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Abstract

Modern machine learning demands a large
amount of training data. Weak supervi-
sion is a promising approach to meet this
demand. It aggregates multiple labeling
functions (LFs)—noisy, user-provided label-
ing heuristics—to rapidly and cheaply curate
probabilistic labels for large-scale unlabeled
data. However, standard assumptions in weak
supervision—such as user-specified class bal-
ance, similar accuracy of an LF in classifying
different classes, and full knowledge of LF de-
pendency at inference time—might be undesir-
able in practice. In response, we present Fire-
bolt, a new weak supervision framework that
seeks to operate under weaker assumptions.
In particular, Firebolt learns the class balance
and class-specific accuracy of LFs jointly from
unlabeled data. It carries out inference in
an efficient and interpretable manner. We
analyze the parameter estimation error of
Firebolt and characterize its impact on down-
stream model performance. Furthermore, we
show that on five publicly available datasets,
Firebolt outperforms a state-of-the-art weak
supervision method by up to 5.8 points in
AUC. We also provide a case study in the
production setting of a tech company, where
a Firebolt-supervised model outperforms the
existing weakly-supervised production model
by 1.3 points in AUC and speeds up label
model training and inference from one hour
to three minutes.
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1 INTRODUCTION

In recent years, weak supervision has emerged as a
promising approach to generate training labels for un-
labeled data that feeds the training of data-hungry
modern machine learning systems (Ratner et al., 2016,
2017; Arachie and Huang, 2019, 2020; Mazzetto et al.,
2021b). In contrast to manual labeling, weak supervi-
sion relies on labeling functions (LFs)—user-provided
labeling sources such as heuristic rules, crowdsourced
labels, knowledge bases, among others—that can be
combined in a weighted majority vote fashion to quickly
and cheaply infer probabilistic training labels at large
scale (Austen-Smith and Banks, 1996). As a result,
weak supervision has been successfully deployed to
power numerous real-world machine learning appli-
cations, from production at tech companies such as
Google (Bach et al., 2019; Suri et al., 2020) and Apple
(Ré et al., 2019), to fighting human trafficking (Ratner
et al., 2017), and to identifying individuals with heart
malformations (Fries et al., 2019).

Inferring training labels from unlabeled data via weak
supervision can be challenging because of the lack of
ground truth labels and due to complex behaviors
among labeling functions. Without observing any
ground truth labels, it is difficult to provide even a
simple description such as the class balance of the data,
let alone inferring labels for specific data points. While
LFs partially label the data, they typically label dif-
ferent number of classes, produce labels of different
quality, and may be dependent on or contradictory
with each other. Modeling these complex behaviors
among LFs is also difficult.

While weak supervision algorithms (Ratner et al., 2019;
Fu et al., 2020; Chen et al., 2021) have made significant
progress in tackling these aforementioned challenges, we
observe that existing solutions may still operate under
assumptions that can be difficult to meet in practice. To
begin with, a weak supervision algorithm may assume
that class balance of the data is user-provided, which
can be a challenging burden for the users especially
in imbalanced classification problems. Furthermore,
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a weak supervision algorithm often assumes that a
labeling function has similar accuracy in classifying ex-
amples from different classes, which is unlikely to hold
given that LFs in practice do not even necessarily label
the same number of classes. Finally, weak supervision
algorithms also typically assume the full knowledge of
dependencies among LFs to infer probabilistic labels,
which could lead to exponential time complexity during
inference and a lack of interpretability.

To relieve these potentially stringent assumptions, we
propose Firebolt, a new weak supervision framework
that operates under weaker assumptions. Firstly, Fire-
bolt does not require the full specification of class
balance. Upon knowing if the problem is imbalanced
or not, Firebolt can jointly learn the class balance and
the quality of the labeling functions directly from data.
Secondly, Firebolt specifically models LFs that label
different numbers of classes and is capable of learning
class-specific accuracy for each LF. Finally, at inference
time Firebolt does not require a full knowledge of de-
pendencies among LFs. Instead, inference is achieved
efficiently by solving a logistic regression problem with
polynomial time complexity. It derives the contribution
of each LF to the probabilistic label for interpretability.

The major contributions of this paper are summarized
as follows:

• We present Firebolt, a new weak supervision algo-
rithm that directly learns the class balance from data,
models complex behaviors of labeling functions, and
produces probabilistic labels in an efficient, inter-
pretable manner at inference time.

• We analyze the parameter estimation error of Fire-
bolt. Importantly, we characterize how this error can
be influenced by dependency misspecification among
LFs, and how this error influences downstream model
performance.

• Firebolt outperforms existing weak supervision meth-
ods in a variety of settings. On five benchmark
datasets, Firebolt outperforms a state-of-the-art
weak supervision framework (Fu et al., 2020) by
up to 5.8 points in AUC; in a real-world production
setting of a tech company, the Firebolt-supervised
model outperforms the existing weakly-supervised
model by 1.3 points in AUC.

In the appendix, we discuss related work and present
extended methodological, theoretical, and empirical
results.

2 BACKGROUND

We provide an overview of the weak supervision work-
flow. We then describe different types of labeling func-
tions and their representation. For the ease of expo-
sition and for its high practical relevance, we focus
our discussion on binary classification problems (see
extension in Appendix B.9).

2.1 Weak Supervision in a Nutshell

Weak supervision quickly and cheaply produces massive
amount of training labels for unlabeled data. A typical
weak supervision workflow has three steps (Figure 1).
First, users create labeling functions that programmati-
cally produce noisy and incomplete labels of the dataset.
For each data point, each LF can vote (label) positive
(+1), vote negative (-1), or abstain (0) if it does not
have enough information. These LFs can come from a
variety of sources, such as heuristics rules (Safranchik
et al., 2020), crowdsourcing (Karger et al., 2011), up-
stream classifiers (Bach et al., 2019), knowledge bases
(Mintz et al., 2009). Secondly, a label model takes the
votes from LFs as input and learns the accuracy and
dependency among LFs, without observing the ground
truth label. It then uses this learned information to
produce probabilistic labels for unlabeled data. Finally,
these probabilistic labels are used to train a supervised
end model along with the associated data points.

2.2 Labeling Functions (LFs)

A key component of weak supervision is the abstraction
provided by labeling functions: although we may have
many labeling sources, weak supervision views them
as black boxes producing noisy labels. We describe
different types of LFs and how to represent them.

Types of LFs There are three common types of
labeling functions for a binary classification problem.
In reality, practitioners write a mix of these three types
of LFs: Unipolar LFs: these include positive LFs and
negative LFs. Unipolar LFs can take two actions: given
a data point, positive (negative) LFs can either vote
positive (negative) or abstain; Bipolar LFs : in contrast
to unipolar LFs, a bipolar LF can take three actions on
a data point: votes positive, votes negative, or abstains.
Furthermore, when a bipolar LF abstains, it is assumed
to provide no class information about the data point
in question; Binary LFs: a binary LF can either vote
positive or negative, it does not abstain.

LF Representation We describe a unified represen-
tation of these three types of LFs by mapping unipolar
LFs and bipolar LFs to binary LFs. In detail, a bipo-
lar LF can be mapped to a pair of positive LF and a
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Figure 1: A weak supervision workflow: user-provided labeling functions are aggregated to produce probabilistic
labels by a label model. These probabilistic labels are then used to train an end model.

negative LF. For the positive LF in this pair, it votes
positive whenever the bipolar LF votes positive and
abstains otherwise. For the negative LF in this pair, it
votes negative whenever the bipolar LF votes negative
and abstains otherwise. Furthermore, a positive LF
can be converted to a binary LF by voting positive on
the examples it labels and negative on the examples it
abstains. Similarly, a negative LF can be converted to
a binary LF by changing its abstention votes to positive
votes. An important property preserved by this LF
representation is the relationship of an LF to random
guessing :

Definition 1. Let y ∈ {−1, 1} be the unob-
served ground truth label. We say that a posi-
tive/bipolar/binary LF λ? is better than random guess-
ing if P(y = 1 | λ? = 1) > P(y = 1); and a
negative LF λ− is better than random guessing if
P(y = −1 | λ− = −1) > P(y = −1).

Given that we can represent both unipolar and bipolar
LFs as binary LFs while preserving their relationships
with random guessing, we will focus on weak supervi-
sion with binary LFs as input without loss of generality.
We provide further discussion on random guessing,
abstention, and LF representation in Appendix B.1–
Appendix B.3.

3 WEAK SUPERVISION WITH
FIREBOLT

We present the Firebolt algorithm for weak supervi-
sion. We first discuss the label model of Firebolt in
Section 3.1. We then present the learning algorithm of
the label model in Section 3.2 (Algorithm 1). With the
learned label model, we show how Firebolt estimates
probabilistic labels for unlabeled data in Section 3.3
(Algorithm 2). Finally, we discuss the implication and
extension of Firebolt in Section 3.4.

3.1 Label Model

The label model in Firebolt treats the ground truth
label y as a latent variable and uses LF votes to infer its
value. It does so by learning an Ising model (Ravikumar
et al., 2010) that characterizes the joint distribution

between LFs and y. In what follows, we formulate
this problem and provide necessary background on
Ising models. We then describe a property crucial to
Firebolt discovered by Jaffe et al. (2015) among triplets
of conditionally independent LFs encoded by the Ising
model. Finally, we discuss our assumptions.

Problem Formulation Formally, we consider a
binary classification problem where the unobserved
ground truth label is y ∈ {−1, 1}. Let x be the fea-
tures associated with y and let there be p binary LFs
λ =

[
λ1, λ2, · · · , λp

]>, where λ ∈ {−1, 1}p. Let there
be a dataset X =

{
x(i)
}n
i=1

with n data points. Weak
supervision seeks to learn a label model with some
parameters µ̂ for the joint distribution Pµ̂(y, λ). Af-
terwards, for a given ith data point, the label model
infers its probabilistic label as Pµ̂(y(i) = 1 | λ(i)), where
λ(i) = λ(x(i)). Once the probabilistic labels are given
across X, we use these probabilistic labels to train an
end model along with their associated features.

Ising Models The primary role a label model is to
characterize the joint distribution between y and λ. For
binary variables, a typical modeling choice is an Ising
model. In detail, let G∗ = (V ∗, E∗) be an undirected
graph with a node set V ∗ = {λ1, λ2, · · · , λp, y} and
an edge set E∗ that includes edges between each LF
and y as well as some edges between LFs. The joint
distribution between y and λmodeled by an Ising model
associated with G∗ is given as:

P(y, λ) =
1

Z
exp

(
θ∗00y+

p∑
j=1

θ∗jjλj +

p∑
j=1

θ∗0jλjy

+
∑

(λj ,λk)∈E∗
θ∗jkλjλk

)
,

(1)

where θ∗00, θ∗jj ’s, θ∗0j ’s, and θ∗jk’s can be collectively
denoted by a real vector θ∗ known as the canonical pa-
rameters. Specifically, θ∗00 influences the class balance
of y; θ∗jj ’s, also known as the external fields, influence
the class-specific accuracy of the LFs; θ∗0j ’s influence
the overall accuracy of the LFs; and finally, θ∗jk’s influ-
ence the direct dependency between two LFs as θ∗jk 6= 0
iff (λj , λk) ∈ E∗. In particular, for binary LFs repre-
senting one or more unipolar/bipolar LFs and their
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dependencies, there is an edge in G∗ between each pair
of these binary LFs.

Associated with the canonical parameters are the mean
parameters: µ∗00 = E[y] (class balance); µ∗+ = E[λ],
with (µ+)∗j = µ∗jj = E[λj ] (prevalence); µ∗0+ = E[yλ],
with (µ∗0+)j = µ∗0j = E[yλj ] (accuracy); and µ∗++ with
(µ∗++)j′ = µ∗jk = E[λjλk] (co-occurrence), where j′ =

(j − 1)p+ k − j(j+1)
2 and 1 ≤ j < k ≤ p. Collectively,

these mean parameters can be denoted by a vector
µ∗. Furthermore, to measure class-specific accuracy
of λj , we define sensitivity α+∗

j = P(λj = 1 | y = 1)

and specificity α−∗j = P(λj = −1 | y = −1). The
mean of the two is known as balanced accuracy π∗j =
1
2

(
α+∗
j + α−∗j

)
∈ [0, 1], a metric that measures the

overall quality of an LF. Indeed, λj is better than
random guessing iff π∗j > 0.5 (Appendix B.1). Finally,
we use Σ∗ = E[(λ− E[λ])(λ− E[λ])>] to represent the
(two-way) covariance matrix among pairs of LFs and we
use T ∗ = E[(λ−E[λ])⊗ (λ−E[λ])⊗ (λ−E[λ])], where
⊗ is the tensor product, to represent the (three-way)
covariance tensor among triplets of LFs.

Conditional Independence Ising models can en-
code rich conditional independence information among
variables. We say that two LFs λj and λk in G∗

are conditionally independent of each other upon y,
i.e. λj ⊥ λk | y, if P(λj , λk | y) = P(λj | y)P(λk | y).
In G∗, we can read off this conditional independence
if there is no path between λj and λk after removing
y and its associated edges. Conditional independence
between λj and λk leads to an interesting relationship
among class balance µ∗00, balanced accuracy π∗j and π∗k,
and the two-way covariance Σ∗jk discovered by Parisi
et al. (2014):

Σ∗jk = (2π∗j − 1)(2π∗k − 1)(1− µ∗200). (2)

Furthermore, conditional independence among a triplet
of LFs {λj , λk, λl} (i.e. P(λj , λk, λl | y) = P(λj |
y)P(λk | y)P(λl | y)) leads to a similar relationship
that involves the three-way covariance tensor T ∗jkl re-
ported by Jaffe et al. (2015):

T ∗jkl = −2(2π∗j −1)(2π∗k−1)(2π∗l −1)µ∗00(1−µ∗200). (3)

As we shall see in subsequent sections, (2) and (3) will
become important for the algorithmic development of
Firebolt.

Assumptions We make two assumptions on the data
distribution, one on the quality of the LFs and the
other on the class balance of the data distribution. We
assume that all the LFs are better than random guessing
(see Appendix C.2.1 for justification). Additionally, we
assume that the users know if they are dealing with an

Algorithm 1 Label Model Learning

Input: The sample covariance matrix and tensor Σ̂
and T̂ , the dependency graph Ĝ, and the sample
prevalence µ̂+.

1: Form M̂ and q̂ with Σ̂, T̂ , and Ĝ based on the
description before (5) .

2: Solve the least squares problem of (5) for t̂ with
M̂ as the design matrix and q̂ as the response.

3: Get the estimated class balance and balanced ac-
curacy parameters µ̂00 and π̂ using (6) with t̂.

4: Get the estimated sensitivity and specificity param-
eters α̂± using (7) with µ̂00 and µ̂+.

5: Get the estimated accuracy parameters µ̂0+ using
(8) with µ̂00 and α̂±.

Output: The estimated class balance and accuracy
mean parameters µ̂00 and µ̂0+.

imbalanced classification problem or not (i.e. µ∗00 = 0 or
not). If the problem is indeed imbalanced, we assume
that the users know which class is the minority class
and encode it as positive (i.e. µ∗00 < 0). We discuss the
setting where the class balance is known (e.g. balance
classification) in Appendix B.5.

3.2 Learning the Label Model

We describe parameter learning of the Firebolt label
model. From Section 3.1, we can characterize this prob-
lem as learning partially observed Ising models with
arbitrary external fields and complex dependencies,
which is known to be a challenging problem (Goldberg
and Jerrum, 2007; Goel, 2020). Indeed, existing meth-
ods in this vein make restrictive assumptions on the
external fields (Parisi et al., 2014; Kuang et al., 2020;
Fu et al., 2020) and dependencies (Jaffe et al., 2015;
Bach et al., 2019; Boecking et al., 2020) as mitigation.
In contrast, Firebolt tackles this problem in a weak
supervision setting without these assumptions. The
reward is that Firebolt can directly learn from data
the class balance and class-specific accuracy among
LFs with complex dependency, which is not possible
for many existing weak supervision methods.

The goal of parameter estimation is to infer the class
balance of the data µ̂00 and the accuracy of the LFs µ̂0+,
without having access to labeled data (Algorithm 1).
Firebolt achieves this goal in three steps. First, Firebolt
provides joint estimates of the balanced accuracy π̂ and
class balance µ̂00 from the covariance (Σ̂ and T̂ ) and
the user-provided (Bach et al., 2017; Varma et al.,
2019; Fu et al., 2020) dependency graph Ĝ. It does
so by solving a least squares problem associated with
these quantities. Second, Firebolt provides estimated
sensitivity and specificity α̂± analytically from π̂, µ̂00,
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and the prevalence µ̂+. Finally, Firebolt derives the
estimated accuracy µ̂0+ from α̂± and µ̂00. Below we
detail each of the three steps.

Learning Balanced Accuracy and Class Balance
For an imbalanced classification problem, Firebolt takes
Σ̂, T̂ , and Ĝ as input and produces µ̂00 and π̂ as output
(Line 1–Line 3 of Algorithm 1).

Example 1. Given a conditionally independent triplet
(λj , λk, λl), we can use (2) and (3) to infer their bal-
anced accuracy. In detail, let t∗0 = log

2|µ∗00|
σ∗00

, where σ∗00
is the standard deviation of y and hence σ∗200 = Σ∗00 =
1− µ2

00. Let t∗j = log(2π∗j − 1) + log σ∗00 and define t∗k
and t∗l similarly to t∗j . From (2) and (3), we can derive
a linear system of equations:

1 1 1 1
0 1 1 0
0 0 1 1
0 1 0 1



t∗0
t∗j
t∗k
t∗l

 =


log T ∗jkl
log Σ∗jk
log Σ∗kl
log Σ∗jl

 , (4)

where we have used µ∗00 < 0 for an imbalanced classi-
fication problem, and π∗j , π∗k, π

∗
l > 0.5, Σ∗jk, Σ∗jl, Σ∗kl,

and T ∗jkl > 0 because the LFs are better than random
guessing. Since the binary matrix in (4) is full-rank,
we can solve (4) uniquely for the parameters t∗0, t∗j , t∗k,
and t∗l and further recover the balanced accuracy and
positive rate from these parameters analytically.

In practice, by enumerating all the conditionally in-
dependent pairs and triplets in Ĝ, one can solve a
linear system of equations similar to (4) that is asso-
ciated with the balanced accuracy of all the LFs as
well as the class balance of the data: M̂t = q̂. Here,
t =

[
t0 t1 t2 · · · tp

]>, q̂ is a vector that stacks up
the logarithm of the positive entries of the two-way and
three-way sample covariance associated with each con-
ditionally independent pair and triplet, and M̂ is the
associated design matrix (Line 1 of Algorithm 1). Note
that we use the sample covariance matrix Σ̂ and tensor
T̂ since in reality, we do not have access to the ground
truth Σ∗ and T ∗. We also solve the system of linear
equations thorough least squares, yielding (Line 2 of
Algorithm 1):

t̂ = arg min
t

1

2
‖q̂ − M̂t‖22. (5)

Once t̂ is estimated, we can estimate the class balance
of the data and the balanced accuracy of the LFs (Line 3
of Algorithm 1). In particular, for j ∈ {1, 2, · · · , p}:

µ̂00 =
− exp

(
t̂0
)√

4 + exp
(
2t̂0
) π̂j =

1

2

(
exp(t̂j)√
1− µ̂2

00

+ 1

)
.

(6)

Algorithm 2 Inference
Input: estimated class balance and accuracy µ̂00 and

µ̂0+ and LF votes L =
{
λ(i)
}n
i=1

.
1: Solve for the estimated canonical parameters θ̂0·

using (10) with µ̂00, µ̂0+, and L.
2: for i ∈ [n] do
3: ỹ(i) ← P(y = 1 | λ(i); θ̂00, θ̂0+) using (9). .

Produce probabilistic label for each data point.
4: end for
Output: Probabilistic labels

{
ỹ(i)
}n
i=1

.

Learning Sensitivity and Specificity In this step
(Line 4 of Algorithm 1), Firebolt takes µ̂00, µ̂+, and
π̂ as input and produces α̂± as output. In particular,
given a labeling function λj , Firebolt calculates α̂±j
analytically from the input as follows:

α̂±j =
1

2
(2π̂j ± µ̂00 ∓ 2π̂j µ̂00 ± µ̂jj) . (7)

Equation (7) is a direct consequence of the probability
equalities: P(λj = 1 | y = 1)P(y = 1) + P(λj = 1 |
y = −1)P(y = −1) = P(λj = 1), 1

2P(λj = 1 | y =
1) + 1

2P(λj = −1 | y = −1) = πj , and P(λj = 1 | y =
−1) + P(λj = −1 | y = −1) = 1.

Learning Accuracy Once the sensitivity and speci-
ficity of the labeling functions are known, calculating
the mean accuracy parameter is straightforward (Line 5
of Algorithm 1). Indeed, given α̂+

j , α̂
−
j , and µ̂00, µ̂0j

can be calculated as:

µ̂0j =
1

2
(1+ µ̂00)(2α̂+

j −1)+
1

2
(1− µ̂00)(2α̂−j −1). (8)

(8) is a direct consequence of the probability equality:
P(y = λj) = P(λj = 1 | y = 1)P(y = 1) + P(λj = −1 |
y = −1)P(y = −1).

