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We investigate the programming of reactive systems combining closed-loop control with performance-
intensive components such as Machine Learning (ML). Reactive control systems are often safety-
critical and associated with real-time execution requirements, a domain of predilection for syn-
chronous programming languages. Extending the high levels of assurance found in reactive control
systems to computationally-intensive code remains an open issue. We tackle it by unifying concepts
and algorithms from synchronous languages with abstractions commonly found in general-purpose
and ML compilers. This unification across embedded and high-performance computing enables a high
degree of reuse of compiler abstractions and code. We first recall commonalities between dataflow
synchronous languages and the static single assignment (SSA) form of general-purpose/ML compilers.
We highlight the key mechanisms of synchronous languages that SSA does not cover—denotational
concepts such as synchronizing computations with an external time base, cyclic and reactive I/O, as
well as the operational notions of relaxing control flow dominance and the modeling of absent values.
We discover that initialization-related static analyses and code generation aspects can be fully
decoupled from other aspects of synchronous semantics such as memory management and causality
analysis, the latter being covered by existing dominance-based algorithms of SSA-form compilers.
We show how the SSA form can be seamlessly extended to enable all SSA-based transformations
and optimizations on reactive programs with synchronous concurrency. We derive a compilation
flow suitable for both high-performance and reactive aspects of a control application, by embedding
the Lustre dataflow synchronous language into the SSA-based MLIR/LLVM compiler infrastructure.
This allows the modeling of signal processing and deep neural network inference in the (closed) loop
of feedback-directed control systems. With only a minor efforts leveraging the MLIR, infrastructure,
the generated code matches or outperforms state-of-the-art synchronous language compilers on
computationally-intensive ML applications.

1 INTRODUCTION

The Static Single Assignment (SSA) form [20, 21] has proven an extremely useful tool in the
hands of compiler builders. First introduced as a representation to facilitate optimizations,
it became a staple of optimizing compilers. More recently, its semantic properties—e.g.,
functional determinism while still allowing for limited concurrency—established it as a sound
basis for High-Performance-Computing (HPC) compilation frameworks such as MLIR [17],
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where different abstraction levels of the same application® share the structural and semantic
principles of SSA, allowing them to co-exist while being subject to common analysis and
optimization passes (in addition to specialized ones).

But while compilation frameworks such as MLIR concentrate the existing know-how in
HPC compilation for virtually every execution platform, they lack a key ingredient needed
in the high-performance embedded systems of the future—the ability to represent reactive
control and real-time aspects of a system. They do not provide first-class representation and
reasoning for systems with a cyclic execution model, synchronization with external time
references (logical or physical), synchronization with other systems, tasks and 1/O with
multiple periods and execution modes.

And yet, as we shall see in this paper, while the standard SSA form does not cover these
aspects, it shares strong structural and semantic ties with one of the main programming
models for reactive real-time systems: dataflow synchrony [3, 12], and its large and structured
corpus of theory and practice of reactive systems design.

Contribution. Relying on this syntactic and semantic proximity, we extend the SSA-
based MLIR framework to open it to synchronous reactive programming of real-time
applications. We illustrate the expressiveness of our extension through the compilation of
the pure dataflow core of the Lustre language. This allows us to model and compile all data
processing, computational and reactive control aspects of signal processing and machine
learning applications. In the compilation of Lustre, following an initial normalization phase,
all data type verifications, buffer synthesis, and causality analysis can be handled using
existing MLIR SSA algorithms. Only the initialization analysis specific to the synchronous
model (a.k.a. clock calculus or analysis) requires specific handling, leading to significant
code reuse.

The MLIR embedding of Lustre is non-trivial. As modularity based on function calls
is no longer natural due to the cyclic execution model, we introduce a node instantiation
mechanism. We also generalize the usage of the special undefined/absent value in SSA
semantics [9] and in low-level intermediate representations such as LLVM IR [15]. We clarify
its semantics and relate it to the notion of absence and the associated static analyses (clock
caleuli) of synchronous languages [2].

Our extension remains fully compatible with SSA analysis and code transformation
algorithms. It allows giving semantics and an implementation to all correct SSA specifications.
It also supports static analyses determining correctness from a synchronous semantics point
of view.

Qutline. Section 2 formalizes the SSA semantics. Section 3 extends SSA to allow reactive
synchronous programming. Section 4 covers the embedding of Lustre into MLIR SSA and
its compilation. In Section 5 we present our use cases. We discuss related work in Section 6
before the conclusion in Section 7.

2 SSA SYNTAX AND SEMANTICS

The syntax and semantics of SSA form have been presented multiple times before, but we
need to settle on one as a basis for extension. The SSA variant we selected is based on MLIR
[17], which uses continuation-passing style (CPS) branch arguments rather than ¢ operators.

IRanging from ML dataflow graphs and linear algebra specifications down to affine loop nests and optimized
(tiled, vectorized. . .) low-level code.
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<ssa_spec> 1= <function>"

<function> ::= func <fun_name> <fun_iface> <fun_body>
<fun_iface> 1= (<type>")->(<type>")
<fun_body> ::= <block>"
<block> ::= <blk_arg>: <blk_body>
<blk_arg> ::= <block_name>(<tvar>")

<tvar> = <var>:<type>
<blk_body> ::
<op> ::

<op>" <term_op>
(<war>")=<op_id>(<tvar>") : <type>"*
| <war> = load(<tvar>) :<type>
| store(<tvar>,<tvar>)
<term_op> ::= cond_br <var> <blk_arg> <blk_arg>
| br <blk_arg> | return(<tvar>")
<op_id> = <arith_op> | <bool_op> | call <fun_name>

Fig. 1. SSA syntax

Fig. 1 presents a minimal SSA syntax (in black) extended with the constructs for functional
composition (in red), and with the load and store operations to represent of memory side
effects (in green).?

Additional structural properties must be met. No two blocks of a function may have
the same name, and branching operations (br and cond_br) may only reference existing
blocks with the correct number of arguments. The blocks and the branching operations of
an SSA function determine a sequential control flow graph (SCFQG) structure, with the first
block serving as control entry point. Execution proceeds sequentially inside each block. Each
variable is either defined from one operation, or the argument of a single block header.? No
two functions may have the same name, and calling a function assumes that it exists and
has the correct interface. The interface of a function consists in the arguments of its first
block which are also the function arguments, and the arguments of its return operation
which are the function return values. If multiple return operations exist in a function, they
must have the same number of arguments. All SSA blocks are terminated by a return or a
branch operation. These operations are called terminators.

The small example of Fig. 2 illustrates the specific properties of reactive systems and the
differences between Lustre and SSA. The Lustre node (left) and MLIR SSA function (right)
implement the same functionality, but we focus on the SSA function in this section. As we
will see later, the latter could be the result of the compilation of the former. From now on,
and to simplify the exposition, we use the input/output terminology of Lustre nodes for
MLIR block and function arguments/return values. We will see that this terminology is well
supported by semantics properties. Note that the MLIR SSA syntax requires that block
identifiers start with “~” and that all variable names start with “%”. MLIR also provides
more intuitive forms for specific operations: for example, function calls specify the full
function signature at their end; the comparison taking two input variables as arguments and
producing one variable (the test result) has the syntax of line 10, which specifies the kind

2The syntax of types is left implicit. The following semantics is largely independent on the type system for
SSA expressions.

3Under classical SSA notation, this amounts to the variable being defined from exactly one ¢ operator. In
classical SSA notation, ¢ operators are used in blocks that are destination of multiple branching operations.
Each one allows the construction of a unique value based on values coming from the different source blocks.
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1 node stepper_drv(inc:int) returns (pos:int) 1 func @stepper_drv(->( {

2 var pos_pre,pos_inc,pos_tmp,cst:int; ck:bool; 2 “start:

3 let 3 %cO = constant 0 : i32

4 4  %cl0 = constant 10 : i32

5 5 br “step(%c0:132)

6 pos_pre = 0 fby pos; 6 “step(/pos_pre:i32):

7 7  %inc = call @input_inc() : () -> (i32)
8 pos_inc = pos_pre+inc; 8  Jpos_inc = addi %pos_pre, %inc : i32
9  pos_tmp = pos_inc-10; 9  %pos_tmp = subi %pos_inc, %cl0 : i32
10 ck = (pos_tmp >= 0); 10 %ck = cmpi "sge", %pos_tmp, %cO : i32
11 pos = if ck then pos_tmp else pos_inc; 11 %pos = select %ck,%pos_tmp,%pos_inc : 132
12 12 cond_br %ck, ~act(%c0:i32), “out

13 cst = 0 when ck ; 13 "act(%cst:132):

14 actuate(cst); 14 call @actuate(Ycst) : (i32) -> (O

15 15 br “out

16 16 “out:

17 17 call @output_pos(%pos) : (i32)->()

18 18 call @tick() : O -> O

19 19  br “step(%pos:i32)

20 tel 20 }

Fig. 2. Stepper motor driver in Lustre (left) and MLIR SSA (right). Control statements in green, data
processing operations in red, cyclic I/O and time synchronization in violet, state manipulation in blue.

of test (sge for >=), the type of input data (1i32), but not the type of the Boolean output
which is implicit (i1); operation select in line 11 outputs one of its data inputs based on
the value of its Boolean test variable %ck (of type i1).

