

Urt — pr, = H(l —0;) — H(l —Uit)

i€l i€l
K k—1
= Z ( H(l - eft(j))) (Uft(k)’t - HIt(k))
k=1 \j=1
K
x < IT a- UIt(j),t)) ;
j=k+1

where the last equality follows from the first claim in
Lemma 7 (Appendix A). We note again that 1 — 67, ;
and 1 — Uy, ;) are in [0, 1]. Moreover, when event £,
occurs, we have that Uy, xy,; — 01,x) < 2C1,(x),c holds
for all k£ € [K]. Finally, note that H;:ll(l —01,¢j)) is
the probability that item I;(k), at position k in Iy, is
examined. Let Oy, ) be an indicator of this event,
as defined in Section 5. Then, based on these facts, we
have on event F; that

Ey [(Ur,e — pr, ) I{E}] < 2E,

K
Z OIt(k),tCIt(k),t‘| .
k=1

Since event E; occurs with probability at most L6, it
follows that

E¢[Un,e — pr,] = Ee [(Ur,,e — pr, )I{Ee}] +
E, [(Ult,t - /th)]l{Et}]

K
Z Or1,6),tCr, (k) t
=1

< 9F, + L.

Now we apply the above bounds to (3) and get R(n) <
2E [Z?:l 22{21 Olt(k),tC]t(k)yt} +2Lén. The last step
is an upper bound on the sum of confidence interval
widths Cp, (k). This part of the proof is identical to
Theorem 1. This is because all items could have been
examined and contribute to the regret, proportionally
to their confidence interval widths.

Thompson sampling analysis: This is an adapta-
tion of the UCB bound, where one inequality is re-
placed with an equality, as in Section 4.3.

6 DEPENDENT CLICK MODEL

The dependent click model (DCM) (Guo et al., 2009Db)
is a cascade-like model that also captures position bias,

in that lower ranked items are less likely to be satis-
factory. The model has K additional parameters, one
satisfaction probability vy for each position k. We let
v = (vr)K_,. In round ¢, the satisfaction of each posi-
tion k is drawn i.i.d. as Vi, ~ Ber(vy), independently
of all other attractions and satisfactions in any round.
The model is defined as follows.

6.1 Click Model

The user examines the first position in I; with proba-
bility 1. If position k is examined and the item at that
position is attractive, Y7,(x),s = 1, the user clicks on it.
Upon the click, the user is satisfied when Vj, ; = 1 and
stops examining the remaining items. If the user does
not click or is not satisfied, they examine the next posi-
tion £+ 1. Because of this, the DCM permits multiple
clicks.

A natural reward in this model is satisfaction with the
list (Katariya et al., 2016), that the user leaves sat-
isfied upon a click. Note that this is unobserved, as
we do not know whether the last click is satisfactory.
Nonetheless, for any list I, this reward and its expec-
tation can be written as

K
f(Yr) =1~ H(l — Vit Y1) 5
k=1
K
pr=E[f(Y7:)|0,0] =1~ H(l — b))
k=1

where the last equality follows from the independence
of Y; ; and Vi ;. Asin Section 5, p17 is maximized by the
K most attractive items (Katariya et al., 2016), when
v1 > -+ > vg. Thus the satisfaction probabilities do
not have to be known to identify the optimal list I..

The main difference from Section 5 is that the user
exits upon a satisfactory click. Although we do not
know whether a click is satisfactory, we know that the
user does not click after leaving satisfied. Therefore,
the item attractions are guaranteed to be observed up
to the last clicked position, which we denote by S;. As
in Section 5, we set S; = K when the user does not
click on any item. Using this definition, we have that
O = th:l 1{i = I;(k)} is the indicator of observing
item 4 in round ¢.

6.2 Regret Bound

Our regret bound for BayesUCB and TS, which is sub-
linear in n for 6 = 1/n, is presented below.

Corollary 3. Let

B o logn
Ouep = max { s T m}ie[L] <!
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Figure 1: Comparison of BayesUCB and TS

and Nues = (1—0ycp) X1, Then the regret of BayesUCB
and TS in DCM is bounded with probability 1 — 9 as

K

R(n) < Tjgoy [Z(Uk — vk41)V/2kLnlog(1/6) x

k=1
log (1 +

Proof. The bound is based on the reduction in Theo-
rem 2 of Katariya et al. (2016), which says the follow-
ing. Let 1 >wv; > -+ > vgy1 = 0 and Ri(n) be the
regret of any bandit algorithm in the CM on a list of
length k. Then R(n) < = Y0 (vp — vgs1)Ri(n),
where 7 = (1 — O1ax) X1 and Opax = max;e(z) 0;. In
our case, 0.y is random because 6 is. Therefore, we
replace it with a high-probability upper bound, which
holds with probability L/n. The bound follows from
the sub-Gaussianity of prior Py, which is a product of
betas (Lemma 4 in Appendix A). O

+ L.