To sum up, upon the completion of parameter estima-
tion, we have a full knowledge of the quality of all LFs
in terms of their estimated sensitivity, specificity, and
accuracy. Furthermore, we also have an estimated class
balance of the dataset. These estimates will turn out
to be useful to infer probabilistic labels for unlabeled
data points.

3.3 Inference

In the inference step (Algorithm 2), Firebolt seeks to
produce probabilistic labels for unlabeled data points,
P(y = 1 | λ), using LF votes and the estimated mean
parameters the LF votes produced in the label model
learning step. Unlike many existing weak supervision al-
gorithms (Ratner et al., 2019; Fu et al., 2020), inference



Firebolt: Weak Supervision Under Weaker Assumptions

of Firebolt does not require Ĝ as an input1. Instead,
Firebolt computes θ̂00 and θ̂0+ =

[
θ̂01 θ̂02 · · · θ̂0p

]>
from µ̂00, µ̂0+, and the associated LF votes (Line 1
in Algorithm 2). It then uses θ̂00 and θ̂0+ to produce
probabilistic labels as follows (Line 3 in Algorithm 2):

P(y = 1 | λ; θ̂00, θ̂0+) = sigmoid
(

2θ̂00 + 2θ̂>0+λ
)
, (9)

where sigmoid(t) = 1
1+exp(−t) . We use (9) to produce

probabilistic labels because for the Ising model in (1),
the conditional probability of y upon λ is given by
P(y = 1 | λ; θ∗00, θ

∗
0+) = sigmoid

(
2θ∗00 + 2θ∗>0+λ

)
.

To compute θ̂00 and θ̂0+ from µ̂00 and µ̂0+, Firebolt
solves the following logistic regression problem:

θ̂00, θ̂0+ = arg min
θ00,θ0+

−θ00µ̂00 − θ>0+µ̂0+ +
1

n

n∑
i=1

log
[
exp(θ00 + θ>0+λ

(i)) + exp(−θ00 − θ>0+λ(i))
]
.

(10)

There are several benefits solving (10). First, (10) can
be solved even though we do not directly observe y,
nor do we need direct access to Ĝ. This is because
(10) only takes µ̂00, µ̂0+, and λ(i)’s as input, and these
quantities can either be directly observed or have been
learned during parameter estimation. Second, (10) can
be solved efficiently, as it is a logistic regression problem
that only involves n data points and p+ 1 parameters.
In addition, since θ̂0+ are the regression coefficients
of logistic regression, they can be interpreted as the
contribution of each individual LF to the prediction
associated with the probabilistic labels, providing a way
to better understand the importance of each LF. In
Appendix B.7, we detail the derivation of the inference
procedure. Furthermore, we showcase how to carry
out efficient exact inference in closed form with graph
structures commonly arise in weak supervision.

3.4 Implication and Extension

Other than binary classification, Firebolt has implica-
tions and extensions on a variety of topics of practical
interests. These include understanding behaviors of
different types of LFs (Appendix B.1-Appendix B.3),
how to write LFs of good quality (Appendix B.4), al-
ternative formulations of Firebolt(Appendix B.5 and
Appendix B.6), failure mode of naive weak supervision
methods for imbalanced classification (Appendix B.8),
positive-only classification, and multi-class classifica-
tion (Appendix B.9), among others.

1Note that similar to many existing weak supervision
algorithms, Ĝ is still required by Firebolt in the label model
learning step.

4 THEORY

In this section, we present theoretical analysis of the
parameter estimation error of the Firebolt label model.
Next, we further analyze how downstream general-
ization performance of weak supervision based on a
noise-aware loss might be impacted by the error in
label model parameter estimation.

Label Model Parameter Estimation Error We
present a simplified version of our theorem to charac-
terize label model parameter estimation error, under
the assumptions made in Section 3.1 and assuming
also Ĝ = G∗. In Appendix C.2, we provide a careful
analysis on how misspecified dependencies in Ĝ may
influence the parameter estimation error.

Theorem 1. Under the assumptions made in Sec-
tion 3.1, the expected mean parameter estimation error
of Firebolt learned from n unlabeled data points, p label-
ing functions, and G∗ for an imbalanced classification
problem can be upper bounded by:

E[‖µ̂− µ∗‖2] = O
(

1

ω2
min

(σ−1min(M∗) + 1)
p5√
n

)
,

where n > n0 for some n0 such that all the entries in
sign(Σ̂) = sign(Σ∗) and sign(T̂ ) = sign(T ∗), ωmin > 0
is a lower bound on the smallest positive entries of
Σ∗, T ∗, and Σ∗00, and σ

−1
min(M∗) is the reciprocal of the

smallest singular value of M∗.

In Theorem 1, we note that the error scales asO(1/
√
n),

matching the scaling in supervised learning. Further-
more, we note that the scaling with the number of LFs p
is somewhat pessimistic. Indeed, our analysis suggests
that the error is governed by the concentration of the
tensor T̂ to T ∗, whose optimal rate is still an open sta-
tistical problem (Vershynin, 2020; Even and Massoulié,
2021). The scaling of O(p5/

√
n) is also due to jointly

learning the class balance and the LF parameters from
data. In Appendix C.3, we show that with known class
balance, the error can scale as O(p3/

√
n). Finally, low

correlations among LFs lead to a small ωmin while too
many direct dependency among LFs may lead to a high
σ−1min(M∗), both increase the difficulty of parameter
estimation.

End Model Generalization Error We analyze
the generalization error of the end model trained
with the probabilistic labels produced by the Fire-
bolt label model. Formally, let y = fw∗(x) be an
end model parametrized by w∗ that we seek to learn
from the dataset

{
(Pθ̂0·(y | λ(x(i))), x(i))

}n
i=1

, where

x(i)’s are drawn from the distribution D, and θ̂00
and θ̂0+, collectively denoted as θ̂0·, are produced
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by Algorithm 2. Let l(y, x;w) ∈ [0, 1] be a loss
function. We consider learning the end model ŵ =
arg minw

1
n

∑n
i=1 Eỹ∼Pθ̂0· (y|λ(x(i)))[l(ỹ, x;w)] in a noise-

aware fashion that samples labels for unlabeled data
points based on Pθ̂0·(y | λ(x(i))) for end model training.
We define the expected loss for a given w under D
as L(w) = ED[l(x, y;w)]. The generalization error of
the end model L(ŵ)− L(w∗) can be characterized by
Theorem 2 as follows:
Theorem 2. Under the assumptions made in Sec-
tion 3.1, the generalization error of the end model
learned from the probabilistic labels produced by Firebolt
in a noise-aware fashion can be upper bounded by

L(ŵ)− L(w∗) ≤ ξ(n) + c‖µ̂− µ∗‖2 + ψ(D, µ∗),

where c is a constant related to the bounded-
ness of the canonical parameters, ψ(D, µ∗) =
2
√

2 ·KL(PD(y | x) ‖ Pµ∗(y | x)) is the divergence be-
tween PD(y | x) and Pµ∗(y | x), ξ(n) is a decreasing
function of the sample size associated with empirical
risk minimization.

Theorem 2 highlights two contentious factors influenc-
ing the generalization performance of the end model:
parameter estimation error ‖µ̂ − µ∗‖2 and the diver-
gence ψ(D, µ∗) between the label and end model data
generation process. Choosing a more complicated label
model may decrease the divergence but increase the
parameter estimation error under a given sample size.
The tension between these two factors suggests the
importance of choosing an appropriate label model to
strike a good balance in practice.

5 EXPERIMENTS

We validate the practical utility of Firebolt on various
settings including balanced/imbalanced classification,
learning from unipolar/bipolar labeling functions, zero-
shot multi-class learning and learning from complex
dependencies. We evaluate the performance of Firebolt
on publicly-available benchmark datasets, real-world
production datasets, and synthetic data. We compare
Firebolt with a variety of alternative methods, showing
that Firebolt can achieve the same or better perfor-
mance than state-of-the-art weak supervision frame-
works and weak supervision models in production. In
Appendix D, we report details of the experiment setup
and we also report extended experimental results on
synthetic data as well as experiments on Firebolt label
model.

5.1 Evaluation on Benchmark Datasets

We demonstrate the performance of Firebolt using the
labels it generates to train neural networks as end

models. The end model performance is evaluated on
a held out test set, and we report the results on four
benchmark datasets.

Metric To measure performance, we use the area un-
der curve of the receiver operating characteristic (AUC)
and the average precision (AP). AUC and AP avoid
the need for additional hyperparameter tuning due to
binarizing probabilistic labels. AP is also particularly
suitable for imbalanced classification problems (Davis
and Goadrich, 2006).

Datasets We consider four publicly-available bench-
mark datasets. Three (spam, crowdsourcing, spouse)
are benchmark weak supervision datasets and one is a
text classification dataset (IMDb). In particular, spouse
is an imbalanced dataset and the other three are bal-
anced. Both spouse and crowdsourcing also include
the use of bipolar LFs. There are up to 50, 000 samples
in these datasets. Further details of the datasets are
available in Appendix D.

Methods We compare Firebolt with four representa-
tive alternatives. (1) Majority vote: a baseline method;
(2) Flyingsquid (Fu et al., 2020): a state-of-the-art weak
supervision method; (3) a weak supervision pipeline
in production (Bach et al., 2019; Suri et al., 2020);
(4) Constrained Label Learning (CLL) (Arachie and
Huang, 2020): a new, alternative constraint-based weak
supervision method.

Protocol For each dataset, we split it into an unla-
beled training set and a labeled test set. We use the
LFs to produce votes on the training set and train label
models on the training set. We then use the resulting
probabilistic labels to train an end model. We evaluate
the performance of the end model on the test set and
report results over 5 trials. Some of the datasets also
include validation sets, which are used in the end model
training.

Results Table 1 shows the performance of Firebolt
and alternative methods on four classification tasks.
Firebolt either produces the best results or is in a (sta-
tistical) tie to be the best approach among all datasets.

On the spam classification task, where the dataset is
relatively balanced and the labeling functions are inde-
pendent, we see that majority voting is a strong baseline
outperforming CLL and Flyingsquid. Firebolt is able
to aggregate the labeling functions effectively, produc-
ing the best performance on the dataset (tied with the
production model). On the imbalanced spouse classifi-
cation task, Firebolt exceeds the next best performing
method by about 5.8 point gain in AUC. Since the
dataset is imbalanced, we also report AP for different
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Dataset Metric Majority Vote Production CLL Flyingsquid Firebolt
spam AUC 0.955±0.004 0.975±0.001 0.875±0.004 0.946±0.002 0.975±0.001

crowdsourcing AUC 0.768±0.010 0.756±0.011 0.779±0.003 0.740±0.012 0.771±0.012
spouse AUC 0.685±0.020 0.656±0.019 0.712±0.018 0.713±0.009 0.771±0.002
spouse AP 0.179±0.034 0.266±0.012 0.215±0.033 0.231±0.019 0.374±0.007
IMDb AUC 0.797±0.001 0.630±0.002 0.820±0.002 0.797±0.012 0.832±0.001

Table 1: Test performance of weakly supervised end models on four benchmark datasets over five trials (mean±s.d.).
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Figure 2: APs (orange bars) and AUCs (blue bars) of
a Firebolt label and end model vs an existing weakly-
supervised production pipeline with a label model and
an end model.

methods in Table 1. We observe that AP of different
methods are better than random; the test positive rate
on the dataset is 8%. Firebolt achieves a score that
is 10.8 points greater than the second best performing
method. For all tasks, Firebolt consistently outper-
forms Flyingsquid, a state-of-the-art weak supervision
approach. All these results suggest the empirical ad-
vantage of Firebolt compared to alternative methods.

5.2 A Case Study in Industry Production

We further demonstrate the practical utility of Firebolt
with a case study in a tech company. Here, we are faced
with an imbalanced classification problem where we
have access to 24 LFs. The goal is to train end models
through weak supervision and evaluate their perfor-
mance on a test set (1% positive rate). We use a linear
model as the end model. The dataset has hundreds of
millions of examples. Unlike benchmark experiments
in Section 5.1, we only compare the performance of the
end model trained by Firebolt against an existing weak
supervision pipeline in production. We cannot compare
to other methods, because they are not implemented in
production. Furthermore, in this context, we also need
to process larger datasets than those in Section 5.1. So,
efficiency is also a key concern.

The comparison between the two approaches is given
in Figure 2. Both the label model and the end model
trained by Firebolt and the alternative deliver reason-
able performance, with 0.9+ AUC and 0.7+ AP. Both
end models generalize beyond the label models. Fur-
thermore, the Firebolt label model has a slightly better

AUC compared to its counterpart and tie in AP. How-
ever, Firebolt end model outperforms its counterpart
by 1.3 points in AUC and 0.6 points in AP.

Finally, while the production label model takes an hour
for training and inference, we observe that Firebolt
speeds this up to only three minutes. These results
demonstrate the real-world empirical gain of adopting
Firebolt both in efficacy and in efficiency.

mv flyingsquid production cll firebolt
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(b) Average Precision

Figure 3: Performance of Firebolt and competing base-
lines on 45 image classification tasks for zero-shot learn-
ing.

5.3 Zero-Shot Multi-Class Learning with
Firebolt

To demonstrate the utility of Firebolt beyond binary
classifcation, we describe the use of Firebolt for a zero-
shot learning problem.
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y

λ3λ2λ1 λ4 λ5 λ6 λ7 λ8

Figure 4: A label model with complex dependency:
there are seven pairwise dependencies between eight
LFs.

Protocol We use the Animals with Attributes 2
dataset (AwA2, Xian et al. 2018) to setup a zero-shot
learning classification task. The dataset consists of
37,322 images of 50 animals classes that are split into
40 seen and ten unseen classes. We are interested in
classifying objects from the ten unseen classes. While
the problem can be viewed as a ten-class classification
problem, we alternatively follow the same procedure in
Mazzetto et al. (2021b) to perform binary classification
on each of the pairs of unseen classes to create 45 binary
classifcation problems. We used a classifier learned on
the seen classes to generate weak supervision and make
predictions on the unseen classes. We compare the
performance of Firebolt on all 45 experiments to the
other alternatives that are previously described using
the same metrics.

Results Figure 3 shows the performance of the meth-
ods on the experiments. From the plots, we see that
Firebolt outperforms other alternatives on both me-
dian AUC and average precision. On AUC described
in Figure 3a, Firebolt obtains the best median score
outperforming majority vote and production weak su-
pervision method by over 20 percentage points. For
AP described in Figure 3b, the median AP score ob-
tained by Firebolt for all experiments is better than the
score of the upper quartile of the next best performing
method Flyingsquid. Additionally, the lower quartile
score of Firebolt outperforms the upper quartile score
of all other methods with exception of Flyingsquid.
Considering that the weak supervision was generated
on the seen classes, Firebolt’s performance on the un-
seen classes demonstrates it’s applicability for zero-shot
learning tasks. While Firebolt improves upon existing
methods in terms of the median scores, a sobering as-
pect of the result is that the minimum AUC and AP
for each method are relatively close to each other and
low, as indicated by the lower whiskers of the boxplots.
This suggests the intrinsic difficulty of the zero-shot
learning task in question. Further investigation may
be desirable to understand if it is possible to improve
the worst-case performance of weak supervision on this
task.

Metric MV Prod CLL Flyingsquid Firebolt
AUC 0.677 0.577 0.671 0.710 0.717
AP 0.245 0.209 0.242 0.345 0.353

Table 2: Performance of various methods on a dataset of
80,000 samples drawn from the label model in Figure 4.

5.4 Handling Complex Dependencies

We demonstrate the capacity of Firebolt to learn from
complex dependencies among labeling functions. To
this end, we use synthetic data, where we know the
ground truth of the dependency graph among LFs. We
sample 80, 000 data points from a label model (Figure 4)
representing an imbalanced classification problem (pos-
itive rate 16.5%) with two unipolar LFs (λ1 and λ2)
and three bipolar LFs (λ3–λ8), where the second (λ5
and λ6) and the third (λ7 and λ8) bipolar LFs are
dependent on each other and the rest of the LFs are
all independent of each other. All the labeling func-
tions (λ1–λ8) are mildly predictive of y, with balanced
accuracy between 0.51 and 0.6. Because we have ac-
cess to the ground truth distribution, we compare the
performance of Firebolt with other alternatives on the
population-level distribution to avoid sampling error
at test time. The results are given in Table 2, where
Firebolt achieves an AUC of 0.717 and an AP of 0.353,
outperforming the second best method Flyingsquid by
0.7 point in AUC and 0.8 point in AP. Furthermore,
Firebolt also learns a positive rate of 13.0% from the
training set, which coincides closely with the ground
truth positive rate. These results suggest the practical
utility of Firebolt in handling complex dependencies
among noisy labeling functions for imbalanced classifi-
cation problems.

6 CONCLUSION

We proposed Firebolt, a new weak supervision frame-
work that operates under weaker assumptions than al-
ternatives. In particular, Firebolt learns class balance
directly from data, estimates class-specific accuracy and
handles complex dependencies among LFs, and carries
out inference efficiently and in an interpretable manner.
We theoretically analyze the performance achieved by
Firebolt and understand its empirical utility on various
settings from publicly-available benchmark datasets,
to real-world production data, and to synthetic data.
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Appendix

The Appendix is organized as follows. In Appendix A, we present related work of Firebolt. In Appendix B, we
provide more methodological details of Firebolt and its implication and extension. In Appendix C, we present
proofs of our theoretical results. In Appendix D, we provide further experiment details as well as additional
experiments. Finally, in Appendix E, we discuss limitation and societal impact of our work.

A Related Work

In terms of problem setting, Firebolt is concerned with the problem of programmatic weak supervision
(a.k.a. Snorkel, Ratner et al. 2016, 2017; Bach et al. 2019; Ratner et al. 2019; Fu et al. 2020; Chen et al.
2021; Zhang et al. 2021). Related to the Snorkel-style weak supervision is the line of work on constraint-based
weak supervision (Balsubramani and Freund, 2015a,b; Arachie and Huang, 2019, 2021, 2020; Mazzetto et al.,
2021a,b). In terms of algorithmic framework, Firebolt draws inspiration from building aggregated classifiers
without labeled data (Parisi et al., 2014; Jaffe et al., 2015), a line of research that predates Snorkel. Below we
compare Firebolt with these three lines of research.

Comparison to Snorkel Style Weak Supervision Methods Snorkel-style programmatic weak supervision
introduces machine learning systems and techniques that use multiple labeling functions to curate training
labels for unlabeled data by learning a graphical model with the ground truth label as a latent variable. Weak
supervision techniques emphasize the dependencies among labeling functions (Bach et al., 2017; Varma et al.,
2019) as well as the ability that a labeling function can abstain from making a classification decision. These
features make weak supervision suitable for practitioners to express their domain knowledge in a flexible and
programmatic way to facilitate training data labeling.

However, most of these weak supervision approaches (Ratner et al., 2016, 2017; Bach et al., 2019; Fu et al.,
2020; Chen et al., 2021) assume that class balance is user-provided. Furthermore, they may also assume that
the accuracy of a labeling function in classifying different classes is more or less the same due to the fact that
they do not handle arbitrary external fields. An exception in this line of work is Metal (Ratner et al., 2019),
where it made attempt to learn the class balance directly from data. Furthermore, it also attempted to learn
sensitivity and specificity of the labeling functions from data. Nonetheless, this approach is based on solving
non-convex optimization problems through stochastic gradient descent, which could be slow and may not converge
to a global optimal solution. Indeed, Metal is outperformed by Flyingsquid (Fu et al., 2020) on various tasks,
a state-of-the-art weak supervision algorithm. Flyingsquid assumes that the class balance is user-provided. It
can learn class-specific accuracy of labeling functions. Another advantage of Flyingsquid is its exact inference
algorithm that produces probabilistic quantities needed to compute probabilistic labels by solving a system of
linear equations. However, the inference algorithm may make assumptions on the external field of the graphical
model. The system of linear equations needs to be solved for inference also scales exponentially with the clique
size of the graphical model.

In contrast, Firebolt mitigates these aforementioned limitations by directly learning class balance and class-specific
accuracy of labeling functions for binary imbalanced weak supervision problems. It also carries out inference
in polynomial time complexity by solving a logistic regression problem that scales with the number of unique
vote combinations of labeling functions and the number of labeling functions. Furthermore, for weak supervision
algorithms (Ratner et al., 2019; Fu et al., 2020) that carry out inference using mean parameters, it may be
difficult to interpret the individual contribution of each labeling function towards the probabilistic label under
complex dependency. On the other hand, Firebolt carries out inference using canonical parameters through (9)
in a logistic regression fashion, it therefore can provide interpretability for the individual contribution of each
labeling function towards the probabilistic label.