Our example is a driver for a stepper motor which receives rotation commands as increments
of 0.18°, but can only actuate—issue physical commands to the motor—for 1.8° at a time.
For this reason, commands must be buffered and only actuated when their number exceeds
10. This behavior, typical of an embedded control system, involves a continuous interaction
with the environment. In our example, this interaction is driven by the infinite loop formed by
the SSA branching operations. Each iteration of the loop is an execution cycle during which
the program reads its input %inc from its environment, performs computations, potentially
actuates the motor and finally outputs %pos. Timely interaction with the environment is
achieved through the function calls in violet, which are discussed in Section 3.

2.1 SSA operational semantics

For conciseness, we shall assume all variables (including Booleans) are semantically repre-
sented as integers. We also assume each operation of the program has a unique label, such
as a program line number if we assume that no two operations share the same line.

Notations. The cardinal of a set S is denoted |S|. We use the OCaml notation for lists: ||
is the empty list, h :: ¢ the list of first element A and tail .

Int is the domain of the integer type. To represent the status of a memory location
or variable that has not been initialized, we use the special undefined value denoted L.
Therefore, the status of any variable or memory location, at any execution point, is an
element of Int = IntU{L1}. We also denote L any function that always returns L, regardless
of its domain. Given a (mathematical) function f and a value z of its domain, f[z+«y] is
the function that is identical with f everywhere except on z, where it has value y.

L and V¥ are respectively the sets of labels and of variables of an SSA function £, and b
is its first block. The function containing block b is denoted fun(b). The ordered set of inputs
of block b is in(b) € V/“»(®) and in(b); is the i*" input of b. The ordered set of variables
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(Startt (v, .. .,vlm<b6)|),cs,m) — (Runf(fst(bf), L[in(b))p < vk | 1 < k < |in(df)]]), cs, mem) (start)
op(l) = “(v1,...,vn) = opad(wi,...,wm)“  (o01,...,0n) = [opid](s(w1) ..., s(wm)) (opcall)
(Run®(l, s),cs,m) — (Run® (nzt(l), s[v; < o0; | 1 <i < nl),cs,m) P
l — L(b bb Sy Zn “
op(1) r bb(v1 V]in(bb)|) (goto)

(Runt(l,s),cs,m) —
(Run? (fst(bb), s[in(bb); < s(v;) | 1 < i < |in(bb)|][loc(bb); + L |1 < i < |loc(bb)]]), cs,m)

op(l) = “cond.br v bb1(v1,. .., Vinbb1)|) bO2(W1, ..., Wimes2)) ¢ s(v) € {0, L}

ifth
(Run®(l, s),cs,m) — (ifthen)
(Run® (fst(bbl), s[in(bbl); < s(v;) | 1 < i < |in(bb1)|][loc(bbl); < L | 1 <4 < |loc(bbl)[]), cs,m)
op(l) = “cond_br v bbl(v1,..., v, bb2(w1, ..., wp « s(v) =0
(1) (v1 lin(bb1)]) bb2(w1 lin(bb2)|) (v) (ifelse)

(Runt(l,s),cs,m) —

(Runf (fst(bb2), s[in(bb2); « s(w;) | 1 < i < |in(bb2)|][loc(bb2); + L | 1 < i < |loc(bb2)]]), cs,m)
op(l) = “return(vi,...,vor)“

(Run®(l,s),cs,m) — (End* (s(v1),...,8(vpr)), cs,m)

(end)

op(l) = “(vi,...,vn) = call g(wi,...,wg)“
(Run®(l,s),cs,m) — (Startd(s(wn),...,s(wy)), Runf(l,s): :cs,m)

(call)

op(l) = “(v1,...,vn) = call g(wi,...,wg)“
(Endé(x1,...,20), Runf(l,s)::cs,m) — (Runf(nzt(l), s[v; + x; | 1 <1i < n]),cs,m)
op(l) = “w = load(addr)“  s(addr) # L  walid-addr(s(addr))
(Run®(l,s),cs,m) — (Runf(nat(l), s[w+m(s(addr))]), cs,m)
op(l) = “store(addr,v)“  s(addr) # L  walid_addr(s(addr))
(Run®(l,s),cs,m) — (Runf(nat(l), s), cs, m[s(addr) +s(v)])

(ret)

(load)

(store)

Fig. 3. SSA semantics. Memory access rules in green. Function call rules in red.

assigned by operations of a block b is denoted loc(b). The label of the first operation in
block b is fst(b). The operation associated with a label I € L* is denoted op(l). If op(l) is
not a terminator, then nzt(l) is the label of the next operation in its block. The number of
arguments of a return operation of function £ is denoted O7.

Execution state. The execution state of an SSA function f is one of:

e An initial state Start' (vq, ..., U|m(b5)|), where v; € Int are the actual parameters of the
function.

e A final state End (wy, ..., wqr), where w; € Int are the outputs of £ (received as input
by return).

e A triple Run'(pc,val) formed of the label pc of the ooperation to execute next (the
program counter) and a partial valuation val : V¥ — Int of all the variables.

The execution state of an SSA specification is a triple (s, cs, m) formed of the state s of the
function that is currently executing, a list ¢s of running states representing the call stack, and
the current state m : Int — Int of the memory. An initial state of the specification has the
form (Start'(...),[],m), where m is the initial memory state and £ the function that serves
as execution entry point. A final state of the specification has the form (End®(...),[],m).

Program ezecution. Transition rules are provided in Fig. 3. An ezecution trace of an
SSA specification is any sequence of transitions starting in an initial state. Note that if
t=sy— 8 — ... S, —...Is a trace, then any prefix t, = sg — s1 — ... = s, is also a
trace. We denote with < the prefix order on traces, meaning we can write ¢, < t.
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Note that rules (ifthen) and (ifelse) define the behavior of a conditional branch only when
the test variable is defined. When it is |, execution cannot advance—it blocks. Execution
also blocks when a load or store operation accesses an address which is either L or invalid.
Under the LLVM interpretation of undefinedness [15], this amounts to assuming that the
use of | in decisions and computations is an immediate undefined behavior. To perfectly
match this interpretation, we also assume that the semantics [op_id] of each operation is a
partial function, undefined when inputs have value 1.

Note that maximal traces (in the sense of <) will either be infinite (when execution never
ends) or end in a final state, or end when execution blocks.

Separation assumptions. Our semantics separates, in both state expression and transition
rules, the part corresponding to the SSA core from the extensions needed to represent
function calls and memory. For instance, to consider only the core SSA semantics one simply
has to remove call stack and memory terms from the specification state, and only consider
the black rules of Fig. 3 (which do not access memory or call stack). Similarly, function call
rules do not access the memory, and memory rules do not access the call stack.

2.2 Determinism and correctness

If we assume that all operations are deterministic (which in our formal framework amounts
to assuming that [op_id] are partial functions) the sequentiality of the SSA execution implies
its determinism: for each initial state s there exists a unique trace starting in s that is
maximal in the sense of <.

But determinism is not sufficient. Correctness also requires that execution never blocks.
To ensure this, SSA enforces a stronger property: that all variables are different from L
whenever used in decisions, memory access adresses, and computations. Assume that variable
v is defined by block b, either by an operation of b or by the block header itself. Also assume
that v is an input to operation o’ of block b'. To ensure that v does not have value L when o’
is executed, one must ensure (as a necessary property) that any execution path reaching o’
passes through the definition of v. This happens if and only if one of the following conditions
is true:

D1 b =¥/, and the definition of v precedes o’ in b, either as block argument, or as output
of an operation.
D2 b # b/, and any possible execution reaching b’ necessarily passes through b.

While checking property D1 is straightforward, determining that D2 holds for any variable
v and operation o using v is not tractable in the general case (Boolean satisfiability can be
reduced to the decision of D2).