&~ S

R |
> 1 2Lon
i+ B

Compared to Theorem 2, the bound depends on dif-
ferences of the consecutive satisfaction probabilities.
The maximum is attained at v1 = --- = vxg = 1 and
vig+1 = 0. In this case, the bound reduces to that in
Theorem 2, up to the factor n;k. In all other cases,
the bound is lower and indicates that these cases are
easier. The extra factor of 7 ., is not expected to be
large. The reason is that 0y tends to be small, since
click probabilities tend to be low.

7 EXPERIMENTS

We conduct both synthetic and more realistic exper-
iments, where the priors are generated using offline-
trained models and might not exactly match the click
distribution. Our code is included in the supplemen-
tary material, and information about computational
resources is provided in Appendix C.

to four baselines in three click models.

7.1 Synthetic Experiments

In the synthetic experiments, we generate problem in-
stances by sampling them from a prior. The attraction
probability of item i is sampled as 6; ~ Beta(a;, ;)
and its realization in round ¢ is Y;; ~ Ber(6;). The
clicks are simulated based on Y;; and click models in
Sections 4 to 6. The algorithms know the prior but
not ;. Such knowledge gives any algorithm that uses
it an advantage. This raises a natural question of prior
misspecification, which we investigate as well.

We compare BayesUCB and TS (Algorithms 1 and 2)
to two types of baselines. The first type are state-of-
the-art adaptive algorithms that do not use the prior:
TopRank (Lattimore et al., 2018); and CascadeUCB1
and CascadeKL-UCB (Kveton et al., 2015a). The sec-
ond type is a non-adaptive baseline where the items
are ranked according to their maximum-a-posteriori
attraction probabilities estimated from the same prior
as in BayesUCB and TS. We call it Greedy.

The number of items is L = 30 and K = 3. We set
B; = 10 and sample «; from [10] uniformly at random,
for all items 4. This generates mean attraction prob-
abilities between 0.09 and 0.5. So no item is overly
attractive. We sample (a;)X, for 20 times, and for
each we sample the attraction probability of items as
0; ~ Beta(ay, 5;) for 20 times. This yields 400 bandit
instances. Each click model and algorithm are simu-
lated on these instances for n = 2000 rounds. In the
DCM, we set v1 = --- = vg = 0.5. Figure 1 shows the
n-round regret for all algorithms and click models. We
observe that BayesUCB and TS perform similarly, and
significantly outperform the baselines.

7.2 Effect of the Prior

To study how the prior affects regret, we vary it from
less informative to more informative. Specifically, we
vary v € {10, 20,50, 100, 200, 500, 1000}, and then set
a; = v and B; = 10y for all items 4. Small values
(v = 10) correspond to a wide and uninformative prior,
while large values (7 = 1000) correspond to a narrow
and informative prior. We sample 6; ~ Beta(w;, 5;)
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Figure 2: Actual regret and its up-
per bound (Theorem 2) for varying
prior width in the cascade model.

for 100 times, and run BayesUCB and TS for n = 500,
L = 30, and K = 3 in the cascade model. Figure 2
shows the n-round regret at n = 500 as a function of
~v. We also report the regret bound from Theorem 2.
We observe that the regret decreases as the prior be-
comes more informative. Our bound is fairly tight,
within a factor of 10, and nicely matches the decrease
in the regret. Additional results with varying attrac-
tion probabilities are presented in Appendix B.

7.3 Prior Misspecification

Now we study prior misspecification. The true prior is
Beta(1,10) but the prior in TS is Beta(l + ¢,10 — ¢),
with ¢ € [0,9]. Therefore, when ¢ > 0, the prior in TS
is misspecified. We use the same experimental setting
as in Section 7.2, except that n = 3000. In Figure 3,
we show the n-round regret of TS for various levels of
misspecification ¢ € {0,4,9}. Although the regret in-
creases with ¢, it is well behaved and flattens even for
large c. For reference, we also show CascadeUCB1 and
CascadeKL-UCB. We observe that CascadeKL-UCB out-
performs TS only when the prior is significantly mis-
specified (¢ = 9), while CascadeUCB1 is not competi-
tive. Results for BayesUCB are similar and we do not
report them.

7.4 Real-World Experiment

We experiment with the Microsoft Learning to Rank
Web30K dataset! (Qin and Liu, 2013), which contains
18,919 training and 6,306 test queries, with an aver-
age of L = 120 documents per query. To generate our
priors, we train m = 10 LTR models, which output
m scores for each query-document pair. Each model
is trained on 90% of randomly sampled training data
without replacement. We use a state-of-the-art LTR
model (Qin et al., 2021) based on neural networks,
which outperforms gradient-boosted decision trees on
large-scale LTR benchmarks. To guarantee that the

Mttps://www.microsoft.com/en-us/research/
project/mslr/

Figure 3: Regret of TS with various
prior misspecifications c.