Comparison to Constraint-Based Weak Supervision A related line of research—constraint-based
methods—uses a different approach for solving weak supervision (Balsubramani and Freund, 2015a,b; Arachie and
Huang, 2019, 2021, 2020; Mazzetto et al., 2021a,b). These methods use the labeling functions and user provided
error rates or error bounds to constrain the possible space of the data labeling. They then solve an optimization
problem to estimate probabilistic labels for the data. These methods have become popular in recent times since
they do not make assumptions about the joint distribution of the true labels and the labeling functions. Firebolt
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is similar to constraint-based approaches in that Firebolt estimates probabilistic labels for the training data.
However, unlike constraint-based methods, Firebolt does not require user-defined estimates of the error rates of
the labeling functions. It can be difficult for users to provide error estimates of the labeling functions in practice
without having access to labeled data. Additionally, the Firebolt label models are more interpretable as it is able
to accurately determine the contribution of each labeling function to the decisions made by the label models.

Comparison to Parisi et al. 2014; Jaffe et al. 2015 Firebolt is also closely related to a line of research that
aggregates classifier output without labeled data. In particular, Parisi et al. (2014) discovers Equation (2), which
is used in the Firebolt formulation of parameter learning of weak supervision. However, Parisi et al. (2014) did
not estimate class balance, nor did it estimate class-specific accuracy. Subsequently, Jaffe et al. (2015) generalizes
Parisi et al. (2014) to propose Equation (3), which is also used by Firebolt. It proposed a procedure to estimate
both class balance and class-specific accuracy of classifiers.

Firebolt is distinctive from these two works in that Firebolt focuses on the weak supervision setting that does not
require labeled data. In contrast, these two works aim at building ensemble classifiers from base classifiers, which
require labeled data in the first place. Furthermore, labeling functions in weak supervision can abstain, which is
not the case for these two works. Weak supervision algorithms also focus on addressing dependency between
labeling functions, while these two works primarily focus on the conditional independent situation. While the
Firebolt algorithm draws inspiration from these two works, it generalizes beyond them by providing fine-grained
non-asymptotic theoretical guarantees for the parameter estimation error of the algorithm as well as its impact
on downstream end model training performance, accounting for model misspecification. In contrast, these two
works provided asymptotic guarantees for their algorithms.

B Extended Methodological Results

In this section, we present various methodological implications and extensions of Firebolt. First, we discuss
topics related to labeling functions such as random guessing (Appendix B.1), abstention (Appendix B.2), LF
representation(Appendix B.3), and how to write labeling functions of good quality (Appendix B.4). Next, we
discuss topics related to the learning of label model such as learning the label model when the class balance
is known (Appendix B.5), an alternative formulation of the Firebolt learning algorithm similar to that of Fu
et al. (2020) (Appendix B.6), and details on the inference (Appendix B.7) algorithms. Finally, we discuss the
implication of Firebolt on imbalanced classification problems (Appendix B.8) and its extension beyond binary
classification (Appendix B.9).

B.1 Random Guessing

In this section, we discuss the relationship between a binary LF λ? and random guessing. Furthermore, we
characterize the precision and recall of λ? using its relationship with random guessing. Finally, we will characterize
if a labeling function is better than random guessing thorough balanced accuracy.

To begin with, in Definition 1, we consider λ? to be better than random guessing if

P(y = 1 | λ? = 1) > P(y = 1). (11)

However, if (11) is not satisfied, we have that P(y = 1 | λ? = 1) ≤ P(y = 1). In this case, on the one hand,
if P(y = 1 | λ? = 1) = P(y = 1), it means λ? is independent of y. That is to say, λ? is equivalent to random
guessing when it tries to infer the value of y. On the other hand, P(y = 1 | λ? = 1) < P(y = 1) means that λ? is
worse than random guessing.

We are particularly interested in the precision P(y = 1 | λ? = 1) and recall P(λ? = 1 | y = 1) of λ?. To this
end, we first show the following relationship between the precision and recall of a λ∗ that is better than random
guessing:

P(y = 1 | λ? = 1) > P(y = 1)⇔ P(λ? = 1 | y = 1) > P(λ∗ = 1). (12)

This is because by Bayes theorem,

P(y = 1 | λ? = 1) > P(y = 1)⇔P(λ? = 1 | y = 1)P(y = 1)

P(λ? = 1)
> P(y = 1)
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⇔P(λ? = 1 | y = 1) > P(λ∗ = 1).

Next, we show the following relationship related to the precision of λ?:

P(y = 1 | λ? = 1) > P(y = 1)⇔ P(y = −1 | λ? = −1) > P(y = −1). (13)

This is because from (12),

P(y = 1 | λ? = 1) > P(y = 1)⇔P(λ? = 1 | y = 1) > P(λ∗ = 1)

⇔P(λ? = −1 | y = 1) < P(λ∗ = −1)

⇔P(λ? = −1 | y = 1)P(y = 1)

P(λ∗ = −1)
< P(y = 1)

⇔P(y = 1 | λ? = −1) < P(y = 1)

⇔(y = −1 | λ? = −1) > P(y = −1).

Furthermore, we show the following relationship related to the recall of λ?:

P(λ? = 1 | y = 1) > P(λ∗ = 1)⇔ P(λ? = −1 | y = −1) > P(λ∗ = −1). (14)

This is true because from (12) and (13),

P(λ? = 1 | y = 1) > P(λ∗ = 1)⇔P(y = −1 | λ? = −1) > P(y = −1)

⇔P(λ? = −1 | y = −1) > P(λ? = −1),

where we can show the last equivalence to be true using (12) and a symmetric argument.

Note that for labeling functions that are equivalent to or worse than random guessing, we can also derive
relationships similar to (12), (13), and (14) to characterize their precision and recall.

Finally, we show that the relationship between λ? and random guessing can be characterized by balanced accuracy.

Proposition 1. A binary labeling function λ? is better than random guessing if and only if it has a balanced
accuracy π? > 0.5.

Proof. We first show sufficiency. This is obviously true because of (12) and (14) and the fact that P(λ? =
1) + P(λ? = −1) = 1. We then show necessity. Since π? > 0.5, we have that

P(λ? = 1 | y = 1) + P(λ? = −1 | y = −1) > 1 = P(λ? = 1) + P(λ? = −1).

If P(λ? = 1 | y = 1) > P(λ? = 1) and P(λ? = −1 | y = −1) > P(λ? = −1), necessity will be true. So, it suffices to
show that other configurations between P(λ? = 1 | y = 1), P(λ? = −1 | y = −1) and P(λ? = 1), P(λ? = −1) are
not possible. Suppose that P(λ? = 1 | y = 1) > P(λ? = 1) but P(λ? = −1 | y = −1) ≤ P(λ? = −1). By (12), the
former implies that λ? is better than random guessing while the latter implies that λ? is not better than random
guessing, which is a contradiction. By a similar argument, we can show that P(λ? = 1 | y = 1) ≤ P(λ? = 1)
and P(λ? = −1 | y = −1) > P(λ? = −1) is not possible either. As a result, if P(λ? = 1 | y = 1) > P(λ? = 1),
P(λ? = −1 | y = −1) > P(λ? = −1) must hold, suggesting λ? is better than random guessing. Furthermore, if
P(λ? = 1 | y = 1) ≤ P(λ? = 1), P(λ? = −1 | y = −1) ≤ P(λ? = −1) must hold. But this will imply that π ≤ 0.5,
a contradiction. Therefore, we have proven necessity.

B.2 Abstention

Different types of LFs may exhibit different behaviors. For example, one key distinction between unipolar LFs
and bipolar LFs is their behaviors on abstention. While it is customary to assume that abstention in bipolar LFs
does not provide additional class information (Fu et al., 2020), this is not the case for unipolar LFs. In fact,

Proposition 2. Abstaining in a unipolar LF is equivalent to labeling the opposite class.
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Proposition 2 is a direct consequence of encoding unipolar LFs as binary LFs and a binary LF can either be
better, equivalent, or worse than random guessing, as shown in Appendix B.1. As a result, even abstention in
unipolar LFs provide additional class information, unlike bipolar LFs. Such distinction between different types of
LFs suggests that one should model different types of LFs separately, which may introduce additional complexity.
Indeed, for simplicity many existing weak supervision frameworks model after only one type of LFs (Ratner et al.,
2019; Arachie and Huang, 2020; Chen et al., 2021). In contrast, Firebolt uses a unified LF representation by
modeling unipolar and bipolar LFs through binary LFs.

B.3 LF Representation

An important property that an appropriate LF representation preserves is the relationship of an LF with random
guessing. Indeed, the LF representation of Firebolt preserves this property:

Proposition 3. Representing unipolar/bipolar LFs as binary LFs in Firebolt preserves their relationships with
random guessing.

Proof. From Proposition 2, it is obviously the case that the LF representation in Firebolt preserves the relationships
of unipolar LFs to random guessing. It remains to show that this is also the case for bipolar LFs.

From Definition 1, we say that a bipolar LF λ? is better than random guessing if P(y = 1 | λ? = 1) > P(y = 1).
This intuitively makes sense because if a better than random guessing labeling function votes positive, we should
have more confidence about the ground truth label being positive. Similarly, we say that λ? performs worse than
random guessing if P(y = 1 | λ? = 1) < P(y = 1) and we say that λ? performs equivalently to random guessing if
P(y = 1 | λ? = 1) = P(y = 1).

Furthermore, We use λ? = 0 to represent that λ? abstains. Since semantically, abstention means that the
labeling function lacks enough information to classify the data point one way or another, we can mathematically
represent such a meaing as P(y | λ? = 0) = P(y). This implies P(y = 1 | λ? = 0) = P(y = 1) and
P(y = −1 | λ? = 0) = P(y = −1). Furthermore, using the Bayes theorem, we have that P(λ? = 0 | y = 1) =
P(λ? = 0 | y = −1) = P(λ? = 0).

According to the LF representation scheme of Firebolt, a bipolar LF can be represented by a pair of positive LF
λ+ and negative LF λ− (which in turn can be represented by binary LFs). It remains to show that if λ? performs
better than random guessing, both λ+ and λ− perform better than random guessing.

For this purpose, we first would like to show P(y = 1 | λ? = 1) > P(y = 1) ⇒ P(y = −1 | λ? = −1) >
P(y = −1). Notice that P(y = 1 | λ? = 1) = P(λ? = 1 | y = 1)P(y = 1)/P(λ? = 1) > P(y = 1). This
means P(λ? = 1 | y = 1) > P(λ? = 1) and hence P(λ? 6= 1 | y = 1) < P(λ? 6= 1). This implies that
P(λ? = 0 | y = 1) + P(λ? = −1 | y = 1) < P(λ? = 0) + P(λ? = −1) and hence P(λ? = −1 | y = 1) <
P(λ? = −1) because P(λ? = 0 | y = 1) = P(λ? = 0) due to the property of abstention. Now, consider
P(y = 1 | λ? = −1) = P(λ? = −1 | y = 1)P(y = 1)/P(λ? = −1) < P(y = 1), where we have used the fact that
P(λ? = −1 | y = 1) < P(λ? = −1). As a result, P(y = −1 | λ? = −1) > P(y = −1).

Also notice that by definition of λ+ and λ−, we have that P(y = 1 | λ? = 1) = P(y = 1 | λ+ = 1) and
P(y = −1 | λ? = −1) = P(y = −1 | λ− = −1). We therefore have that P(y = 1 | λ+ = 1) > P(y = 1) and
P(y = −1 | λ− = −1) > P(y = −1) because we have shown previously that P(y = 1 | λ? = 1) > P(y = 1) and
P(y = −1 | λ? = −1) > P(y = −1). Since both λ+ and λ− are unipolar labeling functions, P(y = 1 | λ+ = 1) >
P(y = 1) and P(y = −1 | λ− = −1) > P(y = −1) mean λ+ and λ− are both better than random guessing.

Using similar arguments, we can also show that if a bipolar labeling function is worse than (equivalent to) random
guessing, the associated pair of positive and negative labeling functions are also worse than (equivalent to) random
guessing

Given that we can represent both unipolar and bipolar LFs as binary LFs while preserving their relationships
with random guessing, Firebolt can consider weak supervision problems with binary labeling functions as input
without loss of generality.
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B.4 Writing Labeling Functions

While weak supervision promises producing training labels without the need for manual labeling through the use
of labeling functions, in reality, we observe that labeling functions of good quality are typically difficult to write.
In response, we make the following observations on writing labeling functions:

• Good labeling functions tend to be positively correlated with each other, and one may aim at writing LFs that
have positive covariance between each other.

• To encourage positive covariance among unipolar LFs, one may increase overlap between LFs of the same
polarity and decrease conflict between LFs of the opposite polarity.

• High covariance between two LFs implies direct dependency between them.

It should be noticed that all these observations can be made without the aid of labeled data. While the
aforementioned observations are made on population-level quantities, in practice, we can use sample-level
quantities to estimate population-level quantities with a sufficient number of unlabeled data points. In what
follows, we will further discus these observations.

LF Quality and Covariance We consider a set of LFs to be of good quality if they are better than random
guessing and are conditionally independent of each other. From (2) and (3), we note that for such a set of LFs of
good quality, the three way covariance among triplets of LFs T ∗jkl’s and the two way covariance between pairs of
LFs Σ∗jk’s will all be positive. Therefore, we can consider positive covariance entries of the population level a
necessary condition for LFs to be better than random guessing and conditionally independent of each other. In
practice, this observation implies that one may write LFs that are positively correlated with each other in order to
meet this necessary condition.

Encourage Positive Covariance However, even though it may be desirable to write LFs that are positively
correlated between each other, it is unclear what needs to be done to produce such labeling functions. To answer
this question, we show that for unipolar LFs, positive two-way covariance can be achieved by high overlap and low
conflict between LFs. We say that two labeling functions overlap with each other if the are of the same polarity
and both of them vote for a given data point. We say that two labeling functions conflict with each other if they
are of opposite polarity and both of them vote for a given data point. Below we show how overlap and conflict
are associated with the covariance.

To proceed with our derivation, consider two binary labeling functions λj and λk. Without loss of generality,
we use the decision made by λk as a reference. We then can define the true positive probability, true negative
probability, false positive probability, and false negative probability respectively as: tp = P(λj = 1, λk = 1),
tn = P(λj = −1, λk = −1), fp = P(λj = 1, λk = −1), and fn = P(λj = −1, λk = 1). Furthermore, we define the
positive probability and the negative probability as p = tp + fp = P(λj = 1) and n = tn + fn = P(λj = −1).
With these definitions, the covariance between λj and λk can be given as:

Σ∗jk = (tp+ tn− fp− fn)− (tp+ fp− tn− fn)(tp+ fn− tn− fp). (15)

Using the fact that fp = p− tp and tn = (1− p)− fn, (15) can be written as:

Σ∗jk = 4(n · tp− p · fn). (16)

As a result, the sign of Σ∗jk is determined by the sign of (n · tp− p · fn), and Σ∗jk < 0 is equivalent to n/p < fn/tp.
Suppose that the two binary LFs represent two positive LFs, then fn is the proportion of data where λk votes
positive but λj abstains, representing the scenario where λj and λk do not overlap. tp are the proportion of data
where both λj and λk vote positive, representing the scenario where λj overlaps with λk. Therefore, the less
frequent the two LFs overlap, the higher the ratio fn/tp, the more likely the covariance between the two LFs
being negative.

(16) also holds when λj represents a negative labeling function and λk represents a positive labeling function.
In this case, fn means λj votes negative and λk votes positive. It represents the situation where there are
conflicts between the two labeling functions. On the other hand, tp means λj abstains and λk votes positive. It



Kuang et al.

represents the situation where the two labeling functions do not conflict with each other. As a result, the higher
the proportion of conflicts among the two labeling functions, the more likely the covariance between the two
labeling functions are negative.

Similarly, using the fact that tp = p− fp and fn = (1− p)− tn, we can write (15) as

Σ∗jk = 4(p · tn− n · fp), (17)

where Σ∗jk < 0 if and only if p/n < fp/tn. Suppose the two binary LFs represent two two negative labeling
functions, then fp means λj abstains and λk votes negative. It represents the situation where the two labeling
functions do not overlap. On the other hand, tn means both λj and λk vote negative. It represents the situation
where the two labeling functions overlap with each other. Therefore, if there is a high proportion of non-overlapping
among the two labeling functions, we will observe negative covariance.

(17) also holds when λj is a positive labeling function and λk is a negative labeling function. In this case, fp
means λj votes positive and λk votes negative. It represents conflicts between the two labeling functions. On
the other hand, tn means λj abstains and λk votes negative. It represents no conflict between the two labeling
functions.

High Covariance Implies Direct Dependency It should be noticed that just because two LFs have positive
covariance between each other does not necessarily mean they are of good quality. For example, if the two LFs
are both worse than random guessing, they could still have a positive covariance between each other. For another
example, if one LF is a copy of the other LF, they will be perfectly correlated with each other. But using these
two LFs together will not provide additional information to improve label quality. Indeed, we can show that if
the magnitude of the covariance is too high between two LFs, the two LFs cannot be conditionally independent of
each other. To this end, for two conditionally independent LFs λj and λk from (3) we have that

|Σ∗jk| = |2π∗j − 1||2π∗k − 1|σ∗200 .

Since |2π∗j − 1| ∈ [0, 1] and |2π∗k − 1| ∈ [0, 1], we have that |Σ∗jk| ≤ σ∗200 . By a contrapositive argument, if we
observe |Σ∗jk| > σ∗200—that is, the magnitude of covariance between the two LFs are higher than the variance of
the class balance of the ground truth label—the two LFs in question must not be conditionally independent of
each other.

We make the following remarks for this procedure. To begin with, we have used σ∗00. This information may or may
not be available depending on whether we know the class balance of the dataset or not. Furthermore, if we know
that the two LFs are better than random guessing but Σ∗jk < 0, we can also conclude that the two LFs are not
conditionally independent of each other. Finally, we can also determine whether a triplet of LFs are conditionally
independent of each other through the use of |T ∗jkl| with (3) in a similar fashion to the use of two-way covariance.

While these aforementioned observations by no mean provide a comprehensive guideline on writing labeling
functions, it nonetheless offers some actionable insights to debug labeling functions and understand the quality
and dependency among them. Furthermore, these observations do not require the use of labeled data, making
them applicable to more practical situations where labeled data are not easy to collect.

B.5 Learning with Known Class Balance

In this section, we describe the parameter estimation procedure when the class balance of the data distribution
is known. In this case, we do not need to make use of the covariance tensor to estimate the balanced accuracy
of the LFs. Indeed, given a triplet of conditionally independent LFs λj , λk, and λl, we can directly compute
the balanced accuracy of each of the three LFs by solving the following system of equations associated with the
covariance, the balanced accuracy, and the given µ00 due to known class balance according to (2):

Σjk =(2πj − 1)(2πk − 1)(1− µ2
00)

Σkl =(2πk − 1)(2πl − 1)(1− µ2
00)

Σjl =(2πj − 1)(2πl − 1)(1− µ2
00).

(18)

In practice, we typically have more than three LFs and do not observe the population-level covariance matrix.
We can generalize from (18) and make use of the sample covariance matrix Σ̂, the estimated dependency graph
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Ĝ, and the known class balance to estimate the balanced accuracy of each labeling function. In detail, we solve
the following least squares problem:

l̂ = arg min
l
‖M̂l − q̂‖22,

where M̂ is the incidence matrix of the inverse graph of Ĝ, l is a p × 1 parameter vector, and q̂ is a vector
constructed by stacking up log(Σ̂jk/(1 − µ2

00))’s, with (j, k)’s correspond to the rows of the incidence matrix
representing the edge (j, k) in the inverse graph of Ĝ. Upon knowing l̂, we can estimate the balanced accuracy
as π̂ = exp(l̂)+1

2 , where exp(·) acts component-wise on l̂. Once we know π̂, the rest of estimation proceed as the
same as previously described.

B.6 Firebolt Triplet Method Formulation

Fu et al. (2020) showcases the advantage of the triplet method for parameter estimation of the label model in
weak supervision, where the parameters of labeling functions can be computed and aggregated efficiently in a
closed-form manner by solving a series of systems of equations that involve triplets of conditionally independent
labeling functions. Using (2) and (3), we can also directly derive a triplet formulation of Firebolt for binary
classification problem. In detail, suppose that λj , λk, and λl is a triplet of conditionally independent LFs, and
without loss of generality, π∗j >

1
2 , π

∗
k >

1
2 , π

∗
l >

1
2 , µ

∗
00 ≤ 0, Σ̂jk > 0, Σ̂jl > 0, Σ̂kl > 0, and T̂jkl > 0, we can use

(2) and (3) to analytically derive estimators:

π̂j =
1

2

√ Σ̂jkΣ̂jl

Σ̂kl
+ 1

 , π̂k =
1

2

(√
Σ̂jkΣ̂kl

Σ̂jl
+ 1

)
, π̂l =

1

2

(√
Σ̂jlΣ̂kl

Σ̂jk
+ 1

)
, µ̂00 = −

√√√√ T̂ 2
jkl

T̂ 2
jkl + 4Σ̂jkΣ̂jlΣ̂kl

.

(19)
If we have multiple conditionally independent triplets to yield multiple estimators in (19), we can aggregate these
estimators in a robust fashion by taking the median among the estimators (Chen et al., 2021). The resultant π̂
and µ̂00 can then be used downstream in the same way as we described in Section 3.