For this reason, SSA-based compilation always ensures D2 by enforcing a sufficient
property, named dominance, which can be checked using a low-complexity structural analysis
of the SSA SCFG [8]. Dominance is considered part of SSA form correctness, along with the
syntactic correctness and the structural properties of Section 2.

Together, these structural properties ensure the correctness of SSA specifications that do
not access memory. When memory is used, these properties must be complemented by a
proof of the fact that each memory location is initialized before it is read.

3 FROM SSA TO SYNCHRONOUS CONCURRENCY

In this section we extend the syntax and semantics of SSA with the operational mechanisms
needed to represent synchronous concurrency. The extension leaves the (non-reactive) SSA
semantics of Fig. 3 unchanged, and allows the application of all SSA code transformations.
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<type> += in(<type>) | out(<type>)
<op> 4= (<wvar>7) = tick(<tvar>")
| <var> = sync(</zwr> </1:(1r>+)
| <war> = input(<var>):<type>
| (<war>?) = output(<var>:<var>):<lype>
| <war> = undef : <iype>
<op_id>+= inst <fun_name> <inst_id>

Fig. 4. SSA syntax extensions for synchronous reactive programming. “+=" extends an already-defined
non-terminal. Grayed non-terminals are those of Fig. 1.

Thus, building on MLIR’s extensible syntax and semantics, it is possible to model and
generate code for reactive real-time applications without changing the existing code base
(only introducing additional behaviors).

3.1 Cyclic execution

To represent the behavior of embedded systems, which interact with their environment
in a continual and timely fashion, all synchronous languages have cyclic execution models.
The execution of a synchronous program is an a priori infinite sequence of execution cycles.
Execution cycles being non-overlapping, they form a logical time base: each operation happens
in exactly one logical cycle which can be identified by its index. But synchronous logical time
is not only a descriptive notion used during analysis. It is meant to allow the synchronization
of cycle execution onto external time bases. For instance, periodic real-time execution is
typically enforced by synchronizing cycle triggering (the logical time base) with a periodic
HW timer.

The SSA form also allows the representation of cyclic behaviors under the form of cyclic
CFGs, as exemplified in Fig. 2. However, what constitutes an execution cycle is not clearly
identified, nor the mechanisms for synchronizing execution cycles with an external time
base, nor how to constrain an operation to happen in a specific cycle. To allow SSA-based
embedded real-time programming, we must allow the specification of all these aspects in a
way that will be preserved by SSA-based code transformations and optimizations.

Tying the definition of execution cycles to the structural elements of SSA? is tempting, but
unfeasible, as basic blocks are not preserved by common optimizations. Another tempting
approach is to extend the syntax and semantics of basic blocks and/or branching statements
to explicitly identify some of them as execution cycle barriers. However, such an approach
would require changes to much of existing SSA-related compiler code (such as dominance
analysis or optimization algorithms), which we want to avoid.

3.1.1 The tick operation. The solution we chose is the introduction of a new operation
tick to identify execution cycle barriers. To order operations with respect to these barriers,
tick relies on two SSA mechanisms: dominance and memory access ordering.

Dominance-based ordering. The syntax of tick, provided in Fig. 4, shows that it can take
as arguments any number of variables, which allows specifying that operations producing
these variables are executed before the cycle barrier. It produces an optional variable %s of
type none, which is the unit type of MLIR SSA.

4For instance, by annotating specific basic blocks or specific branching operations to identify them as cycle
transitions.
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func @periodic1()->() { func @periodic2() -> () {
“reset:
%x0 = alloc(): memref<64xi8>
%x0 = call @init():()->tensor<64xi8> call @init(%x0): :(memref<64xi8>)->()

1 1
2 “reset: 2
3 3
4 4
5 br “step(%x0:tensor<64xi8>) 5 br “step
6 6
7 7
8 8
9 9

“step(%x1:tensor<64xi8>): “step:
%x2 = addi %x1, %x1: tensor<64xi8> call @do_addi(%x0) :(memref<64xi8>)->()
%s = tick(%x2:tensor<64xi8>) tick()
%x3 = sync(%x2:tensor<64xi8>,%s:none)
10 br “step(%x3:tensor<64xi8>) 10  br “step
11 } 11 }

Fig. 5. Synchronizing computations w.r.t. execution cycle barriers (tick) to enforce periodic execution.
Dominance-based (left) vs. side-effect-based (right).

Like for the unit type of functional programming or the pure signals of synchronous
programming [19], a variable of type none represents pure synchronization. It carries no
information but requires operations reading it to happen after the operation producing
it. To facilitate the specification of such ordering constraints, we also introduce the sync
operation which allows transferring the dependences of one or more variables onto another.
The operation takes as input two or more variables. It copies the value of its first input onto
its output as soon as all inputs have arrived.

As Fig. 5(left) shows, this way of enforcing ordering is particularly useful early in the
compilation process, when aggregate n-dimensional data are represented with abstract types
(such as the tensors of MLIR) manipulated with side-effect-free operations.

Ordering by side-effects. We also assume that tick has unspecified side-effects, which
means it cannot commute (during SSA code transformations) with operations that read
or write memory. This way of enforcing ordering is particularly useful later in the code
generation process, once buffer allocation of aggregate data has been done. This is the case
in Fig. 5(right), which could be an implementation of the program in Fig. 5(left). Note that
in both cases SSA code transformations (e.g., loop unrolling) can be applied freely, without
changing the ordering of computations w.r.t. execution cycle barriers.

Structural properties. To ensure that the execution of a reactive SSA function is an infinite
sequence of execution cycles, we will require that it does not contain return operations, and
that each potentially unbounded cycle of the SSA specification contains at least one tick
operation.

3.1.2 Compilation. The transformation of a standard SSA form specification into executable
sequential code is a well-understood process. However, the introduction of tick fundamentally
changes the SSA semantics by requiring a cyclic interaction with the environment/scheduler.

The way this interaction is traditionally implemented in the compilation of synchronous
languages [3, 4, 19] is illustrated in Fig. 6. The control flow of the source code (function @n in
our case) is completely restructured (inverted) in order to produce a semantically equivalent
program with a single tick operation (function @n_drv). To do this, the control and data
state of the original function between execution cycles must be explicitly represented. In our
example, this state is transmitted by the arguments of “step and consists of:

e A Boolean value (of type i1) to determine whether @f or @g should execute in the
next cycle.
e A value of type 132 allowing the transmission of the output of @f to @g.
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func en()->(0) { func @n_step(il,i32)->(i1,i32){ func @n_drv()->() {
“start: “start(%s:il,%x:132): “start:
%x = call @f():()->(i32) cond_br %s, “true, false %s0 = constant 0 : il
tick () “true: %x0 = constant 0 : i32
call @g(%x):(i32)->0 %x1 = call @f():()->(i32) br “step(%s0,%x0:1i1,132)
tick() %false = constant 0:il “step(%s:il,%x:i32):
br “start return %false,%x1:i1,i32 %s1l,%x1 = call @n_step(¥s,%x)
} “false: :(i1,i32)->(41,i32)
call Q@g(%x):(i32)->() tick()
Jitrue = constant 1:i1 br “step(¥%sl,%x1:i1,1i32)
return Ytrue,%x:1i1,132 }
}

Fig. 6. Synchronous languages approach to code generation. Source code left, output middle and right.

At the beginning of each cycle the state is decoded, the needed computations are triggered,
then a new state is encoded and transmitted to the next cycle. This process is usually
represented with a separate step function, in our case @n_step.

Classical synchronous language compilers will usually produce just this step function and
the data structure describing the application state. When used in conjunction with the
dataflow modularity described in Section 3.3, this approach allows modular code generation®
[4]. However, the driver function (in our case @n_drv), and in particular the implementation
of tick, are usually not generated, being considered too implementation-dependent.

This compilation approach has been long tested in practice [2, 12], where it has shown its
strengths (most notably modularity), but also its limits. The limits are mainly related to the
one-size-fits-all generated code with a single step function and a state representation that
must cover the needs of all execution cycle transitions. In our example, in the compilation
output, the state variable of type 132 is assigned a value and then passed on to the next
cycle in every cycle, even though it is semantically produced (output of @f) only in odd
cycles. A first evaluation of the inefficiency of the inverted state representation is provided
in previous work on state representation optimization for the Esterel language [19].5 Tt is
important to note that, once the generation of the step function performed, classical compiler
optimizations are confined to the scope of the step function, and optimizations involving
multiple execution cycles must be specifically designed for each particular language and
state encoding.