2000 3000 [} 1000 2000 3000

Round n

4000 5000

Figure 4: Comparison of BayesUCB
and TS to four baselines in the real-
world experiment.

scores are in [0, 1] both during training and inference,
we employ the sigmoid cross-entropy loss (Pasumarthi
et al., 2019). For training, the ground-truth relevance
scores [0, 1,2, 3,4] are mapped to [0,0.25,0.5,0.75, 1].
For each query-document pair in the test set, we gen-
erate m scores si,..., S, and compute the beta prior
as Beta (30" si, > (1 —s;)). This prior uses each
score as a soft vote for the attractiveness of an item,
and it is used by both BayesUCB and TS.

To simulate clicks in evaluation, we map the ground-
truth relevance scores [0, 1,2, 3,4] to attraction prob-
abilities [0,0.2,0.4,0.8,1] according to “perfect map-
ping” (Table 2 in Hofmann et al. (2013)). This map-
ping differs from the one used in training, and rep-
resents a typical mismatch between offline labels and
the ground truth. This is how we introduce prior mis-
specification in this experiment. During evaluation,
for each of 6,306 test queries, we simulate each algo-
rithm for n = 5000 rounds with K = 10, and repeat
this 50 times. This results in more than 300k bandit
instances in this experiment. Figure 4 shows the n-
round regret of all algorithms. The results are similar
to Figure 1, showing that our prior-based algorithms
significantly outperform the baselines. We also evalu-
ate algorithm Ensemble, which ranks items according
to their predicted scores s = Z:Zl s;. This baseline
represents non-adaptive algorithms, which rely solely
on offline-trained models and are common in practice.
As expected, Ensemble incurs linear regret.

8 RELATED WORK

This section reviews related work. To reduce clutter,
all related regret bounds are summarized in Table 1.

The document-based click model (Section 4) was pro-
posed by Craswell et al. (2008). An online learning
variant of this model is known as a semi-bandit (Gai
et al., 2012; Chen et al., 2013; Kveton et al., 2014,
2015b). Kveton et al. (2015b) analyzed a UCB algo-
rithm for semi-bandits. Their gap-free regret bound
has a similar form to Theorem 1 but does not depend
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Model | Prior work

Gap-dependent bound

Gap-free bound

DCTR | Kveton et al. (2015Db)
Russo and Van Roy (2016)
Wen et al. (2015)

CM Kveton et al. (2015a)
Cheung et al. (2019)

Katariya et al. (2016)

DCM

O(KLA tlogn)

O((L — K)A~'logn)

O((L — K)A~'logn)

O(v/KLnlogn)
O(/(L/K)log(L/K))

O(K+/dmin {log L,d}n)
O(vKTnTogn)
o(
(

vVKLnlogn + Llog5/2 n)
O(vKLnlogn)

Table 1: Related regret bounds from prior works. The gap-free bounds of Kveton et al. (2015a) and Katariya

et al. (2016) are obtained by trivial reductions.

on prior. Russo and Van Roy (2016) proved a general
prior-dependent Bayes regret bound, but did not in-
stantiate it. Wen et al. (2015) proved a Bayes regret
bound for contextual semi-bandits with d features. In
our case, d = L. This bound does not show that the
prior is beneficial, because it requires the prior width
to be as large as reward noise. Zuo et al. (2020) also
derived a prior-independent Bayes regret bound. To
the best of our knowledge, Theorem 1 in this work is
the first prior-dependent Bayes regret bound for semi-
bandits where the effect of the prior width is clearly
stated.

The cascade model of user behavior (Section 5) was
introduced by Richardson et al. (2007) and Craswell
et al. (2008). The first work on OLTR in this model
was Kveton et al. (2015a). They proposed UCBs al-
gorithm and analyzed them. Their gap-free bound is
similar to Theorem 2 but does not depend on prior.
Thompson sampling in the cascade model was pro-
posed by Zong et al. (2016) and Cheung et al. (2019)
proved a gap-free bound for it. The bound is frequen-
tist and has a huge constant of 4,/me®%%* (Lemma 4.3
and the last equation in Section 4 therein). In con-
trast, our bound is Bayesian, reflects prior, and does
not contain any huge constants. We are the first to
derive a Bayes regret bound for this problem class.
The dependent click model (Section 6) was proposed
by Guo et al. (2009b) and Katariya et al. (2016) used
it in OLTR. Their gap-free bound is similar to Corol-
lary 3 but does not depend on prior. This work is the
first application of Thompson sampling to the DCM,
including analyzing it.