Compared to Fu et al. (2020), the triplet method formulation of Firebolt can solve the parameter estimation
problem of Ising models with external field in one pass, instead of the two-pass procedure described in Section
C.2 of Fu et al. (2020). Using the inference procedure of Firebolt, we can also carry out inference over the Ising
model with arbitrary external fields learned by the Firebolt triplet method efficiently. This is also in contrast to
Fu et al. (2020), where exact inference is carried out efficiently when making assumptions on the external fields of
the Ising model.

Moreover, the triplet formulation of Firebolt also removes the assumption that the users need to know if the
classification problem in question is a balanced classification problem or not. Nonetheless, it still assumes that
users can encode the minority class as positive. We anticipate that similar theoretical guarantees can be derived
following the techniques developed in Appendix C and Fu et al. (2020) for the Firebolt triplet method, but we
leave such results as future work.

B.7 Inference

In this section, we describe the inference algorithm used in Firebolt. For label model with general dependency,
we derive an inference algorithm (Appendix B.7.1) based on solving a logistic regression problem that has been
described in Section 3.3. We then describe closed-form exact inference algorithms for conditionally independent
unipolar (Appendix B.7.2) and bipolar labeling functions (Appendix B.7.3).

B.7.1 General Graph

We first describe how to compute probabilistic labels P(y = 1 | λ) given that the joint distribution between y and
λ is modeled by (1). The result is shown in Proposition 4.

Proposition 4. Let y and λ follow the joint distribution given in (1), the probabilistic label of y given λ is given
as:

P(y = 1 | λ) = sigmoid
(
2θ∗00 + 2θ∗>0+λ

)
, (20)

where sigmoid(t) = 1
1+exp(−t) .
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(a) A label model representing five conditionally inde-
pendent unipolar labeling functions and the ground
truth label.

y

λ2λ1 λ3 λ4 λ5

(b) A label model representing four conditionally inde-
pendent labeling functions and the ground truth label.
λ1-λ3 represent three unipolar LFs. λ4 and λ5 jointly
represent a bipolar LF.

Figure 5: Conditionally independent label models.

Proof. The proof of Theorem 4 follows similarly to the arguments in Ravikumar et al. (2010). In detail, by the
Bayes theorem,

P(y = 1 | λ) =
P(y = 1, λ)

P(λ)

=
P(y = 1, λ)

P(y = 1, λ) + P(y = −1, λ)

=
1

1 + P(y=−1,λ)
P(y=1,λ)

=
1

1 +
1
Z exp

(
−θ∗00+

∑p
j=1 θ

∗
jjλj−θ∗0jλj+

∑
(λj,λk)∈E∗ θ

∗
jkλjλk

)
1
Z exp

(
θ∗00+

∑p
j=1 θ

∗
jjλj+θ

∗
0jλj+

∑
(λj,λk)∈E∗ θ

∗
jkλjλk

)
=

1

1 +
exp(−θ∗00−

∑p
j=1 θ

∗
0jλj)

exp(θ∗00+
∑p
j=1 θ

∗
0jλj)

=
1

1 + exp(−2θ∗00 − 2
∑p
j=1 θ

∗
0jλj)

=sigmoid
(
2θ∗00 + 2θ∗>0+λ

)
.

When y is observed, Ravikumar et al. (2010) also suggests that one can provide an estimate of θ∗0· called θ̂0· by
solving a logistic regression problem that regress y on λ. Such a logistic regression problem can be written as
(10), where µ̂0· can be directly obtained from the dataset when y is observed. However, since y is not observed in
a weak supervision setting, we used the parameters estimated by Firebolt µ̂0· in lieu of their counterparts directly
derived from the dataset in a fully observed setting. As a result, we have derived the inference algorithm that we
described in Section 3.3. In Appendix C, we provide theoretical guarantees for downstream model performance
using the probabilistic labels produced by our inference procedure.

B.7.2 Conditionally Independent Unipolar LFs

One common situation arises in practice is when the Ising model represents the joint distribution between y
and unipolar LFs that are conditionally independent with each other upon y, such as the model described in
Figure 5a. In this case, exact inference can be carried out in closed-form using the sensitivity and specificity
parameters of each labeling functions as well as the class balance. Indeed,

Proposition 5. Let y and λ follow the following joint distribution given by the conditionally independent Ising
model

P(y, λ) =
1

Z
exp

θ∗00y +

p∑
j=1

θ∗jjλj + θ∗0jλjy

 .

Let α±∗ be the sensitivity and specificity parameters associated with the labeling functions and let µ∗00 be the class
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balance parameter. We have that

P(y = 1 | λ) = sigmoid

log
P(y = 1)

P(y = −1)
+

p∑
j=1

log
P(λj | y = 1)

P(λj | y = −1)

 . (21)

Furthermore, for all j ∈ {1, 2, · · · , p},

θ∗00 =
1

2
log

1 + µ∗00
1− µ∗00

+
1

4

p∑
j=1

log
α+∗
j (1− α+∗

j )

α−∗j (1− α−∗j )
,

θ∗0j =
1

4

(
log

α+∗
j

1− α+∗
j

+ log
α−∗j

1− α−∗j

)
.

(22)

Proof. (21) is true because

P(y = 1 | λ) =
P(λ | y = 1)P(y = 1)

P(λ | y = 1)P(y = 1) + P(λ | y = −1)P(y = −1)
(23)

=
1

1 + P(λ|y=−1)P(y=−1)
P(λ|y=1)P(y=1)

=
1

1 +
∏p
j=1 P(λj |y=−1)P(y=−1)∏p
j=1 P(λj |y=1)P(y=1)

=
1

1 + exp
(
− log P(y=1)

P(y=−1) −
∑p
j=1 log

P(λj |y=1)
P(λj |y=−1)

)
=sigmoid

log
P(y = 1)

P(y = −1)
+

p∑
j=1

log
P(λj | y = 1)

P(λj | y = −1)

 ,

where for the third equality, we have used the fact that P(λ | y) =
∏p
j=1 P(λj | y) because of the conditional

independence among the labeling functions.

Next, we show (22) is True. For this purpose, we compare (20) with (21). In particular, consider λj = 1 and
λj = −1 for all j ∈ {1, 2, · · · , p}, we have that

2θ∗00 + 2
∑p
j=1 θ

∗
0j = log P(y=1)

P(y=−1) +
∑p
j=1 log

α+∗
j

1−α−∗j

2θ∗00 − 2
∑p
j=1 θ

∗
0j = log P(y=1)

P(y=−1) +
∑p
j=1 log

1−α+∗
j

α−∗j

⇒ θ∗00 =
1

2
log

P(y = 1)

P(y = −1)
+

1

4

p∑
j=1

log
α+∗
j (1− α+∗

j )

α−∗j (1− α−∗j )
.

Furthermore, consider P(y = 1 | λj = 1, λ−j) and P(y = 1 | λj = −1, λ−j), where λ−j represents a column vector
that consists of all the entries in λ but λj , we have that

2θ∗00 + 2θ∗0j +
∑
j′ 6=j 2θ∗0jλj′ = log P(y=1)

P(y=−1) + log
α+∗
j

1−α−∗j
+
∑
j′ 6=j log

P(λj′ |y=1)

P(λj′ |y=−1)

2θ∗00 − 2θ∗0j +
∑
j′ 6=j 2θ∗0jλj′ = log P(y=1)

P(y=−1) + log
1−α+∗

j

α−∗j
+
∑
j′ 6=j log

P(λj′ |y=1)

P(λj′ |y=−1)

⇒θ∗0j =
1

4

(
log

α+∗
j

1− α−∗j
− log

1− α+∗
j

α−∗j

)
=

1

4

(
log

α+∗
j

1− α+∗
j

+ log
α−∗j

1− α−∗j

)
.

B.7.3 Conditionally Independent Unipolar/Bipolar LFs

Another common situation is when we are dealing with a mix of conditionally independent unipolar and
bipolar LFs. Such a situation arises, for example, when we produce some LFs by bucketizing the probability
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scores produced by various classifiers that are conditionally independent of each other into bipolar LFs. After
transforming the original LFs into binary LFs λ, the joint distribution between λ and y can be represented by an
Ising model where there is at most one edge between one labeling function and another for any given labeling
function. Figure 5b describes such a label model, where inference can still be carried out using (23), excepts that
P(λ | y) = P(λ4, λ5 | y)

∏3
j=1 P(λk | y), where we need to compute the quantity P(λ4, λ5 | y). In fact, it is not

difficult to see, for conditionally independent label model with a mixed of unipolar and bipolar LFs, we have that

P(λ | y) =

p∏
j=1

P(λk | y)
∏

(λk,λl)∈E∗

P(λk, λl | y)

P(λk | y)P(λl | y)
. (24)

It remains to show how to compute P(λk, λl | y) for (λk, λl) ∈ E∗, which is given in Theorem 6.

Proposition 6. Suppose that λk and λl jointly represent a bipolar labeling function λ? that is conditionally
independent of other labeling functions, with λk representing the associated positive LF and λl representing the
associated negative LF. We have that:

P(λ? = 1 | y = 1) =P(λk = 1, λl = 1 | y = 1) = α+∗
k ,

P(λ? = 0 | y = 1) =P(λk = −1, λl = 1 | y = 1) = α+∗
l − α

+∗
k ,

P(λ? = −1 | y = 1) =P(λk = −1, λl = −1 | y = 1) = 1− α+∗
l ,

P(λ? = 1 | y = −1) =P(λk = 1, λl = 1 | y = −1) = 1− α−∗k ,

P(λ? = 0 | y = −1) =P(λk = −1, λl = 1 | y = −1) = α−∗k − α
−∗
l ,

P(λ? = −1 | y = −1) =P(λk = −1, λl = −1 | y = −1) = α−∗l .

Proof. To compute P(λ? = 1|y = 1), P(λ? = 0|y = 1), P(λ? = −1|y = 1), P(λ? = 1|y = −1), P(λ? = 0|y = −1),
and P(λ? = −1|y = −1), it suffices to focus on P(λ? = 1|y = 1), P(λ? = 0|y = 1), P(λ? = 0|y = −1),
and P(λ? = −1|y = −1). To this end, notice that through parameter learning we can provide estimates for
α+∗
k = P(λk = 1|y = 1), α−∗k = P(λk = −1|y = −1), α−∗l = P(λl = −1|y = −1), and α+∗

l = P(λl = 1|y = 1).
Furthermore,

α+∗
k =P(λk = 1, λl = 1 | y = 1) + P(λk = 1, λl = −1 | y = 1)

⇒P(λ? = 1 | y = 1) = α+∗
k ,

α+∗
l =P(λk = 1, λl = 1 | y = 1) + P(λk = −1, λl = 1 | y = 1)

⇒P(λ? = 0 | y = 1) = α+∗
l − α

+∗
k ,

α−∗l =P(λk = 1, λl = −1 | y = −1) + P(λk = −1, λl = −1 | y = −1)

⇒P(λ? = −1 | y = −1) = α−∗l ,

α−∗k =P(λk = −1, λl = 1 | y = −1) + P(λk = −1, λl = −1 | y = −1)

⇒P(λ? = 0 | y = −1) = α−∗k − α
−∗
l .

As a result,
P(λ? = 1 | y = −1) = 1− α−∗k , P(λ? = −1 | y = 1) = 1− α+∗

l .

We have completed the proof.

We now present a generalization of Proposition 5 for a mix of conditionally independent unipolar and bipolar
labeling functions.

Proposition 7. Let y and λ follow the following joint distribution given by the Ising model representing a mix
conditionally independent of unipolar and bipolar labeling functions,

P(y, λ) =
1

Z
exp

θ∗00y +

p∑
j=1

θ∗jjλj +
∑

λj′∈U∗
θ∗0j′λj′y +

∑
(λk,λl)∈E∗

θ∗klλkλl

 ,
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where U∗ is the set of binary labeling functions that represent unipolar labeling functions in G∗. Let α±∗ be
the sensitivity and specificity parameters associated with the labeling functions and let µ∗00 be the class balance
parameter. We have that

P(y = 1 | λ) = sigmoid

log
P(y = 1)

P(y = −1)
+
∑
λj∈U∗

log
P(λj | y = 1)

P(λj | y = −1)
+

∑
(λk,λl)∈E∗

log
P(λk, λl | y = 1)

P(λk, λl | y = −1)

 . (25)

Furthermore, for all λj ∈ U∗,

θ∗0j =
1

4

(
log

α+∗
j

1− α+∗
j

+ log
α−∗j

1− α−∗j

)
.

For all (λk, λl) ∈ E∗, where λk representing the positive LF and λl representing the negative LF in a bipolar LF
representation,

θ∗0k =
1

4

(
log

α+∗
k

1− α−∗k
− log

α+∗
l − α

+∗
k

α−∗k − α
−∗
l

)
, θ∗0l =

1

4

(
log

α+∗
l − α

+∗
k

α−∗k − α
−∗
l

− log
1− α+∗

l

α−∗l

)
.

Finally,

θ∗00 =
1

2
log

1 + µ∗00
1− µ∗00

+
1

4

∑
λj∈U∗

log
α+∗
j (1− α+∗

j )

α−∗j (1− α−∗j )
+

1

4

∑
(λk,λl)∈E∗

log
α+∗
k (1− α+∗

l )

α−∗l (1− α−∗k )
.

.

Proof. Using U∗, we can rewrite (24) as:

P(λ | y) =
∏
j∈U∗

P(λj | y)
∏

(λk,λl)∈E∗
P(λk, λl | y). (26)

Using (23) and (26), we have that

P(y = 1 | λ) = sigmoid

log
P(y = 1)

P(y = −1)
+
∑
λj∈U∗

log
P(λj | y = 1)

P(λj | y = −1)
+

∑
(λk,λl)∈E∗

log
P(λk, λl | y = 1)

P(λk, λl | y = −1)

 .

Next, we compute the canonical parameters. To begin with, suppose that λj ∈ U∗. Consider P(y = 1 | λj = 1, λ−j)
and P(y = 1 | λj = −1, λ−j), we have that

2θ∗00 + 2θ∗0j +
∑
j′ 6=j

2θ∗0jλj′ = log
P(y = 1)

P(y = −1)
+ log

α+∗
j

1− α−∗j

+
∑

j′ 6=j,j′∈U∗
log

P(λj′ | y = 1)

P(λj′ | y = −1)
+

∑
(λk,λl)∈E∗

log
P(λj , λk | y = 1)

P(λj , λk | y = −1)
,

2θ∗00 − 2θ∗0j +
∑
j′ 6=j

2θ∗0jλj′ = log
P(y = 1)

P(y = −1)
+ log

1− α+∗
j

α−∗j

+
∑

j′ 6=j,j′∈U∗
log

P(λj′ | y = 1)

P(λj′ | y = −1)
+

∑
(λk,λl)∈E∗

log
P(λk, λl | y = 1)

P(λk, λl | y = −1)
.

This means

θ∗0j =
1

4

(
log

α+∗
j

1− α+∗
j

+ log
α−∗j

1− α−∗j

)
is true for λj ∈ U∗. On the other hand, for a pair of λk and λl such that (λk, λl) ∈ E∗ with λk representing the
positive LF and λl representing the negative LF. Let λk = ±1 and λl = 1, from Proposition 6 we have that

log
P(λk = 1, λl = 1 | y = 1)

P(λk = 1, λl = 1 | y = −1)
= log

α+∗
k

1− α−∗k
, log

P(λk = −1, λl = 1 | y = 1)

P(λk = −1, λl = 1 | y = −1)
= log

α+∗
l − α

+∗
k

α−∗k − α
−∗
l

.
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Write and compare P(y = 1 | λk = 1, λl = 1, λ−{k,l}) and P(y = 1 | λk = −1, λl = 1, λ−{k,l}) with (20) and (25),
we have that 2θ∗00 + 2θ∗0k + 2θ∗0l +

∑
j 6∈{k,l} 2θ∗0jλj = log

α+∗
k

1−α+∗
k

+ f(λ−{k,l}),

2θ∗00 − 2θ∗0k + 2θ∗0l +
∑
j 6∈{k,l} 2θ∗0jλj = log

α+∗
l −α

+∗
k

α−∗k −α
−∗
l

+ f(λ−{k,l}).

As a result,

θ∗0k =
1

4

(
log

α+∗
k

1− α−∗k
− log

α+∗
l − α

+∗
k

α−∗k − α
−∗
l

)
.

Similarly,

log
P(λk = −1, λl = −1 | y = 1)

P(λk = −1, λl = −1 | y = −1)
= log

1− α+∗
l

α−∗l
.

Write and compare P(y = 1 | λk = −1, λl = −1, λ−{k,l}) and P(y = 1 | λk = −1, λl = 1, λ−{k,l}) with (20) and
(25), we have that 2θ∗00 − 2θ∗0k − 2θ∗0l +

∑
j 6∈{k,l} 2θ∗0jλj = log

1−α+∗
l

α−∗l
+ f(λ−{k,l}),

2θ∗00 − 2θ∗0k + 2θ∗0l +
∑
j 6∈{k,l} 2θ∗0jλj = log

α+∗
l −α

+∗
k

α−∗k −α
−∗
l

+ f(λ−{k,l}).

As a result,

θ∗0l =
1

4

(
log

α+∗
l − α

+∗
k

α−∗k − α
−∗
l

− log
1− α+∗

l

α−∗l

)
.

Finally, we determine θ∗00. To this end, consider λj = 1 and λj = −1 for all j ∈ {1, 2, · · · , p}, we have that
2θ∗00 +

∑p
j=1 2θ∗0j = log P(y=1)

P(y=−1) +
∑
λj∈U∗ log

α+∗
j

1−α−∗j
+
∑

(λk,λl)∈E∗ log
α+∗
k

1−α−∗k
,

2θ∗00 −
∑p
j=1 2θ∗0j = log P(y=1)

P(y=−1) +
∑
λj∈U∗ log

1−α+∗
j

α−∗j
+
∑

(λk,λl)∈E∗ log
1−α+∗

l

α−∗l
.

As a result,

θ∗00 =
1

2
log

P(y = 1)

P(y = −1)
+

1

4

∑
λj∈U∗

log
α+∗
j (1− α+∗

j )

α−∗j (1− α−∗j )
+

1

4

∑
(λk,λl)∈E∗

log
α+∗
k (1− α+∗

l )

α−∗l (1− α−∗k )
.

B.7.4 Choice of Inference Algorithms

It should be noticed that the aforementioned inference algorithms have their own advantages and disadvantages.
Caution should be taken when deciding which inference algorithm to use in practice. On the one hand, when
we have precise prior knowledge of the complex dependency between LFs, using the logistic regression based
algorithm described in Appendix B.7.1 can be advantageous compared to exact inference algorithms. In this case,
it is desirable to provide good estimators µ̂00 and µ̂0+ to deliver a mapping of good quality to θ̂00 and θ̂0+. On the
other hand, when we do not have access to the dependency graph, one may assume that the LFs are conditionally
independent between each other. In this case, exact inference algorithms described in Appendix B.7.2 and
Appendix B.7.3 are more efficient compared to the logistic regression algorithm in Appendix B.7.1 because of
their closed-form solutions.

B.8 Imbalanced Classification

In this section, we are going to show why being able to learn from Ising models with arbitrary external fields
is important for weak supervision algorithms in an imbalanced classification setting. To this end, consider a
conditional independent Ising model that represents the joint distribution of unipolar labeling functions and the
ground truth label. Without loss of generality, suppose that λj is a labeling function that is not associated with
an external field, that is θ∗jj = 0. Because λj is only connected to y in G∗, following an argument similar to
the proof of Proposition 4, we can show that P(λj = 1 | y) = sigmoid(θ∗0jy). As a result, both the sensitivity
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and specificity of λj is the same and α±∗j = sigmoid(θ∗0j). This relationship shows why the lack of external fields
may imply that a labeling function has similar accuracy for different classes. Such a restriction may also lead to
undesirable consequences in imbalanced classification problems.

Consider the typical imbalanced classification problem where the negative class is the majority class. For
illustration purposes, let’s consider a random guessing labeling function λj with α+

j +α−j = 1 (Proposition 1) and
α−j � α+

j . In extreme, if α+
j = 0 and α−j = 1, this corresponds to the constant labeling function that always

labels everything as negative. Let αj = P(λj = y) be the overall accuracy of labeling function λj in guessing y.
For a negative constant labeling function, αj = P (y = −1). Therefore, in our imbalanced classification problem,
αj is high. Our hope is that the inference process will exclude such random guessing labeling functions.

We first show that if the weak supervision model fails to identify that the sensitivity of the labeling function is
different from its specificity, the influence of random guessing labeling functions may be arbitrarily bad during
inference. Under this scenario suppose we know the accuracy of λj to be αj , we will have that αj = α+

j = α−j ,
which means the labeling function will contribute log

αj
1−αj λj according to (20) and (22). In this case, as the

class imbalance exacerbates, αj → 1 and the weight log
αj

1−αj →∞. As λj = −1, it will drive P (y = 1|λ)→ 0.
This implies that λj will overwhelm other labeling functions with finite contribution and the data point will be
classified as negative as a result. However, λj is a constant labeling function and does not have any predictive
power and hence it should not contribute to the decision process at all.