Our compilation method cannot follow this example and systematically restructure control
to obtain a loop with a single tick. Not only because of the potential efficiency loss, but
because in many cases the implementation must have a different structure. For instance, in
avionics MIF/MAF applications [10] the implementation must have a structure similar to
that of Fig. 6(left), where a global periodic pattern (the global loop, named major frame, or
MAF) is split by the tick operations into time intervals of equal length (the minor frames,
or MIFs), each containing a different code.

To allow the implementation, without restructuring, of any reactive SSA graph satisfying
the structural properties defined above, we propose a return to the fundamentals of reactive
systems design, by making explicit the interaction with the system scheduler. In our compi-
lation approach, a reactive SSA specification such as function @n of Fig. 6(left) is seen as

50ne step function per hierarchic synchronous module, the state representation of a module including that
of sub-modules it hierarchically includes, and its step function calling the step functions of sub-modules.
SMemory allocation for synchronous languages also poses other challenges, such as the fact that modular
code generation requires in the general case an inefficient encoding for memory constructs, which uses not
one, but two variables for each state element. Several papers address this issue in previous work [10, 11].
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a sequential process running under a cooperative multi-tasking scheduler. Each time the
execution of @n reaches a tick operation, the execution context (state) of @n is saved and
control is given back to the scheduler. When the scheduler determines that a new execution
cycle must be triggered, it restores the state of the process, execution of the tick operation
terminates, and the scheduler hands returns control to the process.

This operational mechanism, whose formal semantics is defined in Section 3.5, can be
easily implemented on various execution platforms ranging from low-level timers on bare
metal platforms [10] to POSIX system services such as longjmp (as we do in Section 5) to
coroutine mechanisms of various languages and to RTOS services such as PERIODIC_WAIT in
the avionics-oriented IMA/ARINC 653 standard [1].

Note that our proposal does not exclude the classical approach of compiling synchronous
languages. Instead, it is complementary, allowing the modeling of implementation aspects
that were previously not covered by code generation, and by allowing more expressiveness
in the implementation.

3.2 Cyclicl/O

An embedded system will continually interact with its environment, cyclically reading inputs
and writing outputs. In practical implementations, this is typically done by reading and
writing memory-mapped registers that can be represented with volatile C variables, or by
calling dedicated I/O functions. Synchronous languages abstract away such implementation-
dependent mechanisms under the form of input and output variables that can be read or
written at each cycle, with two constraints related to the synchronous model:

e An output variable can be written at most once per execution cycle.
e All reads of an input variable during an execution cycle must return the same result.

For instance, in Fig. 2, the input inc of the Lustre program is read at each execution cycle.
By comparison, when not considering memory side effects, MLIR, functions interact with
their environment only twice:

e At the beginning of their execution, to read the value of their input arguments, which
then remains constant during the execution of the function.
e When reaching a return operation, when the function completes.

These assumptions enable common SSA optimizations such as loop-invariant code motion.
Volatile accesses to memory locations can sometimes be represented, like in the low level
dialects of MLIR (LLVM, SPIRV), but they represent a particular low-level implementation,
excluding others.

The solution we chose to represent cyclic I/0 is based on the representation of input and
output channels with function arguments of the special types in(t) and out (t), where t is
the type of data transmitted by the channel. Access to channel variables is done exclusively
using the input and output operations, whose syntax is provided in Fig. 4. Operation input
has a single argument of input channel type. Each time it is executed, input samples the
channel for a value of the correct type, which is placed in the output variable. An output
operation has two inputs: one output channel and a second variable (of the corresponding
non-channel type) whose value will be written to the output.

To specify ordering relations between I/O operations and other operations, we use the
same mechanisms discussed for tick in Section 3.1.1. On both input and output we assume
unspecified side-effects, which prevents reordering with other operations that access memory
and function calls. Both I/O operations also allow dominance-based ordering. For this reason,
output has an (optional) output of type none.
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1 func @n(in(i32), out(i32))->( { 1 func @n(()->(i32), (i32)->0)->0 {
2 “start(%i:in(i32), %o:out(i32)): 2 “start(%i: (O->(i32), %0:(i32)->0)):

3 br “step 3 br “step

4 “step 4 “step:

5  %x = input(%i):i32 5  %x = call_indirect %i O: ()->(i32)
6 output (%o:%x) :132 6 call_indirect %o (%x): (i32)->()

7 tick() 7 call @tick() : O->0)

8 br “step 8 br “step

9 } 9 }

Fig. 7. Code generation for |/O operations

Structural properties. As a limitation specific to our current implementation, it is required
that only functions representing reactive behaviors use channel variables or the operations
input and output. It is also required that reactive functions have only arguments of I/O
channel type, and that no channel variable is output of an operation.

To comply with the synchronous model requirement that each variable has at most one
value during each cycle (we will further develop this aspect in Section ?7?) it is also required
that at most one input or output operation is performed on a given I/O variable between
two instances of tick. This semantic property is usually enforced by requiring the respect
of structural properties, e.g., by requiring that every CFG path between two operations on
the same channel contains a tick operation.

Compilation. As explained above, various low-level mechanisms can be used to implement
the operations input and output, the most typical being volatile variables and calls to I/O
functions. For portability, our compiler takes the second approach, by:

e Transforming each function argument of type in(t) into a function argument of type
() ->(%), i.e., a reference to a function that takes no argument and produces one result
of type t.

e Transforming each function argument of type out (t) into a function argument of type
®©)->0.

e Each input and output operation is transformed into a call to the corresponding
function argument. Note the use of call_indirect, a version of operation call
allowing calling a function transmitted by reference.

Fig. 7 provides a small example: a reactive program with one input channel and one output
channel that copies at each cycle its input on the output.

When the value produced by input or taken as input by output is an object stored in
memory,” much care must be exerted to avoid memory errors (accessing unallocated memory
and memory leaks). In our implementation, we will assume that all memory-stored objects
produced by an input operation are allocated and deallocated by the environment, with a
lifetime finishing at the end of the current execution cycle. We also assume that memory-
stored objects given as argument to an output operation are allocated and deallocated by
the function, and that the environment no longer uses them when the next execution cycle
begins.

3.3 Modularity

The modularity of SSA is that of sequential procedural programming. The modules of an
SSA specification are the functions, which interact through function calls.

"Like the variables of type memref in MLIR.
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func @main(in(i32),out(i32))->0{ func @sum(in(i32),out(i32))->0{
~start(%ic:in(i32),%oc:out(i32)): ~start(%ic:in(i32),%oc:out(i32)):
br “step %s0 = constant 0 : i32
“step: br “step(%s0:132)
%i = input(ic):i32 “step(%s:132):
%x1 = inst @sum "a" (%i:i32) %i = input(%ic):i32
tick() %sl = addi %s, %i : i32
%%x2 = inst @sum "a" (%1:132) tick(%s1:132)
output (%oc: %x2) :132 %o = call @f (%s1):(i32)->(i32)
tick() output (ooc:%0) : i32
br “step tick()
} br “step(%s1:132)
¥

Fig. 8. Submodule instantiation example

By comparison, the formal models underpinning synchronous languages are concurrent. In
the most general settings, such as Esterel’s constructive semantics [19], the ezecution of two
sub-modules of a specification can advance concurrently, synchronizing and communicating
with each other in both ways. Determining that the execution of such a specification does
not block (a process known as causality analysis) is in general undecidable, if integer
data are allowed, and NP-hard (untractable in practice) if the input language uses only
Boolean variables. Furthermore, the implementation of such general specifications can be
very inefficient due to intricate semantic rules.

For this reason, synchronous language compilers have early on imposed simple structural
constraints allowing fast and modular compilation: in each module, the computations of
an execution cycle must form an acyclic dependency graph, allowing fast scheduling and
code generation. In this acyclic graph, to allow the separate compilation of a sub-module,
its computations must be grouped together as a single graph node, meaning that they can
be performed atomically.

To allow the representation of this mechanism in our SSA extension, we introduce the
notion of instance of a reactive function @f, which is a process (with separate state) executing
function %f under the system scheduler. Instances are uniquely identified (with lists of strings,
in our implementation). We assume that the first reactive function of a specification has an
instance identified with the empty list of strings [] that receives control when the system
starts. All other instances are inductively defined and possibly given control during execution
using the operation inst (syntax in Fig. 4): if i is an instance of function @f which contains
operation “inst Qg str”, then instance str::i of function @g is automatically defined.