Numerous click models exist (Agichtein et al., 2006;
Richardson et al., 2007; Craswell et al., 2008; Guo
et al., 2009a,b; Chapelle and Zhang, 2009; Chuklin
et al., 2015). General OLTR algorithms with guaran-
tees in multiple click models also exist, such as Zoghi
et al. (2016) and Lattimore et al. (2018). The state of
the art is TopRank (Lattimore et al., 2018) and it has a
gap-free bound of O(y/K3Lnlogn). This bound does
not depend on prior and is worse than our bounds by
a factor of O(K).

9 CONCLUSIONS

While online learning to rank has been studied exten-
sively, most proposed algorithms cannot take prior in-
formation on the utility of ranked items into account.
Even if they do, such as in Thompson sampling, that
information is not reflected in their regret bounds. We
make significant progress on this topic. First, we pro-
pose a new prior-dependent algorithm for OLTR based
on BayesUCB (Kaufmann et al., 2012). Second, we an-
alyze BayesUCB and Thompson sampling in three click
models, and derive their prior-dependent Bayes regret
bounds. These bounds show that the regret decreases
as the prior narrows and we validate them empirically.
These are the first such bounds for OLTR. Finally, we
show how BayesUCB and Thompson sampling can be
used with a state-of-the-art offline ranker, and evalu-
ate them in simulation on thousands of queries.

Many concepts presented here are general and can be
extended to context (Zong et al., 2016; Li et al., 2016),
diversity (Hiranandani et al., 2019), and other models
of user interaction, such as the position-based model
(Craswell et al., 2008). We leave this for future work.
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A TECHNICAL LEMMAS

All technical lemmas and omitted proofs are presented below.
Lemma 4. Let X ~ Beta(a,3). Then X —E[X] is 0%-sub-Gaussian with variance proxy
2 _ 1 _
4a+B+1)

Proof. This claim is proved in Theorem 1 of Marchal and Arbel (2017). O

Lemma 5. For any integer n and a > 0,

n

1
—— <log(1 .
> g Slostt+n/a
Proof. Since 1/(i + a) decreases in 4, the sum can be bounded using integration as
i 1
t+a

i=1

n+a
S/ ;dleog(n—&—a)—logazlog(1+n/a).

r=a

O
Lemma 6. For any integer n and a > 0,
S|
- <2(vn+a—+a).
2 Jita (v )
Proof. Since 1/+/i + a decreases in ¢, the sum can be bounded using integration as
i 1 /n+a 1 d 2( - \f)
—dz=2(vn+a—+a).
— Vita v—a VT
O

Lemma 7. Let (a;)X, € [0,1]X and (b;)5, € [0,1]¥. Then

K K K i—1 K
Hai—Hbi—Z Ha] —b H bj :Z Hb] (ai—bi) H a;
i=1 i=1 i=1 \j=1 j=i+1 i=1 \j=1 j=i+1

Proof. The first claim follows from

K K K K K K K K K
Hai _Hbi = Hai _all—[bi +G1Hb¢ _Hbi = (Hai _Hbi) + (a1 —b1)Hb¢
i=1 i=1 i=1 i=2 i=2 i=1 ; i »
K (i1 K

H a; (ai — bl) H bj s

1 \j=1 j=i+1

i
where the last step is from a recursive application of the same argument to (HZKZQ a; — HZKZQ bi).

The second claim is an alternative derivation based on

K K K K K K K K K
Hai —Hbi = Hai —blnai —‘y—blHCI,i —Hbi = bl (Hai —Hbi> —|—(a1 _bl)Hai
i=1 i=1 =1 =2 =2 i=1 =2 =2 =2

K i—1 K
= [T6;) @i—v{ IT o] -
=1 Jj=1 Jj=i+1

where the last step is from a recursive application of the same argument to (Hf; a; — Hfiz bi). This concludes
the proof. O
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Figure 5: Actual regret and its upper bound as a function of increasing attraction probabilities.

B ADDITIONAL EXPERIMENTS

We include additional results on the effect of the prior, where we vary attraction probabilities. In Figure 5, we
show the regret of TS and BayesUCB together with our regret bound, in both the DCTR and CM. The attraction
probabilities are sampled as 6; ~ Beta(a;, 5;), where o; = 1+ and 8; = 10 — v. We experiment with v € [0, 9],
where higher 7 correspond to problems with higher attraction probabilities. All other parameters are set as in
Section 7.2. We observe that our regret bound is pretty tight in the DCTR for all v. The bound becomes looser
in the CM when -~y increases, indicating that the regret bound in Theorem 2 can be improved.

C COMPUTATIONAL RESOURCES

The real-world experiment used 200 hours of NVIDIA P100 GPUs for training the offline models and generating
the scores for test queries. The bandit algorithm evaluation on test queries took approximately 36k CPU hours.
About 97% of that time was spent on evaluating CascadeKL-UCB, which was very slow.

The synthetic experiments took a few minutes on a single CPU.