On the other hand, if the weak supervision model can identify that the sensitivity of the labeling function is
different from its specificity, λj will be safely excluded during inference. Specifically, by (21), when λj = 1, the

labeling function will contribute log
α+
j

1−α−j
. When λj = −1, the labeling function will contribute log

1−α+
j

α−j
. Notice

that Firebolt can identify α+
j and α−j and as a result can make use of the relationship that α+

j + α−j = 1 for a

random guessing labeling function. The weights log
α+
j

1−α−j
= log

1−α+
j

α−j
= log 1 = 0. Therefore, when the sensitivity

and specificity are correctly identified, λj will contribute nothing to the decision process as desired.

B.9 Beyond Binary Classification

Multi-class Classification Handling abstention in bipolar labeling functions can be viewed as a multi-class
classification problem. In general, we can carry out a one-vs-all or a one-vs-one reduction of multi-class classification
problems into multiple binary classification problems and apply Firebolt. In Appendix D, we demonstrate such
an example on a ten-class classification problem in using the animal attribute dataset.

Positive-Only Classification Since both positive and negative labeling functions can be represented as binary
labeling functions, Firebolt can carry out weak supervision with only positive labeling functions and without
negative labeling functions. Such a formulation is particularly useful in many problem domains where users find
positive labeling functions are easier to write compared to writing negative labeling functions.

C Extended Theoretical Results

In this section, we present extended theoretical results of Firebolt. First, we present the auxiliary lemmas
useful in our proof (Appendix C.1). Next, we analyze the parameter estimation error of Firebolt when the
class balance is unknown (Appendix C.2). Furthermore, we also present corresponding results when the class
balance is known (Appendix C.3). Finally, we analyze generalization error of downstream end models learned
with Firebolt-produced probabilistic labels (Appendix C.4).

C.1 Auxiliary Lemmas

Definition 2 (Lipschitz Continuity, Paraphrase of Definition 4 of Honorio 2012). Let f(x) be a function such
that f :∈ Rm → R. We say that f(x) is Lipschitz continuous with a Lipschitz constant K with respect to the `p
norm if

|f(x1)− f(x2)| ≤ K‖x1 − x2‖p.
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Lemma 1 (Lipschitz Continuity for Differentiable Functions, Paraphrase of Definition 4 of Honorio 2012). Let
f(x) be a differentiable function such that f :∈ Rm → R. Let ∇f(x) be the gradient of f(x). f(x) is K-Lipschitz
continuous if with respect to the `p norm for all x ∈ Rm,

‖∇f(x)‖p ≤ K.

Lemma 2 (Matrix Hoeffding’s Inequality). Consider a finite sequence
{
X(i)

}
of independent, random, self-adjoint

matrices with dimension d, and let {Ai} be a sequence of fixed self-adjoint matrices. Assume that each random
matrix satisfies

EX(i) = 0 and X(i)2 � A(i)2 almost surely.

Then, for all t ≥ 0,

P

(∥∥∥∥∥∑
i

X(i)

∥∥∥∥∥
2

≥ t

)
≤ d · exp

(
− t2

8σ2

)
, (27)

where σ2 =
∥∥∑

iA
(i)2
∥∥
2
. Furthermore,

E

[∥∥∥∥∥∑
i

X(i)

∥∥∥∥∥
2

]
≤
√

2πdσ. (28)

Proof. (27) is shown in Theorem 1.3 of Tropp (2012). (28) can be derived by integrating both side of (27) on
t ∈ [0,∞).

Let L =
{
λ(1), λ(2), · · · , λ(n)

}
be the set of votes of the labelling functions over n data points. We now apply the

matrix Hoeffding’s inequality to demonstrate the concentration of the sample covariance matrix Σ̂ as well as the
sample second moment matrix EL[λλ>]. The results are summarized as Lemma 3 and Lemma 6 as follows.
Lemma 3 (Concentration of the Sample Covariance Matrix). The sample covariance matrix Σ̂ of p LFs of a
dataset of n data points concentrates around the population level covariance matrix Σ∗ as follows:

E‖Σ̂− Σ∗‖2 ≤
2
√

2πp2√
n

.

Proof. Let EL[λ] = 1
n

∑n
i=1 λ

(i) and let w(i) = λ(i) − EL[λ]. The sample covariance matrix is given as:

Σ̂ =EL(λ− EL[λ])(λ− EL[λ])>

=
1

n

n∑
i=1

(λ(i) − EL[λ])(λ(i) − EL[λ])>

=
1

n

n∑
i=1

w(i)w(i)>.

To apply Lemma 2, we set X(i) = 1
n (w(i)w(i)> − Σ∗). Apparently, E[X(i)] = 0 . X(i)’s are also symmetric

and statistically independent of each other. Next, we determine A(i)2’s. We make use of the relationship
that ‖v2‖22I � v2v

>
2 because for all v1, we have that v>1 (‖v2‖22I − v2v

>
2 )v1 = ‖v2‖22‖v1‖22 − ‖v>1 v2‖22 ≥ 0 by

Cauchy-Schwartz inequality. Furthermore, because Σ∗ � 0 and w(i)w(i)> � 0, we have that (Σ∗+w(i)w(i)>)2 � 0.
Also,

(nX(i))2 =(Σ∗ − w(i)w(i))2

�(Σ∗ − w(i)w(i))2 + (Σ∗ + w(i)w(i))2

=2((w(i)w(i))2 + Σ∗2)

�2(p2I + Σ∗2),

where in the last step, we have used the fact that w(i) ∈ [−1, 1]p and

p2I � ‖w(i)‖42I = ‖w(i)‖22(‖w(i)‖22I) � ‖w(i)‖22w(i)w(i)> = (w(i)w(i)>)2.
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As a result, we can set

A(i)2 =
2

n2
(p2I + Σ2).

It remains to compute σ2:

σ2 =

∥∥∥∥∥
n∑
i

A(i)2

∥∥∥∥∥
2

≤
n∑
i=1

∥∥∥A(i)2
∥∥∥
2
≤ 2

n2

n∑
i=1

(
‖p2I‖2 + ‖Σ2‖2

)
≤ 2

n2

n∑
i=1

(
p2 + p2

)
=

4p2

n
.

Plug our choice of X(i)’s and σ2 into Lemma 2 yields the desired bound.

Lemma 4 (Concentration of Second Moments). The sample second moment matrix EL[λλ>] of the LFs of a
dataset of n data points concentrates around population level second moment matrix E[λλ>] as follows:

E[
∥∥EL[λλ>]− E[λλ>]

∥∥
2
] ≤ 2

√
2πp2√
n

.

Proof. The proof is very similar to the proof of Lemma 3. The sample second moment matrix can be written as:

EL[λλ>] =
1

n

n∑
i=1

λ(i)λ(i)>.

To apply Lemma 2, we set X(i) = 1
n (λ(i)λ(i)> − E[λλ>]). Apparently, E[X(i)] = 0 . X(i)’s are also symmetric

and statistically independent of each other. Next, we determine A(i)2’s. To this end, consider:

(nX(i))2 =(E[λλ>]− λ(i)λ(i))2

�(E[λλ>]− λ(i)λ(i))2 + (E[λλ>] + λ(i)λ(i))2

=2((λ(i)λ(i))2 + E[λλ>]2)

�2(p2I + E[λλ>]2),

where we have used the fact that (E[λλ>] + λ(i)λ(i))2 � 0 and in the last step, we have used the fact that
λ(i) ∈ {−1, 1}p and

p2I = ‖λ(i)‖42I = ‖λ(i)‖22(‖λ(i)‖22I) � ‖λ(i)‖22λ(i)λ(i)> = (λ(i)λ(i)>)2.

As a result, we can set

A(i)2 =
2

n2
(p2I + E[λλ>]2).

It remains to compute σ2:

σ2 =

∥∥∥∥∥
n∑
i

A(i)2

∥∥∥∥∥
2

≤
n∑
i=1

∥∥∥A(i)2
∥∥∥
2
≤ 2

n2

n∑
i=1

(
‖p2I‖2 + ‖E[λλ>]2‖2

)
≤ 2

n2

n∑
i=1

(
p2 + p2

)
=

4p2

n
.

Plug our choice of X(i)’s and σ2 into Lemma 2 yields the desired bound.

Lemma 5 (Concentration of the Mean Vector). The sample mean vector µ̂+ concentrates around its population
level counterpart µ+ as follows:

E[‖µ̂+ − µ∗+‖∞] ≤ 4
√

2πp

n
.

Proof. To show the concentration of µ̂+ around µ+, our approach is to consider a diagonal matrix whose entries
are µ̂+. We then can use matrix concentration bound to analyze the concentration of µ̂+. In detail, we let D(·)
represents the construction of a diagonal matrix such that for a p× 1 vector a, we have that

D(a)jk =

{
aj , j = k;

0, j 6= k;
. (29)



Kuang et al.

We also note that µ̂+ = 1
n

∑n
i=1 λ

(i). To apply Lemma 2, we construct X(i) = 1
n

(
D(λ(i))−D(µ∗+)

)
. In this way,

E[X(i)] = 0 and X(i)’s are also symmetric and statically independent of each other. Next, we determine A(i)2’s.
To this end, consider

(nX(i))2 = (D(λ(i))−D(µ∗+))2 � 4I,

where we have used the fact that λ(i) ∈ {−1, 1}p, µ∗+ ∈ [−1, 1]p, and X(i) is a diagonal matrix. Therefore, we can
choose A(i)2 = 4

n2 I. It remains to determine σ2:

σ2 =

∥∥∥∥∥
n∑
i=1

A(i)2

∥∥∥∥∥
2

≤
n∑
i=1

‖A(i)2‖2 =
4

n2

n∑
i=1

‖I‖2 =
4

n
.

Plug our choice of X(i)’s and σ2 into Lemma 2 yields

E[‖µ̂+ − µ∗+‖∞] =E[
∥∥D(µ̂+)−D(µ∗+)

∥∥
2
] ≤ 4

√
2πp

n
.

Let τ be an m× 1 vector that is constructed by stacking up the entries in the population covariance tensor Tjkl’s,
where 1 ≤ j < k < l ≤ p, and λj , λk, and λl are conditionally independent given y according to G. Let τ̂ be
constructed similarly from T̂ .
Lemma 6 (Concentration of the Sample Covariance Tensor). The sample covariance tensor vector τ̂ of the LFs
of a dataset of n data points concentrates around the population level covariance tensor vector τ as follows:

E[‖τ̂ − τ∗‖∞] ≤ 4
√

2πm

n
,

where m = 1
6p(p− 1)(p− 2).

Proof. It should be noticed that the sample covariance tensor

T̂ =
1

n

n∑
i=1

(
λ(i) − EL[λ]

)
⊗
(
λ(i) − EL[λ]

)
⊗
(
λ(i) − EL[λ]

)
(30)

can be viewed as a summation of third-order, symmetric, rank-one, independent, random tensor. In principle,
we can make use of tensor concentration inequality to bound the 2-norm between T̂ and T ∗. However, optimal
concentration inequalities for symmetric rank-one tensors are still an open question in statistics (Vershynin, 2020;
Even and Massoulié, 2021), and addressing this open question is beyond the scope of this paper. Instead of
tackling the covariance tensors directly, our proof resorts to bounding the difference between their vectorization
‖τ̂ − τ∗‖2 through the matrix Hoeffding’s inequality, using arguments similar to those presented in Lemma 5.
Specifically, from (30), let w(i) = λ(i)−EL[λ], for all j′ ∈ {1, 2, · · · ,m}, where m = 1

6p(p− 1)(p− 2), we can write
τ̂j′ = 1

n

∑n
i=1 φ̂

(i)
j′ , where φ̂

(i)
j′ = ŵ

(i)
j ŵ

(i)
k ŵ

(i)
l for some (j, k, l) associated with j′. As a result, we can construct

X(i) =
1

n

(
D(φ̂(i))−D(τ∗)

)
,

with E[X(i)] = 0, X(i) are all symmetric and statistically independent of each other, and D(·) constructs a
diagonal matrix as specified in (29). We determine A(i)2 next. For this purpose, we consider

(nX(i))2 =
(
D(φ̂(i))−D(τ∗)

)2
� 4I,

where we have used the fact that φ(i) ∈ [−1, 1]m, τ∗ ∈ [−1, 1]m, and X(i) is a diagonal matrix. Therefore, we can
choose A(i)2 = 4

n2 I and σ2 = 4
n , which can be computed in the exact same way as in the proof of Lemma 5. Plug

our choice of X(i)’s and σ2 into Lemma 2 yields

E[‖τ̂ − τ∗‖∞] =E[‖D(τ̂)−D(τ∗)‖2] ≤ 4
√

2πm

n
.
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C.2 Parameter Estimation with Unknown Class Balance

In this section, we provide theoretical characterization of the parameter estimation error achieved by Firebolt.
We start with the assumptions that we make to establish theoretical guarantees (Appendix C.2.1). We then
discuss identifiability of the parameters (Appendix C.2.2). Next, we decompose the parameter estimation error
into a sampling error term and a model misspecification error term in our proof (Appendix C.2.3). This allows us
to analyze the two error terms in turn to complete the proof (Appendix C.2.4 and Appendix C.2.5).

Notation By default when a vector is given, we consider it as a column vector. We use σmin(A) to denote the
smallest singular value of A and hence σ−1min(A) = 1

σmin(A) = ‖A†‖2. We use Ĝ to represent a dependency graph
among the labeling functions that one has access to in practice and we use G∗ to represent the ground truth
dependency graph. We use the hat notation (e.g. l̂) to represent a sample-level quantity that is associated with
(or learned from) Ĝ. We use the tilde notation to represent a sample-level quantity (e.g. l̃) that is associated with
(or learned from) G∗. We use the star notation to represent a population-level quantity (e.g. l∗) that is associated
with (or learned from) G∗.

C.2.1 Assumptions

We present the following three assumptions made in our proof and comment on whether they are hard to meet in
practice.

First, we assume that all the LFs are are better than random guessing. This is similar to the assumption that
we have full knowledge about whether the LFs are better than random guessing or not, a standard assumption
made in analyzing weak supervision algorithms (Fu et al., 2020). Our assumption is without loss of generality in
comparison. This is because in practice, if we speculate an LF is worse than random guessing, the preferable
option is to improve it instead of directly accounting for it in the label model. If we indeed want to include the
information provided by such an LF, we can flip the decision made by it so that it is better than random guessing.
Fu et al. (2020) also points out that if we have access to G∗, we can make use of the conditional independence
relationships encoded in G∗ to determine if the labeling functions are better than random guessing or not. In
reality, when we do not have access to G∗, we can estimate it through structure learning (Bach et al., 2017; Varma
et al., 2019). These procedures together may allow robustness against up to half of the labeling functions being
worse than random guessing. Firebolt can benefit from all these procedures to meet this assumption in practice.

Secondly, we assume that we are dealing with an imbalanced classification problem (µ∗00 < 0) where the minority
class is encoded as positive. For theoretical results when the class balance is known (e.g. balanced classification
µ∗00 = 0), see Appendix C.3. In reality, practitioners typically have a good sense about whether the dataset in
question is a balanced dataset or not. They can also distinguish between minority class and majority class easily.

Thirdly, we assume that the covariance entries are bounded away from zero. That is, there exists a constant
ωmin > 0 such that min(j,k)∈{1,2,··· ,p}2 |Σ∗jk| ≥ ωmin and that min(j,k,l)∈{1,2,··· ,p}3 |T ∗jkl| ≥ ωmin. Furthermore, we
assume that there are enough samples n > n0 for some n0 such that sign(Σ̂) = sign(Σ) and sign(T̂ ) = sign(T ),
where sign(·) is the sign function that is applied entry-wise, and that min(j,k)∈{1,2,··· ,p}2 |Σ̂jk| ≥ ωmin and
min(j,k,l)∈{1,2,··· ,p}3 |T̂jkl| ≥ ωmin. Finally, we assume that Σ∗00 > ωmin and Σ̃00 > ωmin. Note that the samples
here are unlabeled samples, which are abundant in a weak supervision setting. Therefore, it is reasonable to
assume having enough samples in practice to meet this assumption.

C.2.2 Identifiability

We would like to establish identifiability of the label model parameters. For this purpose, it is sufficient to
establish identifiability of l∗ given q∗. Such a result is relatively straightforward to derive as we only need to study
the theoretical guarantee of the linear system (5). Obviously, as long as the ground truth value of q∗ is given and
finite and M∗ is full-rank, then l∗ can be identified by solving the system of linear equations in (5). Because q∗
needs to be finite, both T ∗jkl’s and Σjk’s contributing to q∗ need to be larger than zero. These constraints can be
met by the first two assumptions described in Appendix C.2.1.

Next, we discuss how l̂ learned from data may differ from the ground truth l∗. Our analysis considers distortion
due to both model misspecification and sampling noise. On the one hand, in terms of model misspecification, we
may start from a graph Ĝ that is different from the ground truth graph G∗. Compared to G∗, two types of model
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misspecification are possible: there are redundant edges in Ĝ or there are missing edges in Ĝ. Let us denote the
incidence matrix of the inverse graph of Ĝ as M̂ . Inheriting the assumption from our discussion of identifiability
that M∗ is full-rank, a few redundant edges in Ĝ will still result in a full-rank M̂ . However, the situation is more
intricate when we are dealing with missing edges as there are additional rows in M̂ that are not present in M∗.
Therefore, in what follows, without loss of generality, we shall analyze the impact of model misspecification when
there are missing edges in Ĝ. To this end, one may define a 0-1 selection matrix S such that SM̂ = M∗. Define q̂
as the statistics used to learn l̂. Note that under model misspecification, the dimension of q̂ might not necessarily
be equal to the dimension of q∗. Furthermore, we define l̃ as the estimation produced with sampling noise but
without model misspecification, and correspondingly q̃ the statistics used to produce l̃ . In this way, q̃ is of the
same dimension with q∗.

C.2.3 Non-Asymptotic Characterization of Parameter Estimation Error

In this section, we provide and prove Theorem 3, which is an extended version of Theorem 1 that accounts for
both the sampling error and the model misspecification error due to the difference between Ĝ and G∗ during the
parameter learning of a Firebolt label model.
Theorem 3. Under the assumptions made in Appendix C.2.1, the expected mean parameter estimation error
of Firebolt learned from n unlabeled data points, p labeling functions, and G∗ for an imbalanced classification
problem can be upper bounded by:

E[‖µ̂− µ∗‖2] ≤ 233

ω2
min

(σ−1min(M∗) + 1)
p5√
n

+
18p

7
2

ωmin
σ−1min(M̂)

(
umaxs+ σ−1min(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|,

where S is a selection matrix such that SM̂ = M∗, s is the number of missing edges and triplets in Ĝ compared
to G∗, UM̂ is the left unitary matrix of the singular value decomposition of M̂ , U⊥

M̂
is the orthogonal complement

of UM̂ , and umax is the largest norm among the rows in UM̂ .

Proof. Let µ̂ be the estimated mean parameters provided by Firebolt with Ĝ and L and let µ∗ be the ground
truth mean parameters (associated with G∗). Our goal is to upper bound E[‖µ̂− µ∗‖2]. To this end, observe that

E[‖µ̂− µ∗‖2] ≤ E[‖µ̂00 − µ∗00‖2] + E[‖µ̂0+ − µ∗0+‖2] + E[‖µ̂+ − µ∗+‖2] + E[‖µ̂++ − µ∗++‖2], (31)

where we have used the fact that
√
a2 + b2 ≤

√
a2 + b2 + 2ab ≤ a+ b, for a, b ≥ 0. It suffices to bound the four

terms on the right hand side of (31) in turn. Since µ̂+ and µ̂++ are directly observed, we can bound the last two
terms in (31) through Lemma 5 and Lemma 4, respectively. It remains to bound the first two terms. We first
bounds E[‖µ̂0+ − µ∗0+‖2]. Recall that µ̃0+ is the estimator produced by Firebolt using G∗ and L. With µ̃0+, we
consider the following inequality:

E[‖µ̂0+ − µ∗0+‖2] ≤ E[‖µ̂0+ − µ̃0+‖2] + E[‖µ̃0+ − µ∗0+‖2].

As a result, it suffices to bound E[‖µ̂0+ − µ̃0+‖2] and E[‖µ̃0+ − µ∗0+‖2] respectively, where the first term can be
viewed as error introduced by model misspecification while the second term can be viewed as sampling error when
the ground truth graph structure G∗ is given. Similarly for E[‖µ̂00 − µ∗00‖2], we have that

E[‖µ̂00 − µ∗00‖2] ≤ E[‖µ̂00 − µ̃00‖2] + E[‖µ̃0+ − µ∗00‖2].

The bounds for E[‖µ̃00 − µ∗00‖2] and E[‖µ̂0+ − µ̃0+‖2] are given in Lemma 7 while the bounds for E[‖µ̂00 − µ̃00‖2]
and E[‖µ̂0+ − µ̃0+‖2] are given in Lemma 8.

We have described all the ingredients needed in order to construct our bounds. In what follows, we will first
bound the parameter estimation error of Firebolt when we know the ground truth dependency graph G∗, we then
derive the bound under Ĝ.