We provide in Fig. 8 an example of submodule instantiation. The system has two reactive
functions and two instances: the implicit [] instance of function @main and one instance
["a"] of function @sum. Notice that the two inst operations of @sum trigger execution cycles
of the same instance (["a"]).® Instance [] reads its unique input from the environment on
odd cycles, triggers one tick of instance ["a"] in every cycle (giving it as input the value
of %1) and outputs the last output of ["a"] in even cycles. Instance ["a"] of @sum has a
state in which it accumulates the sum of inputs it receives on odd cycles. On even cycles, it
computes and outputs variable %o.

Structural constraints. The number and types of input and output variables of an inst
operation must match the signature of the reactive function it instantiates.

8In the presence of periodic activation patterns, this enables the unrolling of the infinite loop over the period,
followed by constant propagation, which eliminates activation tests over the iteration counter.
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Compilation. The compilation method based on conversion to step functions will implement
sub-module instantiation using function calls [4]. When conversion to a step function is not
desired, we transform each instance into a process running under a cooperative scheduler.
This mechanism extends that of Section 3.1.2 by clarifying how the scheduler passes the
control between instances. When reaching an inst operation, the inputs and the control
are transmitted to the instance, which then executes until reaching a tick operation, at
which point it saves its state and returns the outputs to the caller, according to the rules of
Section 3.5.

3.4 Signal absence

Consider the simple example in Fig. 6 (left) and its implementation on the right. Note that
the translation slightly changes the internal behavior of the program: on the left, the variable
%x is transmitted only from odd cycles to even cycles. But in the translation result %x has
been added to the program state, which is computed and transmitted at every cycle. Thus,
in the “false: basic block of @n_step, under SSA semantics, we need to return a value for
%x at each cycle, even if the source program does not require it.

In this case, we made the natural choice of maintaining the previous value, which later
allows the encoding of the state in (persistent) memory. But using instead a constant of type
i32 or a dynamically-computed value would also have been correct, as this value is never
used in computations. The situation is similar in Fig. 8: function @sum outputs values only
on even cycles, meaning that the value of %x1 in function @main is never correctly initialized,
yet the specification is overall deterministic, because this absent/undefined value is never
used in computations.

Such situations are common in the synchronous modeling of multi-rate and multi-periodic
systems, which explains why absence prominently figures in the semantics of all synchronous
languages [2]. As we shall see in Section 4, in the Lustre language a variable that is absent
in a synchronous execution cycle has an undefined value and cannot be used in decisions or
computations. This definition fully matches that of L in Section 2.1.

However, synchronous languages such as Lustre are designed to support low-complexity
analyses (known as clock calculi) ensuring that no uninitialized data is ever used in compu-
tations (much like the SSA form is designed to support dominance analysis). These analyses
exploit the tight coupling between (dataflow) control propagation and initialization, as well
as stringent synchronization requirements (known as clock constraints) enforced by each
language primitive.

But our reactive extension of SSA is meant to be an intermediate compiler representa-
tion, where efficient encodings may require the explicit representation and manipulation of
absence/undefinedness, which breaks the coupling between SSA control propagation and
initialization. This situation is similar to that of LLVM IR, which extends the basic SSA
syntax and semantics with not one, but two types of undefinedness to support different
analysis and optimization approaches—11lvm.undef and 11lvm.poison [15].

op(l) = “v = undef
(Run®(l, s),cs,m) — (Run®(nzt(l), slv< L1]), cs, m)
Fig. 9. Semantics of undef

(undef)

Unlike LLVM IR, we do not need to add a new semantic value. Instead, we simply allow
the explicit manipulation of | without breaking the structural correctness rules of SSA.
To do this, we introduce operation undef (syntax in Fig. 4, semantics in Fig. 9). This
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operation sets its output variable to L. To understand how this value is propagated, consider
function @n_step of Fig. 6, and recall that in this function, in the “false basic block, the
second argument of return could take any value instead of %x, because it is never used in
computations. Using operation undef, we can rewrite this function to avoid the need to
return a defined value, as pictured in Fig. 10. This not only faithfully represents the original
behavior of Fig. 6 (left), but also allows more efficient code generation, as detailed below.

func @n_step(il,i32)->(i1,132){ “false:

“start(%s:i1,%x:132): call Qg(%x):(i32)->()
cond_br %s, “true, false J%ux = undef(): 132

“true: Jtrue = constant 1:il
%x1 = call @f():()->(i32) return Y%true,jux:il1,i32
%false = constant 0:il ¥

return %false,’%x1:i1,i32

Fig. 10. Use of undef (in blue) to represent signal absence

Compilation of undef. Mastering undefinedness in LLVM is notoriously difficult [15].
However, this difficulty is a consequence of the very ambitious goal of giving a coherent
formal basis to a large variety of optimizations in a way that fully preserves program
semantics.

In our case, the definition of translation correctness is far less ambitious: preserve only
the defined behaviors of the input program, those where no branching, memory access,
or computation uses undefined values. This approach is consistent with the synchronous
programming paradigm, where the absence of undefined behaviors is assumed guaranteed by
program analyses performed at high abstraction level (e.g., in Lustre). Under this paradigm,
undef can be correctly compiled into any legal value of the target SSA dialect. In particular:

e Replacing undef with any defined value (e.g., the constant 0) allows translation to
standard SSA, but introduces initializations that do not exist in the original specification
and which may hamper optimization.

e Replacing it with either 11vm.undef or 11vm.poison requires targeting LLVM IR and
its SSA extensions, but does not introduce semantically unneeded initializations and
enables LLVM-level code transformations/optimizations relying on undefinedness.

To formally state and prove translation correctness, assume that Int* is the semantic
domain of each variable, obtained by extending Int = IntU {1} (defined in Section 2.1)
with values specific to the translation target. For instance, for a translation to LLVM IR,
we shall set Int* = IntU {1lvm.poison, 11vm.undef}. We endow Int" with the partial order
determined by | < x for all x # L. This partial order extends pointwise to partial valuations
of the variables, and then to execution states. Then, we have:

THEOREM 3.1. Consider a non-reactive SSA function® f and consider the result ' of
replacing all instances of undef in f with values of Int* \ {L} or with other variables
(without breaking dominance).!® Consider an initial execution state sg and an execution trace
S0 = ... = Sp, of f that does not block. Then, there exists a unique trace so = ${, —> ... — ),
of ' such that s; < s} for alli.

Proof sketch: Given that the trace of f does not block, differences between s; and s
can only arise at the level of undef operations of the original program which are replaced
with defined values or with 11lvm.undef or 1lvm.poison. These differences can only be

9That may use undef, but not tick, cyclic 1/0, or synchronous modularity.
10f and f’ will have the same variables.
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propagated through assignment, as they do not reach decisions, memory access addresses,
or computations. [l

3.5 Formal semantics of reactive extensions

The final step of our SSA extension is the definition of the formal semantics of reactive SSA
specifications formed of one or more instances of reactive SSA functions.

Given a reactive function f, we denote with in®, respectively out® the ordered set of input
channel variables of £. Given an instance i, we denote with r(7) its reactive function.

The execution state of a reactive SSA specification is represented with triples < 4,7, m >,
where m is the shared memory state, ¢ is the currently active instance identifier, and 7 is
a map associating to each instance identifier the instance state. The state of instance 7 is
Z(i) = (s,cs, si, s0), where s is the state of the function f that is currently executing, cs is
the call context, si : in”(!) — Int is the state of the input channels of 4, and so : out™® — Int
is the state of the output channels.

Z(i) = (s,cs,s8,80)  (s,cs,m) = (s',cs’,m’)
<i4,Z,m>=><1,Ili+(s,cs,si,s0)],m >
Z(i) = (Run®(l,s),cs,si,s0)  op(l) = “v = input(ic)“
<4,Z,m >=< i, Z[i+ (Runf(nzt(l), sjv <+ si(ic)]), cs, si, s0)], m
i=1[ Z(i) = (Runf(l,s),cs,si,s0) op(l) = “tick“
<i,I,m >%>< i, Z[i + (Run® (nat(l), s), cs, si/, L)],m >

(local)

— (in)

(system-tick)

Z(i) = (Run®(l, s), cs, si, 50) op(l) = “output(oc: v)“
<i,Z,m >=< i, Z[i<+ (Run® (nzt(l), s), cs, si, so[oc < s(v)])], m >

(out)

Z(i) = (Run®(l, s),cs,si,s0)  op(l) = “(v1,...,vn) = inst nd &’ (w1,...,wy)"
Z(i" ::4) = (Run8(l',s"),cs’, si’, s0')
<i,I,m >=><i i, I[(i’ i)« (Rung(l', s"),cs’, L[in?? « s(wy) | 1 <1< k], L)],m >
Z(i' ::4) = (Run8(l',s"),cs’,si’',s0') op(l') = “tick*
Z(i) = (Run®(l, s),cs, si,50) op(l) = “(v1,...,v,) = inst nd i’ (w1, ..., Wm)"
<l i, T,m >=< i, L[i+ (Run® (I, s[v; + 50, | 1 <i < nl),cs,si,s0)],m >

(inst)

(inst-tick)

Fig. 11. SSA semantics extension for reactive synchronous systems. In red, modularity rules.