When G∗ is used as Ĝ, we have that µ̂ = µ̃. As a result,

E[‖µ̂− µ∗‖2] ≤E[‖µ̃00 − µ∗00‖2] + E[‖µ̃0+ − µ∗0+‖2] + E[‖µ̂+ − µ∗+‖2] + E[‖µ̂++ − µ∗++‖2]

≤8σ−1min(M∗)

ωmin

p
9
2

√
n

+
208

ω2
min

(σ−1min(M∗) + 1)
p5√
n

+
4
√

2πp
3
2

n
+

2
√

2πp
5
2

√
n
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≤ 8

ω2
min

(σ−1min(M∗) + 1)
p5√
n

+
208

ω2
min

(σ−1min(M∗) + 1)
p5√
n

+
4
√

2π

ω2
min

p5√
n

+
2
√

2π

ω2
min

p5√
n

≤ 233

ω2
min

(σ−1min(M∗) + 1)
p5√
n
.

This corresponds to Theorem 1. On the other hand when Ĝ is used, we have that

E[‖µ̂− µ∗‖2] ≤E[‖µ̂− µ̃‖2] + E[‖µ̃− µ∗‖2]

≤E[‖µ̃− µ∗‖2] + E[‖µ̂00 − µ̃00‖2] + E[‖µ̂0+ − µ̃0+‖2]

≤ 233

ω2
min

(σ−1min(M∗) + 1)
p5√
n

+
18p

7
2

ωmin
σ−1min(M̂)

(
umaxs+ σ−1min(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|.

C.2.4 Analyzing the Sampling Error

Lemma 7. E[‖µ̃00 − µ∗00‖2] and E[‖µ̃0+ − µ∗0+‖2] can be upper bounded as follows:

E[‖µ̃00 − µ∗00‖2] ≤8σ−1min(M∗)

ωmin

p
9
2

√
n
,

E[‖µ̃0+ − µ∗0+‖2] ≤ 208

ω2
min

(σ−1min(M∗) + 1)
p5√
n
.

Proof. We briefly describe the roadmap of our proof. Loosely speaking, we can bound E[‖µ̃0+ − µ∗0+‖2] in the
following four steps: for all j ∈ {1, 2, · · · , p}, (1) we show that ‖µ̃0j−µ∗0j‖2 can be upper bounded by the difference
in balanced accuracy ‖π̃j − π∗j ‖2; (2) we show ‖π̃j − π∗j ‖2 can be upper bounded by a quantity associated with
the solution of the least squares problem ‖t̃− t∗‖2; (3) we show ‖t̃− t∗‖2 can be upper bounded by a quantity
associated with the response vector of the least squares problem ‖q̃ − q∗‖2; and finally (4) we can show ‖q̃ − q∗‖2
can be bounded through the concentration of the covariance matrix. Meanwhile, we can bound E[‖µ̃00 − µ∗00‖2]
in a similar, yet more simplified fashion.

Bounding ‖µ̃0j − µ∗0j‖2 Here we show how to upper bound ‖µ̃0j − µ∗0j‖2 with ‖π̃j − π∗j ‖2. In detail, given λj ,
we make use of the following facts that connect sensitivity, specificity, balanced accuracy, and the mean accuracy
parameter:

α+∗
j =

1

2

(
2π∗j + µ∗00 − 2π∗jµ

∗
00 + µ∗jj

)
,

α−∗j =
1

2

(
2π∗j − µ∗00 + 2π∗jµ

∗
00 − µ∗jj

)
,

π∗j =
1

2
α+∗
j +

1

2
α−∗j ,

µ∗0j =
1 + µ∗00

2
α+∗
j +

1− µ∗00
2

α−∗j .

As a result, we have that
µ∗0j = 2Σ∗00π

∗
j + (µ∗00 + µ∗jj)µ

∗
jj − 1, (32)

where
Σ∗00 = 1− µ∗200 (33)

represents the covariance of y. Similarly, using the fact that we know µ00 we have the following equation for µ̃0j :

µ̃0j = 2Σ̃00π̃j + (µ̃00 + µ̂jj)µ̂jj − 1. (34)

(34) - (32) and using

Σ̃00 = Σ∗00 + ∆̃00, µ̃00 = µ∗00 + δ̃00, ∆̃00 = −δ̃200 − 2δ̃00µ
∗
00, µ̂jj = µ∗jj + δjj ,
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we have that
µ̃0j − µ∗0j = 2Σ̃∗00π̃

∗
j − 2Σ00πj + (µ̃00 + µ̂jj)µ̂jj − (µ∗00 + µ∗jj)µ

∗
jj .

We would like to bound ‖µ̃0j − µ∗0j‖2. To do so, we make use of

‖µ̃0j − µ∗0j‖2 ≤ 2‖Σ̃00π̃j − Σ∗00π
∗
j ‖2 + ‖(µ̃00 + µ̂jj)µ̂jj − (µ∗00 + µ∗jj)µ

∗
jj‖2. (35)

Therefore, it suffices to bound the two terms on the right hand side of the aforementioned inequality respectively.
On the one hand,

Σ̃00π̃j − Σ∗00π
∗
j =(Σ∗00 + ∆̃00)π̃j − Σ∗00π

∗
j

=Σ∗00π̃j − Σ∗00π
∗
j + ∆̃00π̃j

=Σ∗00(π̃j − π∗j ) + ∆̃00(π̃j − π∗j ) + ∆̃00π
∗
j

=(Σ∗00 + ∆̃00)(π̃j − π∗j ) + ∆̃00π
∗
j .

As a result,

‖Σ̃00π̃j − Σ∗00π
∗
j ‖2 =‖(Σ∗00 + ∆̃00)(π̃j − π∗j ) + ∆̃00π

∗
j ‖2

≤‖(Σ∗00 + ∆̃00)(π̃j − π∗j )‖2 + |∆̃00|‖π∗j ‖2
≤Σ∗00‖π̃j − π∗j ‖2 + |∆̃00|‖π̃j − π∗j ‖2 + |∆̃00|‖π∗j ‖2
≤‖π̃j − π∗j ‖2 + 2|∆̃00|

≤‖π̃j − π∗j ‖2 + 8|δ̃00|.

(36)

where for the penultimate inequality with have used the fact that ‖π̃j − πj‖∗2 ≤ 1, ‖πj‖∗2 ≤ 1, and 0 ≤ Σ∗00 ≤ 1,
and for the last inequality we have used the fact

|∆̃00| =|δ̃200 + 2δ̃00µ
∗
00|

≤|δ̃00|2 + 2|δ̃00||µ∗00|
≤2|δ̃00|(1 + |µ∗00|)
≤4|δ̃00|, (37)

which is due to the fact that |δ̃00| ≤ 2 and |µ∗00| ≤ 1. On the other hand,

(µ̃00 + µ̂jj)µ̂jj − (µ∗00 + µ∗jj)µ
∗
jj =(µ∗00 + δ̃00 + µ∗jj + δjj)(µ

∗
jj + δjj)− (µ∗00 + µ∗jj)µ

∗
jj

=δ̃00δjj + δ̃00µ
∗
jj + δ2jj + δjj(µ

∗
00 + 2µ∗jj).

Therefore,

‖(µ̃00 + µ̂jj)µ̂jj − (µ∗00 + µ∗jj)µ
∗
jj‖2 =‖δ̃00δjj + δ̃00µ

∗
jj + δ2jj + δjj(µ

∗
00 + 2µ∗jj)‖2

≤|δ̃00|‖δjj‖2 + |δ̃00|‖µ∗jj‖2 + ‖δjj‖22 + ‖δjj‖2‖µ∗00 + 2µ∗jj‖2
≤2‖δjj‖2 + |δ̃00|‖µ∗jj‖2 + 2‖δjj‖2 + ‖δjj‖2‖µ∗00 + 2µ∗jj‖2
=|δ̃00|‖µ∗jj‖2 + ‖δjj‖2(4 + ‖µ∗00 + 2µ∗jj‖2)

≤|δ̃00|+ 7‖δjj‖2. (38)

where we have used |δ̃00| ≤ 2 and ‖δjj‖2 ≤ 2 for the last inequality. Finally, using (35), (36), and (38), we have
that

‖µ̃0j − µ0j‖2 ≤2‖π̃j − π∗j ‖2 + 16|δ̃00|+ |δ̃00|+ 7‖δjj‖2
=2‖π̃j − π∗j ‖2 + 17|δ̃00|+ 7‖δjj‖2. (39)
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Bounding ‖π̃j − π∗j ‖2 We define b∗ = log σ∗00 and b̃ = log σ̃00. We will show that ‖π̃j − π∗j ‖2 can be upper
bounded by ‖t̃− t∗‖2 + ‖b̃− b∗‖2. To this end, notice that t∗j = log(2π∗j − 1) + b∗ and t̃j = log(2π̃j − 1) + b̃. We
consider

‖π̃j − π∗j ‖2 ≤

∥∥∥∥∥exp(t̃j − b̃) + 1

2
−

exp(t∗j − b∗) + 1

2

∥∥∥∥∥
2

≤1

2
‖exp(t̃j − b̃)− exp(t∗j − b∗)‖2

=
1

2
‖exp(t∗j − b∗)(exp((t̃j − b̃)− (t∗j − b∗))− 1)‖2

≤1

2
‖exp(t∗j − b∗)‖2‖exp((t̃j − b̃)− (t∗j − b∗))− 1‖2

≤1

2
‖2πj − 1‖2‖exp((t̃j − b̃)− (t∗j − b∗))− 1‖2

≤1

2
‖exp((t̃j − b̃)− (t∗j − b∗))− 1‖2.

Using the fact that for x ≤ 1⇒ exp(x)− 1 ≤ 2x, we have that

‖π̃j − π∗j ‖2 ≤‖(t̃j − b̃)− (t∗j − b∗)‖2
≤‖b̃− b∗‖2 + ‖t̃j − t∗j‖2

≤ 1

Σ∗00
‖t̃0 − t∗0‖2 + ‖t̃j − t∗j‖2

≤ 2

Σ∗00
‖t̃− t∗‖∞, (40)

where the first inequality trivially holds when ‖(t̃j − b̃) − (t∗j − b∗)‖2 > 1 because ‖π̃j − π∗j ‖2 ≤ 1, and the
penultimate inequality is due to the bound for ‖b̃− b∗‖2 and |δ̃00| that we present as follows:

Bounding ‖b̃− b∗‖2 To bound ‖b̃− b∗‖2, notice that

‖b̃− b‖2 =‖log σ̃00 − log σ00∗‖2

=
1

2
‖log σ̃2

00 − log σ∗200‖2

=
1

2
‖log Σ̃00 − log Σ00‖∗2

=
1

2

∥∥∥log(Σ∗00 + ∆̃00)− log Σ∗00

∥∥∥
2

=
1

2

∥∥∥∥∥log

(
1 +

∆̃00

Σ∗00

)∥∥∥∥∥
2

≤1

2

∥∥∥∥∥∆̃00

Σ∗00

∥∥∥∥∥
2

≤ 2

Σ∗00
|δ̃00|,

where for the penultimate inequality we have use the fact that log(1 + x) ≤ x and for the last inequality we have
used (37).

Bounding |δ̃00| Recall that δ̃00 = µ̃00 − µ∗00, where µ̃∗00 = − exp(t̃0)√
4+exp(2t̃0)

= f(t̃0), we have that

|δ̃00| =|µ̃00 − µ∗00|
=|f(t̃0)− f(t∗0)|
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≤1

2
‖t̃0 − t∗0‖2, (41)

where for the last inequality we have used the fact that for z ∈ R,

f ′(z) =
4 exp(z)

(4 + exp(2z))
3
2

≤ 4

4
3
2

= 4−
1
2 =

1

2
,

and hence f(z) is 1
2 -Lipschitz continuous.

Bounding ‖t̃−t∗‖2 Bounding ‖t̃−t∗‖2 with ‖q̃−q∗‖2 is straightforward. Indeed, because t̃ = arg minl
1
2‖M

∗t−
q̃‖22 and t∗ = arg mint

1
2‖M

∗t− q∗‖22, we have that

‖t̃− t∗‖2 = ‖M∗†q̃ −M∗†q∗‖2 ≤ ‖M∗†‖2‖q̃ − q∗‖2, (42)

where M∗† is the pseudo-inverse of M∗.

Bounding ‖q̃ − q∗‖2 It should be noticed that the entries of q∗ consist of both the logarithm of the entries of
the two-way and three-way covariance. That is, q∗j = logω∗j , where ω∗j is an entry in T ∗ or Σ∗. Let ω̂j = ω∗j + εj ,
we have that

‖q̃j − qj‖2 =
∥∥log ω̂j − logω∗j

∥∥
2

=
∥∥log ω̂j − logω∗j

∥∥
2

=
∥∥log(ω∗j + εj)− logω∗j

∥∥
2

=

∥∥∥∥∥log

(
1 +

εj
ω∗j

)∥∥∥∥∥
2

≤

∥∥∥∥∥ εjω∗j
∥∥∥∥∥
2

≤ 1

ωmin
‖εj‖2, (43)

where we have use the fact that log(1 + x) ≤ x and ωmin is the smallest positive entry in T ∗ and Σ∗.

Assembling Bounds for E[‖µ̃00−µ∗00‖2] and E[‖µ̃0+−µ∗0+‖2] Putting (39), (40), and (41) together, we have
that for all j ∈ {1, 2, · · · , p},

‖µ̃0j − µ∗0j‖2 ≤2‖π̃j − π∗j ‖2 + 17|δ̃00|+ 7‖δjj‖2

≤ 4

Σ∗00
‖t̃− t∗‖∞ +

17

2
‖t̃− t∗‖∞ + 7‖δjj‖2

≤ 13

Σ∗00
‖t̃− t∗‖∞ + 7‖δ+‖∞,

implying

‖µ̃0+ − µ∗0+‖∞ ≤
13

Σ∗00
‖t̃− t∗‖∞ + 7‖δ+‖∞.

Using (42), (43), and the fact that for a p× 1 vector a, ‖a‖∞ ≤ ‖a‖2 ≤
√
p‖a‖∞, we further have that

‖µ̃0+ − µ∗0+‖2 ≤
13
√
p

Σ∗00
‖t̃− t∗‖2 + 7

√
p‖δ+‖∞

≤
13
√
p

Σ∗00
‖M∗†‖2‖q̃ − q∗‖2 + 7

√
p‖δ+‖∞

≤
13
√
p

ω2
min

‖M∗†‖2‖ε‖2 + 7
√
p‖δ+‖∞
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≤
13
√
p

ω2
min

‖M∗†‖2
√
‖τ̂ − τ‖22 + ‖Σ̂− Σ‖2F + 7

√
p‖δ+‖∞

≤
13
√
p

ω2
min

‖M∗†‖2(‖τ̂ − τ∗‖2 + ‖Σ̂− Σ∗‖F ) + 7
√
p‖µ̂+ − µ∗+‖∞,

where for the last inequality we have used the fact that
√
a2 + b2 ≤

√
a2 + b2 + 2ab = a+ b for a, b ≥ 0. Taking

the expectation on both side ends of the foregoing inequality and applying Lemma 3, 5, and 6, we have that

E[‖µ̃0+ − µ∗0+‖2] ≤
13
√
p

ω2
min

‖M∗†‖2

(
4
√

2πm
3
2

n
+

2
√

2πp
5
2

√
n

)
+

28
√

2πp
3
2

n

≤
13
√
p

ω2
min

‖M∗†‖2
16p

9
2

√
n

+
71p

9
2

√
n

≤ 208

ω2
min

‖M∗†‖2
p5√
n

+
208p

9
2

√
n

≤ 208

ω2
min

(σ−1min(M∗) + 1)
p5√
n
,

where we have also used the fact that for a symmetric matrix A, ‖A‖2 ≤
√
p‖A‖F. Finally, we would like to

bound E[‖µ̃00 − µ∗00‖2]. To this end, we use (41), (42), and (43) to yield

‖µ̃00 − µ∗00‖2 ≤
1

2
‖t̃0 − t∗0‖2

≤1

2
‖t̃− t∗‖2

≤1

2
‖M∗†‖2‖q̃ − q∗‖2

≤ 1

2ωmin
‖M∗†‖2(‖τ̂ − τ∗‖2 + ‖Σ̂− Σ∗‖F ).

Taking expectation on both end of the foregoing inequality and applying Lemma 3 and 6 yields

E[‖µ̃00 − µ∗00‖2] ≤‖M
∗†‖2

2ωmin

(
4
√

2πm
3
2

n
+

2
√

2πp
5
2

√
n

)

≤6
√

2π‖M∗†‖2
2ωmin

p
9
2

√
n

≤8σ−1min(M∗)

ωmin

p
9
2

√
n
.

C.2.5 Analyzing the Model Misspecification Error

Lemma 8. E[‖µ̂00 − µ̃00‖2] and E[‖µ̂0+ − µ̃0+‖2] can be bounded as follows.

E[‖µ̂00 − µ̃00‖2] ≤p
3

2
σ−1min(M̂)

(
umaxs+ σ−1min(SUM̂ )− σmin(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|,

E[‖µ̂0+ − µ̃0+‖2] ≤ 9p
7
2

ωmin
σ−1min(M̂)

(
umaxs+ σ−1min(SUM̂ )− σmin(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|,

where S is a selection matrix such that SM̂ = M∗, s is the number of missing edges and triplets in Ĝ compared
to G∗, UM̂ is the left unitary matrix of the singular value decomposition of M̂ , U⊥

M̂
is the orthogonal complement

of UM̂ , and umax is the largest norm among the rows in UM̂ .

Proof. In Appendix C.2.4, we have provided an upper bound for E[‖µ̃0+ − µ∗0+‖2]. Next, we show that E[‖µ̂0+ −
µ̃0+‖2] can be upper bounded similarly in the following three steps: for all j ∈ {1, 2, · · · , p}, (1) we show that
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‖µ̂0j − µ̃0j‖2 can be upper bounded by a quantity associated with the balance accuracy ‖π̂j − π̃j‖2; (2) we show
that ‖π̂j − π̃j‖2 can be upper bounded by a quantity associated with the balance accuracy ‖t̂− t̃‖2; (3) we show
that ‖t̂− t̃‖2 can be characterized by terms associated with the number of missing edges of Ĝ and the residuals of
the least squares. Meanwhile, we can bound E[‖µ̂00 − µ̃00‖2] in a similar, yet more simplified fashion.

Bounding ‖µ̂0j − µ̃0j‖2 We describe how to upper bound ‖µ̂0j − µ̃0j‖2 with ‖π̂j − π̃j‖2. Similar to (32) and
(34), we have that

µ̂0j = 2Σ̂00π̂j + (µ̂00 + µ̂jj)µ̂jj − 1. (44)

(44) - (34) and using

Σ̂00 = Σ̃00 + ∆00, µ̂00 = µ̃00 + δ00, ∆00 = −δ200 − 2δ00µ̃00, (45)

we have that

µ̂0j − µ̃0j =2Σ̂00π̂j − 2Σ̃00π̃j + µ̂00µ̂jj − µ̃00µ̂jj

=2Σ̃00(π̂j − π̃j) + µ̂jjδ00 + 2π̂j∆00.

As a result,
‖µ̂0j − µ̃0j‖2 ≤ 2‖π̂j − π̃j‖2 + ‖δ00‖2 + 2‖∆00‖2. (46)

Bounding ‖π̂j−π̃j‖2 Following the same rationale to bound ‖π̃j−π∗j ‖2 with ‖t̃j−t∗j‖2, we can bound ‖π̂j−π̃j‖2
with ‖t̂j − t̃j‖2 as:

‖π̂j − π̃j‖2 ≤‖b̂j − b̃j‖2 + ‖t̂j − t̃j‖2

≤ 2

Σ̃00

|δ00|+ ‖t̂j − t̃j‖2

≤ 1

Σ̃00

‖t̂0 − t̃0‖2 + ‖t̂j − t̃j‖2

≤ 2

Σ̃00

‖t̂− t̃‖∞

≤ 2

ωmin
‖t̂− t̃‖∞ (47)

where t̂j = log(2π̂j − 1) + b̂, b̂ = log σ̂00, and σ̂2
00 = Σ̂00. Furthermore, for the second and the third inequality, we

have used
‖b̂j − b̃j‖2 ≤

2

Σ̃00

|δ00| and |δ00| ≤
1

2
‖t̂0 − t̃0‖2, (48)

respectively. They are derived in a fashion similar to the bound for ‖b̃j − b∗j‖2 and |δ̃00|. Finally, for the last
inequality we have used the third assumption in Appendix C.2.1.

Bounding ‖t̂− t̃‖2 We now show how to bound ‖t̂− t̃‖2 with quantities associated with model misspecification
and residuals. Note that if Ĝ = G∗, we have that ‖t̂ − t̃‖2 = 0. Otherwise, we detail our proof of bounding
‖t̂− t̃‖2 below. Our proof follows the arguments similar to those of Drineas et al. (2006) and Kuang et al. (2020).
In particular,

t̂− t̃ =M̂†q̂ −M∗†q̃
=M̂†q̂ − (SM̂)†(Sq̂)

=VM̂D
−1
M̂
U>
M̂
q̂ − (SUM̂DM̂V

>
M̂

)†Sq̂

=VM̂D
−1
M̂
U>
M̂
q̂ − VM̂D

−1
M̂

(SUM̂ )†Sq̂

=VM̂D
−1
M̂
U>
M̂
q̂ − VM̂D

−1
M̂

(SUM̂ )†SIq̂

=VM̂D
−1
M̂
U>
M̂
q̂ − VM̂D

−1
M̂

(SUM̂ )†S(U⊥
M̂

(U⊥
M̂

)> + UM̂U
>
M̂

)q̂

=VM̂D
−1
M̂
U>
M̂
q̂ − VM̂D

−1
M̂

(SUM̂ )†SU⊥
M̂

(U⊥
M̂

)>q̂ − VM̂D
−1
M̂

(SUM̂ )†SUM̂U
>
M̂
q̂
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=VM̂D
−1
M̂
U>
M̂
q̂ − VM̂D

−1
M̂

(SUM̂ )†SU⊥
M̂

(U⊥
M̂

)>q̂ − VM̂D
−1
M̂
U>
M̂
q̂

=− VM̂D
−1
M̂

(SUM̂ )†SU⊥
M̂

(U⊥
M̂

)>q̂.

For the first equality, we have used the definition of the least square solution. For the second equality, we have
used the definition that M∗ = SM̂ and q̃ = Sq̂. For the third equality, we have carried an SVD for M̂ and SM̂ .
For the sixth equality, we use the fact that I = (U⊥

M̂
(U⊥

M̂
)> + UM̂U

>
M̂

). Now, let Γ = (SUM̂ )† − (SUM̂ )>. We
have that,

t̂− t̃ =− VM̂D
−1
M̂

(SUM̂ )†SU⊥
M̂

(U⊥
M̂

)>q̂

=− VM̂D
−1
M̂

((SUM̂ )> + Γ)SU⊥
M̂

(U⊥
M̂

)>q̂.

Furthermore, Γ = (SUM̂ )† − (SUM̂ )> ⇒ ‖Γ‖2 =
∥∥∥D−1SUM̂ −DSUM̂

∥∥∥
2

= σ−1min(SUM̂ )− σmin(SUM̂ ). As a result,

‖t̂− t̃‖2 =
∥∥∥VM̂D−1M̂ ((SUM̂ )> + Γ)SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥∥
2

=
∥∥∥D−1

M̂
((SUM̂ )> + Γ)SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥∥
2

≤
∥∥∥D−1

M̂
(SUM̂ )>SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥∥
2

+
∥∥∥D−1

M̂
ΓSU⊥

M̂
(U⊥

M̂
)>q̂
∥∥∥
2

≤σ−1min(M̂)
(∥∥(SUM̂ )>SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥
2

+
∥∥ΓSU⊥

M̂
(U⊥

M̂
)>q̂
∥∥
2

)
≤σ−1min(M̂)

(∥∥U>
M̂
S>SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥
2

+ ‖Γ‖2
∥∥SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥
2

)
=σ−1min(M̂)

(∥∥U>
M̂

(I − Ξ)U⊥
M̂

(U⊥
M̂

)>q̂
∥∥
2

+ (σ−1min(SUM̂ )− σmin(SUM̂ ))
∥∥SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥
2

)
=σ−1min(M̂)

(∥∥U>
M̂

ΞU⊥
M̂

(U⊥
M̂

)>q̂
∥∥
2

+ (σ−1min(SUM̂ )− σmin(SUM̂ ))
∥∥SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥
2

)
,

where we have used the fact that S>S = I − Ξ as S>S is a diagonal matrix with the diagonal elements
corresponding to the missing edges/triplets being zero and one otherwise, and Ξ is a diagonal matrix with the
diagonal elements corresponding to the missing edges/triplets being one and zero otherwise. Subsequently,

‖t̂− t̃‖2 =σ−1min(M̂)
(∥∥U>

M̂
ΞU⊥

M̂
(U⊥

M̂
)>q̂
∥∥
2

+ (σ−1min(SUM̂ )− σmin(SUM̂ ))
∥∥SU⊥

M̂
(U⊥

M̂
)>q̂
∥∥
2

)
≤σ−1min(M̂)

(∥∥U>
M̂

Ξ
∥∥
2

∥∥U⊥
M̂

(U⊥
M̂

)>q̂
∥∥
2

+
(
σ−1min(SUM̂ )− σmin(SUM̂ )

)) ∥∥U⊥
M̂

(U⊥
M̂

)>q̂
∥∥
2

=σ−1min(M̂)
(∥∥U>

M̂
Ξ
∥∥
2

+
(
σ−1min(SUM̂ )− σmin(SUM̂ )

)) ∥∥U⊥
M̂

(U⊥
M̂

)>q̂
∥∥
2

≤σ−1min(M̂)
(∥∥U>

M̂
Ξ
∥∥

F
+ σ−1min(SUM̂ )− σmin(SUM̂ )

)∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
‖q̂‖2

≤1

6
p(p2 − 1)σ−1min(M̂)

(
umaxs+ σ−1min(SUM̂ )− σmin(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|, (49)

where for the first inequality, we have used the fact that S has a maximum singular value of 1 and for the last
inequality, s is the number of misspecification, umax is the largest norm among the rows in UM̂ , and we have used
the third assumption in Appendix C.2.1 to get ‖q̂‖2 ≤ 1

6p(p
2 − 1)|logωmin|.

Assembling Bounds for E[‖µ̂00 − µ̃00‖2] and E[‖µ̂0+ − µ̃0+‖2] Combining (46), (47), and (48), we have that
for j ∈ {1, 2, · · · , p},

‖µ̂0j − µ̃0j‖2 ≤2‖π̂j − π̃j‖2 + ‖δ00‖2 + 2‖∆00‖2

≤ 4

ωmin
‖t̂− t̃‖∞ + 9‖δ00‖2

≤ 4

ωmin
‖t̂− t̃‖∞ +

9

2
‖t̂− t̃‖∞

≤ 9

ωmin
‖t̂− t̃‖∞,
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where for the second inequality we have used ‖∆00‖2 ≤ 4‖δ00‖2 derived similarly to (37). This means

‖µ̂0+ − µ̃0+‖∞ ≤
9

ωmin
‖t̂− t̃‖∞

⇒ ‖µ̂0+ − µ̃0+‖2 ≤
9
√
p

ωmin
‖t̂− t̃‖∞

≤
9
√
p

ωmin
‖t̂− t̃‖2

≤ 9p
7
2

ωmin
σ−1min(M̂)

(
umaxs+ σ−1min(SUM̂ )− σmin(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|, (50)

where we have used (49) for the last inequality. On the other hand, from (45), (48), and (49), we have that

‖µ̂00 − µ̃00‖2 ≤
1

2
‖t̂0 − t̃0‖2

≤1

2
‖t̂− t̃‖2

≤p
3

2
σ−1min(M̂)

(
umaxs+ σ−1min(SUM̂ )− σmin(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|. (51)

Because given Ĝ, the right hand side of (50) and (51) are both constant, taking the expectation of both side of
(50) and (51) and using the fact that σmin(SUM̂ ) ≥ 0 yield the result.

C.3 Parameter Estimation with Known Class Balance

Since µ∗00 is known, we provide a characterization of E[‖µ̂0+ − µ∗0+‖2]. E[‖µ̂+ − µ∗+‖2] and E[‖µ̂++ − µ∗++‖2] can
be characterized in the same way as in Theorem 3.

Theorem 4. Under the assumptions made in Appendix C.2.1, the expected mean accuracy parameter estimation
error of Firebolt learned from n unlabeled data points, p labeling functions, and Ĝ for a binary classification
problem with class balance µ∗00 can be upper bounded by:

E[‖µ̂0+ − µ∗0+‖2] ≤ 12
√

2π

ωmin
· (σ−1min(M∗) + 1) · p

3

√
n

+ p2σ−1min(M̂)
(
umaxs+ σ−1min(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|,

where S is a selection matrix such that SM̂ = M∗, s is the number of missing edges in Ĝ compared to G∗, UM̂ is
the left unitary matrix of the singular value decomposition of M̂ , U⊥

M̂
is the orthogonal complement of UM̂ , and

umax is the largest norm among the rows in UM̂ .

Proof. The proof of Theorem 4 is similar to that of Theorem 3. Following the decomposition in (31), it is sufficient
to analyze the sampling error E[‖µ̃0+ − µ∗0+‖2] and the model misspecification error E[‖µ̂0+ − µ̃0+‖2].

Bounding ‖µ̃0j − µ∗0j‖2 Similar to (34), we have that

µ̃0j = 2Σ∗00π̃j + (µ∗00 + µ̂jj)µ̂jj − 1. (52)

(52) - (32) and using µ̂jj = µ∗jj + δjj yields,

µ̃0j − µ∗0j =2Σ∗00π̃j − 2Σ∗00π
∗
j + (µ∗00 + µ̂jj)µ̂jj − (µ∗00 + µ∗jj)µ

∗
jj

=2Σ∗00(π̃j − π∗j ) + µ∗00(µ̂jj − µ∗jj) + µ̂2
jj − µ∗2jj

=2Σ∗00(π̃j − π∗j ) + µ∗00δjj + (µ̂jj + µ∗jj)δjj .

Therefore,

‖µ̃0j − µ∗0j‖2 ≤2Σ∗00‖π̃j − π∗j ‖2 + ‖µ∗00 + µ̂jj + µ∗jj‖2‖δjj‖2
≤2‖π̃j − π∗j ‖2 + 3‖δjj‖2. (53)
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Bounding ‖π̃j − π∗j ‖2 Here, we are interested in bounding ‖π̃j − π∗j ‖2 with ‖l̃j − l∗j‖2. To this end, we consider

‖π̃j − π∗j ‖2 ≤

∥∥∥∥∥exp(l̃j) + 1

2
−

exp(l∗j ) + 1

2

∥∥∥∥∥
2

≤1

2
‖exp(l̃j)− exp(l∗j )‖2

=
1

2
‖exp(l∗j )(exp(l̃j − l)− 1)‖2

≤1

2
‖exp(l∗j )‖2‖exp(l̃j − l∗j )− 1‖2

≤1

2
‖2π∗j − 1‖2‖exp(l̃j − l∗j )− 1‖2

≤1

2
‖exp(l̃j − l∗j )− 1‖2.

Using the fact that for x ≤ 1⇒ exp(x)− 1 ≤ 2x, we have that

‖π̃j − π∗j ‖2 ≤ ‖l̃j − l∗j‖2 ≤ ‖l̃ − l∗‖∞. (54)

Note that ‖π̃j − π∗j ‖2 ≤ ‖l̃j − l∗j‖2 in (54) trivially holds when ‖l̃j − l∗j‖2 > 1 because ‖π̃j − π∗j ‖2 ≤ 1.

Bounding ‖l̃− l∗‖2 Bounding ‖l̃− l∗‖2 with ‖q̃−q∗‖2 is straightforward. Indeed, because l̃ = arg minl
1
2‖M

∗l−
q̃‖22 and l∗ = arg minl

1
2‖M

∗l − q∗‖22, we have that

‖l̃ − l∗‖2 = ‖M∗†q̃ −M∗†q∗‖2 ≤ ‖M∗†‖2‖q̃ − q∗‖2, (55)

where M∗† is the pseudo-inverse of M∗.

Bounding ‖q̃ − q∗‖2 Here we bound ‖q̃ − q∗‖2. In particular, using Σ̂jk = Σ∗jk + ∆jk, we have that

∥∥q̃jk − q∗jk∥∥2 =

∥∥∥∥∥log
Σ̂jk
Σ∗00
− log

Σ∗jk
Σ∗00

∥∥∥∥∥
2

=
∥∥∥log Σ̂jk − log Σ∗jk

∥∥∥
2

=
∥∥log(Σ∗jk + ∆jk)− log Σ∗jk

∥∥
2

=

∥∥∥∥∥log

(
1 +

∆jk

Σ∗jk

)∥∥∥∥∥
2

≤

∥∥∥∥∥∆jk

Σ∗jk

∥∥∥∥∥
2

≤ 1

ωmin
‖∆jk‖2, (56)

where we have use the fact that log(1 + x) ≤ x, and ωmin is the smallest positive entry of Σ∗.

Assembling Bounds for E[‖µ̃0+ − µ∗0+‖2] Putting (53), (54), (55), and (56) together, we have that for all
j ∈ {1, 2, · · · , p},

‖µ̃0j − µ∗0j‖2 ≤2‖π̃j − π∗j ‖2 + 3‖δjj‖2
≤2‖l̃ − l∗‖∞ + 3

√
p‖δ+‖∞.

As a result,

‖µ̃0+ − µ∗0+‖2 ≤2
√
p‖l̃ − l∗‖2 + 3‖δ+‖∞
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≤2
√
p‖M∗†‖2‖q̃ − q∗‖2 + 3

√
p‖δ+‖∞

≤
2
√
p‖M∗†‖2
ωmin

‖Σ̂− Σ∗‖F + 3
√
p‖µ̂+ − µ∗+‖∞.

Applying Lemma 3 and Lemma 5, we have that

E[‖µ̃0+ − µ∗0+‖2] ≤
2
√
p‖M∗†‖2
ωmin

· 2
√

2πp
5
2

√
n

+ 3
√
p · 4
√

2πp

n

≤12
√

2π

ωmin
· (‖M∗†‖2 + 1) · p

3

√
n
.

Bounding ‖µ̂0+ − µ̃0+‖2 We describe how to upper bound ‖µ̂0+ − µ̃0+‖2 with ‖π̂ − π̃‖2. Similar to (44), we
have that

µ̂0j = 2Σ∗00π̂j + (µ∗00 + µ̂jj)µ̂jj − 1. (57)
(57) - (52) yields,

µ̂0j − µ̃0j =2Σ∗00(π̂j − π̃j)
⇒ ‖µ̂0+ − µ̃0+‖2 =2Σ∗00‖π̂ − π̃‖2. (58)

Bounding ‖π̂ − π̃‖2 Following the same rationale to bound ‖π̃ − π‖2 with ‖l̃ − l‖2, we can bound ‖π̂ − π̃‖2
with ‖l̂ − l̃‖2 as:

‖π̂ − π̃‖2 ≤ ‖l̂ − l̃‖2. (59)

Bounding ‖l̂ − l̃‖2 Using an argument similar to that of bounding ‖t̂− t̃‖2, we have that

‖l̂ − l̃‖2 ≤
1

2
p(p− 1)σ−1min(M̂)

(
umaxs+ σ−1min(SUM̂ )− σmin(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|, (60)

where s is the number of missing edges in Ĝ compared to G∗.

Assembling Bounds for E[‖µ̂0+ − µ̃0+‖2] Combining (58), (59), and (60), and taking the expectation yields:

E[‖µ̂0+ − µ̃0+‖2] ≤ p2σ−1min(M̂)
(
umaxs+ σ−1min(SUM̂ )

) ∥∥U⊥
M̂

(U⊥
M̂

)>
∥∥
2
|logωmin|.

C.4 Generalization Error

We first provide problem setup and some definitions. Let y = fw(x) be an end model parameterized by a given w
that we seek to learn from the dataset X =

{
x(i)
}n
i=1

, where y(i)’s are unobserved, drawn from the distribution D.
Let l(y, x;w) ∈ [0, 1] be a loss function that takes value between 0 and 1, without loss of generality. Let

L(w) = ED[l(x, y;w)] (61)

be the expected loss of the ends model under D parameterized by w. Ideally, we will seek w∗ = arg minL(w).
However, since we do not observe y in a weak supervision setting, we will need to consider optimizing an alternative
expected loss. In detail, let µ be the population-level mean parameters of the label model under the ground truth
dependency graph G. With the label model parametrized by µ, the end model learned from weak supervision has
the following expected noise-aware loss of Lµ(w):

Lµ(w) = E(x,y)∼D[E(x,ỹ)∼Pµ(·|λ(x))[l(x, ỹ;w)]]. (62)

Furthermore, in pratice, instead of having access to µ, it is the case that we estimate µ from the dataset L with a
dependency graph Ĝ. This yields µ̂. The empirical loss of w associated with µ̂ can be written as:

1

n

n∑
i=1

E(x,ỹ)∼Pµ(·|λ(x))[l(x, ỹ;w)].

With these definitions, we now introduce the following lemma that link L(w) and Lµ(w) through the KL divergence
between the conditional distribution of y given x of the ground truth and that governed by µ.
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Lemma 9. The following inequality holds between the expected loss defined in (61) and the noise-aware expected
loss defined in (62):

Lµ(w)−
√

2 ·KL(PD(y | x) ‖ Pµ(y | x)) ≤ L(w) ≤ Lµ(w) +
√

2 ·KL(PD(y | x) ‖ Pµ(y | x)).

Proof. The proof of this theorem can be found in Fu et al. (2020).

Lemma 10. Let µ∗ and µ∗∗ be the mean parameters of two label models of the same set of LFs. The difference
between the probabilistic labels produced by the two label models |Pµ∗(y | λ)− Pµ∗∗(y | λ)| can be bounded by:

|Pµ∗(y | λ)− Pµ∗∗(y | λ)| ≤ 1

2
‖θ∗ − θ∗∗‖2,

where θ∗ and θ∗∗ are the canonical parameters associated with µ∗ and µ∗∗, respectively.

Proof. Let θ∗ be the canonical parameters associated with µ∗ and let θ∗∗ be the canonical parameters associated
with µ∗∗. By (20),

|Pµ1
(y | λ)− Pµ2

(y | λ)| =|sigmoid(2θ∗00 + 2θ∗>0+λ)− sigmoid(2θ∗∗00 + 2θ∗∗>0+ λ)|

≤1

2
‖θ∗0· − θ∗∗0· ‖∞

≤1

2
‖θ∗ − θ∗∗‖2.

where for the first inequality we have used Lipschitzness (Definition 4 of Honorio 2012) and the fact that∣∣∣∣∣∂Pθ0·(y | λ)

∂θ0j

∣∣∣∣∣ =
∣∣2λj · (1− sigmoid(2θ00 + 2θ>0+λ)) · sigmoid(2θ00 + 2θ>0+λ)

∣∣ ≤ 1

2
,

for all j ∈ {0, 1, 2, · · · , p}, and viewing λ0 = 1.

Lemma 11 (Paraphrase of Lemma 8 of Fu et al. 2020). Let µ∗ and µ∗∗ be the mean parameters of two Ising
models for the joint distribution of y and λ. Let θ∗ and θ∗∗ be the associated canonical parameters. For some
constant c1 > 0, we have that

‖θ1 − θ2‖2 ≤
1

c1
‖µ1 − µ2‖2.

Proof of Theorem 2 With the foregoing preparation, we are now ready to prove Theorem 2.

Proof. We use Lemma 9 to upper bound L(ŵ) and lower bound L(w∗), this yields

L(ŵ)− L(w∗) ≤ Lθ∗0·(ŵ)− Lθ∗0·(w
∗) + 2

√
2 ·KL(PD(y | x) ‖ Pµ(y | x)).

We further bound Lθ∗0·(ŵ) − Lθ∗0·(w
∗), which follows a similar rationale in Ratner et al. (2019). In detail, let

w̃ = arg minLθ̂0·(w), we consider

Lθ∗0·(ŵ)− Lθ∗0·(w
∗) =Lθ∗0·(ŵ) + Lθ̂0·(ŵ)− Lθ̂0·(ŵ) + Lθ̂0·(w̃)− Lθ̂0·(w̃)− Lθ∗0·(w

∗)

≤Lθ∗0·(ŵ) + Lθ̂0·(ŵ)− Lθ̂0·(ŵ) + Lθ̂0·(w
∗)− Lθ̂0·(w̃)− Lθ∗0·(w

∗)

≤|Lθ̂0·(ŵ)− Lθ̂0·(w̃)|+ |Lθ∗0·(ŵ)− Lθ̂0·(ŵ)|+ |Lθ̂0·(w
∗)− Lθ∗0·(w

∗)|

≤ξ1(n) + 2|Lθ∗0·(w
†)− Lθ̂0·(w

†)|,

where for the first inequality we have used the fact that Lθ̂0·(w̃) ≤ Lθ̂0·(w
∗), ξ1(n) is the sampling error, and

w† = arg maxw∈{ŵ,w∗}|Lθ̂0·(w)− Lθ∗0·(w)|. It remains to bound |Lθ∗0·(w
†)− Lθ̂0·(w

†)|. In detail,

|Lθ∗0·(w
†)− Lθ̂0·(w

†)| =|E(x,y)∼D[E(x,ỹ)∼Pθ∗0· (·|λ(x))
[l(x, ỹ;w†)]− E(x,ỹ)∼Pθ̂0· (·|λ(x))

[l(x, ỹ;w†)]]|
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=E(x,y)∼D

 ∑
y′∈{−1,1}

l(x, y′;w†)
(

Pθ∗0·(y
′ | λ(x))− Pθ̂0·(y

′ | λ(x))
)

≤E(x,y)∼D

 ∑
y′∈{−1,1}

|Pθ∗0·(y
′ | λ(x))− Pθ̂0·(y

′ | λ(x))|


=

∑
y′∈{−1,1}

E(x,y)∼D

[
|Pθ∗0·(y

′ | λ(x))− Pθ̂0·(y
′ | λ(x))|

]
≤2 max

y′
E(x,y)∼D

[
|Pθ∗0·(y

′ | λ(x))− Pθ̂0·(y
′ | λ(x))|

]
≤‖θ̂0· − θ∗0·‖2,

where for the last inequality we have used Lemma 10. It remains to bound ‖θ̂0· − θ∗0·‖2 with ‖µ̂− µ∗‖2. This is
not straightforward because θ̂0· is learned from µ̂ via logistic regression according to (10) instead of through the
use of mean-canonical mapping. Therefore, the mean parameters associated with θ̂0· are not µ̂0·. As a result,
we cannot bound ‖θ̂0· − θ∗0·‖2 with ‖µ̂ − µ∗‖2 through a direct application of Lemma 112. This motivates the
following arguments. In detail, we define a loss function

`(µ0·, λ; θ0·) = −θ>0·µ0· + log[exp(θ00 + θ>0+λ) + exp(−θ00 − θ>0+λ)].