Under these notations, the operational semantic rules are provided in Fig. 11. The (local)
rule transforms non-reactive SSA transitions of the instances (denoted with — and defined
in Figures 3 and 9) into transitions (denoted with =) of the reactive system. All other rules
involve reactive operations (interaction with the scheduler). Rules (in) and (out) deal with
instance I/0O. Rule (system-tick) is the only one that interacts with the environment by
performing I/O and possibly time synchronization. The rules (inst) and (inst-tick) (in red)
implement modularity. The first one gives control to an instance when reaching an inst
operation, and the second one recovers control from it when the execution of the instance
reaches a tick operation.

Compilation correctness issues. While defining a formal semantics for reactive SSA speci-
fications, this paper does not provide a formal proof of the fact that their compilation to
executable code is correct. One issue here is proving that the primitives of the sync dialect
work as intended. In turn, this requires modeling the target execution platform, which may
range from bare hardware to real-time operating systems.

But even assuming that the primitives are correctly implemented, we still have to prove
that correct SSA code transformations preserve the semantics of reactive specifications.
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This is a key issue, because the whole point of our work is to allow existing SSA code
transformations and optimizations to be applied at full strength in the compilation of
reactive programs.

This problem is difficult, and involves multiple difficult sub-problems. For instance, while
we provide a formal semantics for reactive SSA specifications, this semantics does not
cover MLIR-specific extensions to SSA. To understand the importance of these extensions,
consider the tick() operation. As explained in Section 3.1.1, this operation has unspecified
side-effects. This is why correct SSA code transformations cannot make function calls!?
commute with tick() operations, and thus cannot change the allocation of function calls
into execution cycles.

Side effects are specified in MLIR using operation properties called traits. These MLIR-
specific constructs must be taken into account by any formalization of the correctness of the
SSA code transformations. In other terms, our formalization of the SSA semantics must be
extended, if the objective is to formally state or prove the correctness of any MLIR-based
compilation process (including ours).

However, even though formal arguments are missing, we consider that we have provided
initial evidence that existing SSA code transformations and optimizations can be applied at
their full strength in the compilation of reactive specifications.

The first argument supporting this statement is that the (complex) use cases of Section 5
run as expected after multiple, complex MLIR code transformations and optimizations. This
form of validation is akin to the traditional regression testing used to validate most compilers
(MLIR included), and we must significantly extend it.

The second type of evidence consists in the careful choices we explicitly made in Section 3
in the definition of the sync dialect operations (e.g., the fact that tick() has unspecified
side-effects). Along with the existing SSA semantics, these choices provide support for both
semi-formal reasoning, and for the future formalization of the MLIR SSA extensions.

4 EMBEDDING LUSTRE IN MLIR

In the previous section, we have extended the SSA form with the features allowing the
representation of synchronous reactive behaviors. Our objective was to do this in the most
general way that remains fully compatible with traditional SSA semantics and algorithmics
(thus allowing implementation without changes to the existing codebase).

In this section, we evaluate the ability of this extension to support the specification and
compilation of realistic applications with both reactive and HPC aspects. The reactive
aspects of such applications must be specified in a high-level synchronous dialect, not
directly in our low-level SSA extension. We show that the dataflow core of the Lustre
synchronous language'? can be embedded as a new dialect, named lus, into the SSA-based
MLIR compilation framework [17]. This allows the specification (in MLIR) of applications
where the reactive aspects are modeled at the Lustre abstraction level, while data processing
is modeled at the abstraction level of other dialects such as affine (affine loops), linalg
(linear algebra), or tf (TensorFlow graphs).

During compilation, reactive statements of the lus dialect are lowered™® into a mix of
structured control flow (MLIR dialect scf) and the reactive SSA constructs introduced in
Section 3 (Fig. 4) and grouped in a new dialect named sync. Operations of the sync dialect

H'Which implicitly have side-effects in MLIR.
12Chosen for its practical importance, as well as for its simplicity.
131 e., transformed into code at a lower abstraction level.
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are later converted into low-level SSA (dialects std and 11vm) and calls to external OS
primitives following the compilation rules defined in Section 3.

The structured control flow, along with the data types and data processing code, are
progressively lowered using the existing transformations of MLIR, which do not affect
reactive semantics. Among others, these transformations allow buffer synthesis, i.e. the
transformation of the abstract aggregate data used with lus-level synchronous specification
(e.g., tensors) into memory objects along with allocation and deallocation operations, in a
way that ensures the absence of both memory leaks and accesses to unallocated memory.

The result is a fully functional specification and compilation framework for
reactive high-performance applications, which we evaluate in the next section on three
non-trivial applications (a signal processing vocoder and two machine learning applications).

4.1 The Lustre language

The synchronous language that has reached the most widespread use is Lustre [3, 12]. For
space reasons, we only consider here its pure dataflow core—the SN-Lustre dialect of [6]—into
which full Lustre can be translated.

A Lustre program, like that of Fig. 2(left), is called a node. It specifies a dataflow graph
of statements connected through dataflow variables. Each variable is either an input of the
node, or it is output of exactly one statement (single assignment property). Lustre follows a
pure dataflow paradigm, with no use of load/store memory (no side-effects).

The semantics of Lustre is (intuitively) best described as a mix of dataflow operational
and declarative aspects.

4.1.1 Operational interpretation. As synchronous programs, Lustre nodes have a cyclic
execution model. At each execution cycle, the list of statements of a node is traversed
once, in an order compatible with the dependences determined by the variables. When
traversed, a statement will read the value of its input variables, possibly perform some
internal computations, and assign a value to its output variables. As the semantics of a node
is not affected by the syntactic order of its statements, we can always assume (as a normal
form assumption) that the statements already are in traversal order, as in Fig. 2(left).

Dependences are defined as follows: Variable y being produced by statement p and used
in statement ¢ determines a dependency p — c¢ in all cases except one: when c is a statement
of the form “x = k fby y”. In this case, ¢ — p, as a form of anti-dependency ensuring that
the value is read before being overwritten. This special handling of fby allows it to read
the value assigned to its input variable in the previous execution cycle. This value is then
assigned to the output of fby, allowing its use in the current cycle. In Lustre, this is the
only mechanism allowing the specification of a state passed between execution cycles.

The value assigned to a variable in a cycle can be the special value L introduced in
Section 2.1 to represent undefinedness/absence. Making a variable absent inside an execution
cycle is done using the sub-sampling statement when. Traversing statement “x = y when ¢’
while the Boolean variable ¢ has value true results in x being assigned the value of y. If
c is false or 1, x is assigned value 1. Absence is the dataflow mechanism allowing the
specification of conditional execution: A function call with | input variables will not perform
computations, but instead assign all outputs to L. This mechanism, specific to the dataflow
programming paradigm, is used in lines 13 and 14 of Fig. 2(left) to specify that function
actuate is executed only in cycles where variable ck is true. The counterpart of when is
statement “x = merge c y z”. Upon traversal, if c is true (resp. false), x takes the value of
y (resp. z). Otherwise, x takes the value L.

i
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1 node s(i:int)returns(s:int) 1 node sn(i:int)returns(s:int)

2 var ck:bool;il,sl:int; 2 var ck:bool;il,sl,si,so:int;

3 let 3 let

4 4 si = 0 fby so;

5 ck = (i>0) ; 5 ck = (i>0);

6 il = i when ck ; 6 il = i when ck;

7 sl = 0 fby s ; 7 sl = si when ck;

8 s =s1 + il ; 8 s = sl + il;

9 9 so = merge ck s (si whenot ck);
10 tel 10 tel

Fig. 12. Time modularity (left) and its normalization

4.1.2 Declarative aspects (clock constraints). The purely operational interpretation defined
above matches the standard Lustre semantics [3, 4, 6] on correct Lustre programs where all
fby statements are executed at every cycle.