In this way, (10) can still be written as the following empirical risk minimization problem: 1
n

∑n
i=1 `(µ̂, λ

(i); θ).
Furthermore, for a data generation process governed by θ∗, we can write the population-level risk of a parameter
θ as:

Lθ∗(θ) = E[`(µ∗0·, λ; θ0·)].

That is, to compute Lθ∗(θ), we compute µ∗0· from θ∗, we then view µ∗0· as a constant input for `(·) and sample
λ (infinitely many times) for the computation of the the population level loss. It should also be noticed that
Lθ∗(θ0·) is also the population level loss for a logistic regression problem parameterized by θ0· under the data
generation process governed by θ∗0·. Therefore, under standard regularity conditions (Negahban et al., 2012), we
have that Lθ∗(θ0·) is strongly convex. This implies that for some strongly-convex constant γ,

‖θ̂0· − θ∗0·‖2 ≤
2

γ

(
Lθ∗(θ̂0·)− Lθ∗(θ∗0·)

)
,

where we have also used the fact that θ∗0· is a global minimizer for Lθ∗(θ0·). It remains to bound Lθ∗(θ̂0·)−Lθ∗(θ∗0·)
with ‖µ̂− µ∗‖2, which we achieved through an argument similar to that of bounding Lθ∗(ŵ)− Lθ∗(w∗) for the
end model. Specifically, define the canonical parameters associated with µ̂ achieved through mean-canonical
parameter mapping as ˆ̂

θ, and further define θ̃0· = arg minθ L ˆ̂
θ
(θ0·), we have that

Lθ∗(θ̂0·)− Lθ∗(θ∗0·) =Lθ∗(θ̂0·) + L ˆ̂
θ
(θ̂0·)− L ˆ̂

θ
(θ̂0·) + L ˆ̂

θ
(θ̃0·)− L ˆ̂

θ
(θ̃0·)− Lθ∗(θ∗0·)

≤Lθ∗(θ̂0·) + L ˆ̂
θ
(θ̂0·)− L ˆ̂

θ
(θ̂0·) + L ˆ̂

θ
(θ∗0·)− L ˆ̂

θ
(θ̃0·)− Lθ∗(θ∗0·)

≤|L ˆ̂
θ
(θ̂0·)− L ˆ̂

θ
(θ̃0·)|+ |Lθ∗(θ̂0·)− L ˆ̂

θ
(θ̂0·)|+ |L ˆ̂

θ
(θ∗0·)− Lθ∗(θ∗0·)|

≤|L ˆ̂
θ
(θ̂0·)− L ˆ̂

θ
(θ̃0·)|+ 2|Lθ∗(θ†0·)− L ˆ̂

θ
(θ†0·)|,

where θ†0· = arg maxθ0·∈{θ̂0·,θ∗0·}|L ˆ̂
θ
(θ0·)−Lθ∗(θ0·)|. It remains to analyze |L ˆ̂

θ
(θ̂0·)−L ˆ̂

θ
(θ̃0·)| and |Lθ∗(θ†0·)−L ˆ̂

θ
(θ†0·)|

for the last inequality. For |L ˆ̂
θ
(θ̂0·)− L ˆ̂

θ
(θ̃0·)|, we notice that L ˆ̂

θ
(θ̂0·) = E[`(µ̂, λ; θ̂0·)] and L ˆ̂

θ
(θ̃) = E[`(µ̂, λ; θ̃0·)].

Because θ̂0· is learned from a dataset of n samples
{
λ(i)
}n
i=1

and µ̂ while θ̃0· is learned from the corresponding
population distribution of λ and µ̂, we can view |L ˆ̂

θ
(θ̂0·)−L ˆ̂

θ
(θ̃0·)| as sampling error of empirical risk minimization

bounded by some decreasing function of ξ2(n). For |Lθ∗(θ†)− L ˆ̂
θ
(θ†)|, we observe

|Lθ∗(θ†0·)− L ˆ̂
θ
(θ†0·)| =|E[`(µ∗, λ; θ†0·)]− E[`(µ̂, λ; θ†0·)]|

2However, for the exact inference algorithms mentioned in Appendix B.7.2 and Appendix B.7.3 for conditionally
independent labeling functions, we can apply Lemma 11 directly to conclude the proof.
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Name # Samples # Non-abstain Samples # LFs # Bipolar LFs Test positive rate
spam 1,486 1,381 10 0 47.2%

crowdsourcing 187 187 190 88 56%
spouse 22,254 5,734 9 1 8.07%
IMDB 50,000 0 16 0 50.25%

Table 3: Summary of four benchmark datasets.

Dataset Majority Vote Production CLL Flyingsquid Firebolt
spam 0.908 0.943 0.879 0.889 0.948

spouse 0.767 0.784 0.655 0.783 0.797
IMDb 0.738 0.636 0.701 0.756 0.777

Table 4: AUCs of the label models on various benchmark datasets.

≤c2‖µ̂− µ∗‖2,

where we have used the Lipschitzness of E[`(µ, λ; θ†0·)] about µ for a bounded space of θ†0·.

D Extended Experiments

In this section, we describe experiment setup and present extended experimental results. First, we provide further
details about the setup and results on four benchmark weak supervision datasets (Appendix D.1). Next, we
describe the experiments for zero-shot learning through the use of 45 datasets derived from the Animal with
Attributes 2 (AwA2) dataset (Xian et al., 2018; Mazzetto et al., 2021b) in Section 5.3. Finally, we seek to better
understand the characteristics of Firebolt empirically via experiments on synthetic data (Appendix D.2).

D.1 Experiments on Benchmark Datasets

Datasets We further describe the setup for each of the benchmark datasets we used in the main paper. For all
datasets, only data points that receive at least one vote from the labeling functions are used in the training set.
Since we do not have access to the dependency graph between labeling functions in these datasets, we further
assume that the labeling functions are conditionally independent of each other. Table 3 shows a summary of the
datasets.

• spam: The spam dataset is a balanced dataset of a binary classification problem that compares whether Youtube
comments are spam or non-spam (Alberto et al., 2015). We use this dataset to demonstrate the utility of
Firebolt tackling weak supervision problems when the class balance is known. To do this, we assume that the
class balance is known and set the positive rate of the dataset manually to 0.5. For the end model, we used a
countvectorizor to produce features and feed those features to a one hidden layer neural network with 100
hidden units. The use of the countvectorizor based end model follows the feature representation used in the
Snorkel tutorial of weak supervision from which this dataset is derived.

• crowdsourcing: The crowdsourcing dataset is yet another balanced dataset. We also use this dataset to
demonstrate the utility of Firebolt tackling balanced weak supervision problems. Similar to spam dataset, we
set the positive rate of the dataset manually to 0.5. For the end model, we use the same end model as spam.

• spouse: The spouse dataset seeks to identify mentions of spouse relationships in a set of news articles Corney
et al. (2016). The dataset is highly imbalanced with a test set positive rate of about 8%. We use Firebolt to
estimate this positive rate and then run Firebolt using the estimated positive rate. We use the same end model
from the Snorkel tutorial from which this dataset is derived as our end model.

• IMDb: The IMDb dataset seeks to distinguish positive user sentiments from negative sentiments in movie reviews
(Maas et al., 2011). The dataset is also balanced with a positive rate of 50.25% on the test set. The dataset
contains 50,000 examples and we use 40,000 for training, 8,000 for test, and 2,000 for validation. We provide a
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Dataset Majority Vote Production CLL Flyingsquid Firebolt
spam 0.884 0.935 0.869 0.896 0.940

spouse 0.267 0.381 0.262 0.371 0.377
IMDb 0.679 0.606 0.636 0.729 0.753

Table 5: APs of the label models on three benchmark datasets.

Dataset Majority Vote Production CLL Flyingsquid Firebolt
spam 0.969±0.002 0.982±0.001 0.923±0.002 0.961±0.002 0.982±0.001

crowdsourcing 0.838±0.009 0.819±0.006 0.845±0.004 0.806±0.005 0.835±0.010
spouse 0.179±0.034 0.266±0.012 0.215±0.033 0.231±0.019 0.374±0.007
IMDb 0.798±0.002 0.624±0.001 0.820±0.002 0.788±0.001 0.822±0.001

Table 6: Test APs of weakly supervised end models on four benchmark datasets over five trials (mean±s.d.).

0.5 positive rate to Firebolt for this dataset. The end model we used is a one-hidden-layer relu neural network
and the features are trainable embeddings from https://tfhub.dev/google/nnlm-en-dim50/2. The hidden
layer has 512 nodes. We use word embedding in our end model because we experience out-of-memory issues
using the countvectorizor for this dataset.

We generate labeling functions for the dataset by using a simple heuristic that either votes or abstain on the
data examples. We define a set of words where each word represents a positive or negative sentiment. For
words that have positive sentiments, we obtain labeling functions from them by voting positive if the word is
present in the review else we abstain. Similarly, for words with negative sentiments we vote negative when the
words are present in the review else we abstain. The positive sentiment words we use are: like, love, good,
great, best, excellent, amazing while the negative sentiment words are: could, awful, better, bad,
terrible, worst, horrible, sucks.

Protocol We follow the same protocol as in the main paper and learn the labels on the training data then
evaluate the end model on the test data. When validation sets are available, we also use the validation sets during
the training of the end models. We report mean of the results over 5 trials and also show the standard deviation
of the runs.

Results We present results on both the label model and the end model. Table 4 and Table 5 present the AUC
and average precision (AP) of various label models on three datasets, where we do not report the results of
the crowdsourcing dataset because the LFs in this dataset abstain in the test set. As can be seen, Firebolt
outperforms alternative methods in AUC over all three datasets. Nonetheless, the production label model slightly
outperforms Firebolt in AP on the spouse dataset. Table 6 shows the performance of Firebolt and alternative
methods on the four benchmark classification tasks. Other than the AUC reported in Table 1, here we also report
the AP and from the Table we see that Firebolt either produces the best results or is in a (statistical) tie to be
the best approach among all datasets. Note that for the imbalanced spouse dataset, Firebolt outperforms the
next best performing method by 10.8 percentage points in AP.

D.2 Synthetic Data

We present a series of synthetic experiments to better understand the characteristics of Firebolt. Specifically, we
show that

• Firebolt can tackle imbalanced classification with conditionally independent unipolar LFs (Appendix D.2.1).

• Firebolt can learn from a mix of conditionally independent unipolar and bipolar LFs (Appendix D.2.2).

• Firebolt can learn from LFs that have complex dependency among them (Appendix D.2.3).

• Firebolt is robust against worse-than-random LFs and misspecified dependencies (Appendix D.2.4).

It should be noticed that the distinction and discussion of the first three settings (Appendix D.2.1–Appendix D.2.3)
are meaningful because Firebolt can use different inference algorithms in these three settings. In particular,

https://tfhub.dev/google/nnlm-en-dim50/2
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Method Majority Vote Production CLL Flyingsquid Firebolt
AUC 0.565 0.916 0.400 0.962 0.967
AP 0.007 0.186 0.007 0.504 0.554

Table 7: Test performance of label models learned from an imbalanced dataset of 80,000 samples of conditionally
independent positive labeling functions.

Appendix D.2.1 uses the inference algorithm described in Appendix B.7.2; Appendix D.2.2 uses the infer-
ence algorithm described in Appendix B.7.3; and Appendix D.2.3 uses the inference algorithm described in
Appendix B.7.1.

D.2.1 Imbalanced Classification with Unipolar LFs

We empirically evaluate the performance of Firebolt for imbalanced classification by learning from a set of
conditionally independent unipolar labeling functions. To this end, we carry out experiments on synthetic data
using a ground truth label model of 10 conditionally independent positive labeling functions of varying accuracy
and prevalence. The ground truth positive rate of label is 0.608%. We want to understand the predictive
performance, the parameter learning performance, and the interpretability of Firebolt.

Metrics We use the AUC and AP on the test set to understand the predictive performance of Firebolt. We use
the parameter estimation error of the mean parameters ‖µ̂0+ − µ∗0+‖2 and ‖µ̂00 − µ∗00‖2 as metrics for parameter
learning performance (including class balance). Finally, we use the the canonical parameter estimation error
‖θ̂0+ − θ∗0+‖2 and ‖θ̂00 − θ∗00‖2 to understand the interpretability of Firebolt.

Protocol Using the ground truth label model, we produce two datasets of 80, 000 and 160, 000 data points,
respectively. For predictive performance, we use the dataset of 80, 000 data points to train a Firebolt model
as well as four alternative methods. We then use the AUC and AP of the label model learned by the various
methods on the ground truth test distribution to evaluate the predictive performance of each method. Inference
is carried out based on Appendix B.7.2. For parameter learning and interpretability, we train Firebolt on the two
datasets to see how the mean and canonical parameter estimation error change with increasing sample size.

Expected Results We anticipate that Firebolt can deliver reasonable test AUC and AP for predictive
performance. Furthermore, we anticipate that the the mean and canonical parameter estimation error will
decrease by learning from dataset of increased sample size.

Sample Size ‖µ̂0+ − µ∗0+‖2 ‖µ̂00 − µ∗00‖2 ‖θ̂0+ − θ∗0+‖2 ‖θ̂00 − θ∗00‖2
80,000 0.016 0.011 0.285 0.264
160,000 0.004 0.002 0.176 0.039

Table 8: Mean and canonical parameter estimation error of Firebolt when learning from a set of conditionally
independent unipolar LFs.

Results We first present the results on predictive performance in Table 7. As can be seen, Firebolt outperforms
alternatives on predictive performance measured by both test AUC and AP. Next, we present results on parameter
learning performance and interpretability, summarized in Table 8. As can be seen, both the mean parameter
estimation error and the canonical parameter estimation error decrease as the sample size increases. This
demonstrates the capacity of Firebolt in recovering the parameters of the label model as well as its interpretability
for the importance of each labeling function in the data generation process. It should also be noticed that the
parameter estimation error associated with the class balance ‖µ̂00 − µ∗00‖2 and ‖θ̂00 − θ∗00‖2 decrease more slowly
compared to that of the accuracy parameters of the labeling functions. This highlight the difficulty of imbalanced
classification.



Kuang et al.

Method Majority Vote Production CLL Flyingsquid Firebolt
AUC 0.776 0.844 0.770 0.844 0.896
AP 0.296 0.558 0.007 0.302 0.632

Table 9: Test performance of label models learned from an imbalanced dataset of 50,000 samples of conditionally
independent unipolar and bipolar LFs.

D.2.2 Learning from a Mix of Unipolar and Bipolar LFs

We study the performance of Firebolt in learning from a mixed of conditionally independent unipolar and bipolar
labeling functions. For this purpose, we consider a conditionally independent ground truth label model with two
positive labeling functions and one bipolar labeling function. The ground truth positive rate of label is 15.114%.
We want to understand the predictive performance, the parameter learning performance, and the interpretability
of Firebolt in this setting.

We use the same metrics and follow the same protocol as described in Appendix D.2.1. We produce two datasets
with 5, 000 and 50, 000 samples, respectively. We evaluate the predictive performance of Firebolt on the dataset
with 50, 000 samples. We follow the inference procedure described in Appendix B.7.3.

Sample Size ‖µ̂0+ − µ∗0+‖2 ‖µ̂00 − µ∗00‖2 ‖θ̂0+ − θ∗0+‖2 ‖θ̂00 − θ∗00‖2
5, 000 0.076 0.056 0.171 0.197
50, 000 0.019 0.013 0.035 0.044

Table 10: Mean and canonical parameter estimation error of Firebolt when learning from a mix of unipolar and
bipolar LFs.

The predictive performance is shown in Table 10, where Firebolt outperforms alternatives in this setting. The
parameter learning performance and interpretability is shown in Table 10, where both the mean and canonical
parameter error decrease as we have more samples to learn from.

D.2.3 Learning with Complex Dependencies

In Section 5.4, we study the predictive performance of Firebolt compared to other methods when learning from
labeling functions with complex dependency. Here, we extend this study by also understanding the parameter
learning performance and interpretability of Firebolt learning from labeling functions with complex dependency.
To this end, we consider the same ground truth label model used in Section 5.4.

We produce two datasets of 80, 000 and 800, 000 samples respectively and use Firebolt to learn label models
from these two datasets. We then measure the mean and canonical parameter estimation error as metrics to
understand the parameter learning performance and its interpretability.

Sample Size ‖µ̂0+ − µ∗0+‖2 ‖µ̂00 − µ∗00‖2 ‖θ̂0+ − θ∗0+‖2 ‖θ̂00 − θ∗00‖2
5, 000 0.378 0.205 0.293 0.825
50, 000 0.034 0.008 0.080 0.032

Table 11: Mean and canonical parameter estimation error of Firebolt when learning from LFs with complex
dependency.

The results are summarized in Table 11. As can be seen, both the mean and canonical parameter estimation errors
decrease as Firebolt learns from an increased number of samples. This indicates the improved performance of
Firebolt in parameter learning and reflecting the contribution of each labeling function in producing probabilistic
labels under the ground truth data generation process.

D.2.4 Robustness

We empirically demonstrate the robustness of Firebolt against common violation of assumptions and conditions
made by the algorithm such as using worse-than-random LFs and misspecified dependencies.
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Method Majority Vote Production CLL Flyingsquid Firebolt
AUC 0.554 0.894 0.640 0.955 0.965
AP 0.007 0.123 0.008 0.468 0.544

Table 12: Test performance of label models learned from an imbalanced dataset of 80,000 samples of conditionally
independent positive labeling functions where one of the LFs is worse than random guessing.

Worse-Than-Random LFs We seek to understand the robustness of Firebolt when some of the LFs that
Firebolt learns from are worse than random guessing. We are interested in understanding how the predictive
performance may deteriorate with worse than random guessing LFs. For this purpose, we modify the ground
truth label model in Appendix D.2.1 by changing one of the LFs from better than random guessing to worse than.

We use the same metrics and follow the same protocol as described in Appendix D.2.1 to evaluate the predictive
performance of Firebolt. The results are summarized in Table 12. As we can observe, Firebolt outperforms
alternatives under the scenario where not all the labeling functions are better than random guessing. Nonetheless,
comparing Table 12 with Table 7, we notice that the predictive performance of all methods drop when not all LFs
are better than random guessing, with Firebolt among the ones being influenced the least.

Misspecified Dependency We demonstrate the robustness of Firebolt against misspecified dependency. We
are concerned with the deterioration of predictive performance with misspecified dependency. To this end, we run
Firebolt on the dataset with 50, 000 samples described in Appendix D.2.2 but we remove the dependency between
the two labeling functions that represent the bipolar labeling function to create a conditionally independent
dependency graph Ĝ. We feed this Ĝ to Firebolt instead of G∗ to learn a label model and measure its test
performance. We get a test AUC of 0.871 and a test AP of 0.588. This result is only second to Firebolt with the
correctly specified dependency graph, comparing to the performance reported in Table 9. This result suggests the
robustness of Firebolt against misspecified dependency.

E Discussion

In this section, we discuss the limitations and potential societal impact of our work.

Limitation The assumptions made by Firebolt as described in Appendix C.2.1 may induce potential limitation,
especially when those assumptions are not met in practice. Furthermore, it is worth noting that Firebolt does not
deal with dependency graph with more than one latent variable, such as the ones dealt with in Sala et al. (2019);
Fu et al. (2020); Hooper et al. (2020). In addition, Firebolt also requires user specifying dependency graph among
the labeling functions as an input, which can be challenging for the users to provide without structure learning
(Bach et al., 2017; Varma et al., 2019). Lastly, based on our theoretical analysis, the convergence of Firebolt
relies on the convergence of the covariance tensor, whose optimal rate is still an open statistical problem as we
previously described in Section 4.

Societal Impact Firebolt focuses on the setting where we learn with limited to no label availability. Similar to
it’s supervised learning counterpart, the performance of our method is highly dependent on the input it receives
which is the labeling functions in our case. In practice we encourage users to define good labeling functions and
to ensure that the labeling functions are not biased unfairly in a way that will cause the model make biased
predictions towards certain population or demographic. While fairness is beyond the scope of our paper, we
encourage users to make adequate fairness considerations when using our model.
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