However, Lustre allows a form of logical time modularity during specification, by allowing
sub-sets of statements (including fby statements) to be executed under specific Boolean
conditions. This is the case in the node of Fig. 12(left), which incrementally computes the
sum of its positive input values. The statements in lines 7 and 8, which implement the
computation of the sum, are executed only in cycles where ck is true. However, under the
dependency rules defined above, no operational mechanism constrains the execution of the
fby statement.

Instead, each Lustre statement defines a clock constraint—a predicate relating the
present /absent status of its input and output variables (and possibly their value) inside an
execution cycle. In our example, two such clock constraints apply:

e Inputs and outputs of a function call or £by are either all L, or all have a value different
from L.

e The inputs of a when are either both present, or both absent. Output is present iff the
condition is true.

Determining the execution condition of each statement consists in solving the system of
constraints associated to all statements. This process,'* called clock inference and performed
in formal settings called clock calculi, has been the subject of extensive prior research
2, 4, 12].

4.2 The lus dialect

We have embedded the Lustre language constructs into MLIR. This allows the MLIR-level
representation of both general and normalized Lustre specifications. The lus representation
of the Lustre node in Fig. 12(right) is provided in Fig. 13(left), with the lus operations
highlighted in blue. The MLIR definition of nodes is derived from that of SSA functions
by replacing keyword func with node and requiring the compiler to check that a single
basic block is present, terminated with operation lus.yield (which identifies the output
variables).

While MLIR is SSA-based and its transformations mostly require the respect of dominance,
it also allows specification under the weaker single assignment property, thus allowing the
representation of cyclic dataflow graphs like the one in Fig. 13(left).

At the level of lus, we have implemented the Lustre clock inference algorithm. Along
with data type correctness, single assignment, and causal correctness, the success of clock

14\Which will fail for incorrect programs.
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node ©s2(%i:i32)->(int){ 1 func @s2(in(i32),0ut(i32))->0{ 1 func @s2(in(i32),0ut(i32))->0{
2 “start(%ic:in(i32),%sc:out(i32)): 2 “start(%ic:in(i32),%sc:out(i32)):
%cO=constant 0:132 3 J%cO=constant 0:132 3 %cO=constant 0:132
4  br “step(%c0:132) 4  br “step(%c0:132)
%si=fby %c0,%s0:132 5 “step(/si:i32): 5 “step()si:i32):
6  %i = input(ic):i32 6  %i = input(ic):i32
%ck=cmpi "sgt",%i,%c0:i32 7 %hck=cmpi "sgt",%i,%c0:132 7 %ck=cmpi "sgt",%i,%c0:132
%il=when Y%ck,%i:i32 8 %il=when Y%ck,%i:i32 8 cond_br Yck, aux(%i:i32,%si:132),
%sl=when Y%ck,%si:i32 9  %sl=when Y%ck,%si:i32 9 “out (%si:i32)
10 10 "aux(%i1:i32,%s1:132):
Ys=addi %s1,%i1:i32 11 Y%s=addi %s1,%i1:i32 11 Ys=addi %s1,%i1:i32
12 output(%sc:%s):i32 12 output(¥sc:¥%s):i32
%s2=when not Y%ck,%si:i32 13  %s2=when not Y%ck,%si:i32 13 br “out(%s:i32)
%so=merge J%ck,%s,%s2:132 14 %hso=merge Yck,%s,%s2:132 14
15 15 “out(%s0:132):
lus.yield %s:1i32 16 tick() 16 tick()
17 br “step(%so0:1i32) 17 br “step(%so:1i32)
} 18 } 18 }

Fig. 13. MLIR lowering of lus(left) to sync(right). In the middle, the output of the first lowering phase.

inference guarantees the correctness of a Lustre program. As data type correctness and
single assignment are automatically checked by the existing MLIR infrastructure, only causal
correctness remains to be checked.

4.2.1 Normalization. Once clock inference performed, we can transform the original program
so that the operational interpretation correctly simulates it. This transformation, exemplified
in Fig. 12, consists in ensuring that all £by statements are executed at every cycle (through
the introduction of when and merge statements, in red in Fig. 12). We have implemented
this normalization step in MLIR.

4.2.2 Lowering of lus to sync. After normalization, moving from the dataflow style of lus
to the control-flow style of the sync dialect of Section 3 (Fig. 4) is done in two steps, as
exemplified in Fig. 13:

e Moving from dataflow node-based modularity to control-flow function-based modularity.
e Encoding of conditional execution and absence.

The first step starts by collectively replacing all by operations with the continuation passing
encoding of state specific to MLIR SSA. In Fig. 13(middle) this is done using the basic
branching mechanism of SSA, but the lowering phase we implemented in MLIR produces
structured control flow operations (for, of dialect scf). Once the state reencoding performed,
determining the causal correctness of the program amounts to an SSA dominance check,
performed automatically by MLIR.

Then, the I/O variables of the 1us node are transformed into I/O channels and explicit
input and output operations, and the node interface is transformed into a function interface.
This concludes the first lowering step.

Once the first step is done, the semantic rules of Figures 3, 9, and 11 can already be
applied, and the need to re-encode signal absence becomes evident. Indeed, in the definition
of the Lustre semantics, we have made the implicit assumption that operation call semantics
is changed to produce L output upon receiving L input (and not block execution). This
is acceptable from a semantic point of view (the Merge operation of TensorFlow already
uses a similar mechanism [22]). However, from an implementation standpoint this would

, Vol. 1, No. 1, Article . Publication date: December 2021.



20 Hugo Pompougnac, Ulysse Beaugnon, Albert Cohen, and Dumitru Potop Butucaru

require wrapping every data type to account for the extra | value, and wrapping function
to ensure that undefined inputs result in absence of execution. To avoid this (for efficiency),
the dataflow control transmitted by the L values is materialized under the form of branching
code that determines, based on the value of clock variables (e.g., %ck in Fig. 13) whether
operations are executed or not. In Fig. 13(right) this imperative control is implemented
using core SSA branching statements, but our MLIR implementation uses structured control
flow operations.

The clock analysis of the Lustre program ensures that the resulting SSA specification
cannot block under blocking semantics due to operations receiving undefined values!?;
proving this result goes beyond the scope of this paper, but the reader may refer to [3, 4]
for formalization and proofs in the classical Lustre setting.

This completes the definition of our compilation method. Note that, in the implementa-
tion of our compiler, stock MLIR algorithms are used for all data type specification and
implementation, causality analysis, and memory allocation. We have only had to implement
analysis and lowering steps specific to the synchronous model of computation—clock analysis,
normalization, and the lowering of normalized lus to sync.

5 USE CASES

In this section, we use three complex applications to illustrate the expressiveness of our
MLIR embedding of Lustre, and to evaluate its effectiveness. The applications have been
selected to cover various profiles involving both performance-intensive and reactive aspects:

Vocoder is a real-time sound processing application (a voice pitch tuning vocoder).
This application, which relies on classical signal processing algorithms like the Fast
Fourier Transform (FFT) is representative for traditional performance-intensive signal
processing applications. It also features complex reactive control: a sliding window over
the inputs, a keyboard-driven human-computer interface allowing muting the sound
output and changing its volume, and a stateful signal processing algorithm.

TimeSeries is a recurrent neural network (RNN) based on LSTM [14]. To faithfully
implement the LSTM stateful behavior in a streaming application, this application
features multi-rate execution. This application is representative for convolutional neural
networks (CNNs) with complex control.

Resnet50 is an instance of the classical ResidualNet [13], representative for large feed-
forward deep neural networks (DNNs).

All three applications have non-trivial data processing pipelines and are naturally expressed
using the reactive primitives of the lus dialect and the data-processing features of existing
MLIR dialects.

To evaluate the expressiveness of our MLIR embedding of Lustre we show that, for all three
use cases, MLIR extended with the lus dialect allows the natural and concise expression of
all application aspects (data processing and reactive ones). This means that the modeling
approach we propose is more adapted to high-performance embedded applications than
either MLIR alone (which lacks reactive specification constructs) and various dialects of
Lustre, which lack advanced tensorial data specification and manipulation routines, as well
as the efficient compilation apparatus.

Part of the effectiveness evaluation has been done in the previous section, which showed
that the few Lustre-specific compilation algorithms (clock analysis, normalization, lowering
of 1us to sync) can be embedded into MLIR, and that stock MLIR algorithms can be

15They can still block due to an operation being undefined for the provided values, e.g., division by zero.
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used for the remaining compilation steps: data type analysis and implementation, causality
analysis, memory allocation. ...

The only important remaining question is whether the Lustre-specific compilation algo-
rithms can be combined in optimized compilation flows with the advanced optimization
algorithms already implemented in MLIR, which are ultimately responsible for the per-
formance of MLIR-generated code [5]. To prove this, we have considered a sub-set of the
advanced optimization methods of [5] and integrated them as steps of our lus compiler
pipeline. Then:

e Using the ML examples (TimeSeries and Resnet50) we show that our compiler already
matches (and sometimes outperforms) existing state-of-the-art compilation flows for
the reactive language Lustre.

e For the vocoder example, we show that its implementation is fast enough to allow
real-time execution on low-cost commercial hardware.

The full code of our compiler and of the three use cases is provided at https://github.com/
dpotop/mlir-lus-public. For portability, the implementation of modularity is longjmp-based.

5.1 The pitch tuning vocoder

The pitch tuning vocoder cyclically samples the sound input and the other control inputs,
updates the control state, performs (if required by the current control status) one step of
the pitch tuning algorithm, and drives the sound output.

The pitch processing pipeline,'® specified using the abstract aggregate types of MLIR
(tensors) and operations of the linalg, scf, and std dialects, is encapsulated in the
@pitch_algo node.

Fig. 14 shows the top-level node @pitch of the application. This node concentrates most
of the reactive control features: the sliding window, multiple feedback loops, as well as the
control driven by the user interface, which allows silencing the output (and shutting down
unneeded pipeline steps) and altering the pitch correction. The @pitch node features all the
operations of the lus dialect:

e lus.node and lus.yield to specify the node interface and its output.
e lus.when and lus.merge to enforce conditional execution.
e lus.instance to instantiate nodes @pitch_algo and @kbd_ctrl.

Our compilation flow automatically performs buffer allocation and synthesizes low-level
control ensuring the correctness and safety of the implementation. Various MLIR-provided
optimizations can be applied in the process, as discussed in Section 5.3.

5.2 Neural network use cases

We use the 1us dialect to represent the reactive control of two convolutional neural networks:
an instance of the tf.keras.applications.ResNet50 implementation of the Residual
Network [13] and a time series forecasting application'” based on LSTM [14].

The more interesting of the two, from a reactive specification standpoint, is the time
series application. Indeed, while ResNet is a feedforward network, the LSTM at the core

16Involving Hann filtering to reduce spectral leakage, move to frequency domain using the Fast Fourier
transform (FFT), move to polar coordinates to separate magnitude from phase, the additive phase synthesis
algorithm that performs the actual pitch change, move back to Cartesian coordinates and then to the time
domain using the inverse FFT, and a final step of Hann filtering and additive accumulation.

17Full application provided (in Keras) at https://machinelearningmastery.com/tensorflow-tutorial-deep-
learning-with-tf-keras/, section 3.3
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1 // At each cycle, the @pitch node receives from the environment the current keypress
2 // (if any) and 512 half-precision integers representing 256 stereo samples.

3 // It produces an equal amount of processed samples.

4 lus.node @pitch(%kbd:i8,%sndbufin:tensor<612xi16>)->(tensor<512xi16>) {

// The sliding window over input sound samples (initialized with 0)

6  %c0 = call @bzero_il16_256() : ()->tensor<256xil6>

7 hcirc3 = call @stereo2mono (%sndbufin): (tensor<512xi16>)->(tensor<256xi16>)

8  Jhcirc2 = lus.fby %cO %circ3 : tensor<256xil6>

9  %circl = lus.fby %cO %circ2 : tensor<256xil6>

10 %circO = lus.fby %cO %circl : tensor<256xil6>

11 %window = call @concat_samples(%circ0,%circl,%circ2,%circ3)

12 : (tensor<256xil16>,tensor<256xi16>,tensor<256xil6>,tensor<256xi16>)

13 -> tensor<1024xf32>

14 // Keyboard controller, which sets the control state based on keyboard input
15 Yisndon, %volume,%semitones = lus.instance @kbd_ctrl(}%kbd) : (i8)->(il,f32,£32)
16 // Pitch processing pipeline, executed only when %sndon is true

17 %window_cond = lus.when %sndon %window : tensor<1024xf32>

18  Y%semitones_cond = lus.when Y%sndon Ysemitones : £32

19  %pitch_output = lus.instance @pitch_algo(’semitones_cond, %window_cond)

20 : (£32,tensor<1024xf32>) ->(tensor<1024x£32>)

21 // Sound volume control, only executed when %sndon is true

ot

22 vol_cond = lus.when Y%sndon %volume : £32

23 Joutput = call @f32_tensor_float_product(%vol_cond,%pitch_output)

24 : (£32,tensor<1024xf32>) ->(tensor<1024x£32>)

25 // When Ysndon is false, we still have to output zero (muted sound)

26  Ymuted = call @bzero_£32_1024(): () -> tensor<1024xf32>

27  joutput_merged = lus.merge J%sndon %output %muted: tensor<1024xf32>

28 // Extract the last 256 samples and convert them to the correct output format
29  jout = call Qextract_samples(%output_merged) : (tensor<1024xf32>)->(tensor<256xil6>)
30  %sndbufout = call @mono2stereo(%out): (tensor<256xil6>)->(tensor<512xi16>)
31  lus.yield(%sndbufout:tensor<512xil16> )

Fig. 14. Pitch control application—top-level node. In blue, 1us dialect operations.

of the time series application is a recurrent layer. Furthermore, the behavior specified by
the use case is a multi-rate one: input is cut in sections of 5 cycles each, with one output
produced at the end of each interval. Subsampling is performed on the output of the @lstm
node instance. Thus, computations driven by the output of the LSTM are executed at a
pace 5 times slower than the internal computations of the LSTM (grouped in node @lstm).
Such multi-rate execution mechanisms are also common in embedded control applications
specified in Lustre, and can be used to support multi-period execution [10].

5.3 Comparison with Lustre

For all three applications, we have also encoded the same behavior in Lustre, using the
open-source state-of-the-art Heptagon compiler.!® In doing this, we took advantage of
the Heptagon-specific language extensions, which allow for limited array processing using
map/fold iterators, in order to improve performance.

As our use cases only feature fixed-sized data, encoding in Lustre/Heptagon posed no
problem. Of course, our Lustre embedding into MLIR is more expressive in this respect, as

8http://heptagon.gforge.inria.fr/
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it can take advantage of the full MLIR type system, which allows for arrays and tensors of
dynamic sizes.

But the most interesting part of the comparison concerns the performance figures, sum-
marized in Table 1. To obtain them, the Heptagon-generated code has been compiled with
gcc at increasing optimization levels and executed on a Intel Core i5-7600 processor rated
at 3.50GHz. The MLIR code has been compiled using two different flows: a default flow
without very little MLIR-level optimization, where only common subexpression elimination is
performed in addition to the mandatory lowering and normalization passes, and a high-level
flow that includes loop nest optimizations representative of compilers for high-performance
computing. These loop nest optimizations including loop tiling, packing (copying for cache
spatial locality and conflicts) and loop unrolling; they have been implemented in MLIR
within the course of a couple of weeks and do not mean to compete with the most agressive,
automatically tuned optimizers for tensor computations [5]. For each use case, every 6
configurations were executed 10 times and the smallest figure has been considered in each
configuration to reduce the effect of OS interference.”

Table 1. Average execution time per cycle for the neural network use cases

Specification&compilation method ResNet50 TimeSeries
MLIR /lus 11.748s 250 ps

MLIR/lus optimized 4.873s 130 ps
Heptagon-+gcc-O0 151.847s 846 us
Heptagon+gcc-O1 52.730s 212 ps
Heptagon+gcc-O2 22.592s 148 ps
Heptagon4-gcc-O3 5.165s 40 ps

It is no surprise that, in the absence of optimizations, Heptagon-generated code is inefficient.
However, on the ResNet50 example which is representative of large ML applications, the
still preliminary and lightweight MLIR loop nest optimizations yield better performance
than the state-of-the-art Heptagon+gcc-O3 flow, which leverages the agressive optimizations
of the (currently) most performant open-source compiler (gcc).

Given that we only scratched the optimization potential of MLIR [5], these results clearly
show that the marriage we propose between MLIR and Lustre has the potential for high
runtime performance.

Overall, this evaluation confirms the expressiveness and effectiveness claims, about lever-
aging existing SSA-based optimizations, the ease of implementing optimizations specific
to dataflow synchronous compilers, and the ability to apply loop nest optimizations such
as loop tiling to a dataflow synchronous program. This draws a very promising path for
the development of specification formalisms, programming languages and compilers for
applications where both performance and predictability are important.

6 RELATED WORK

We advance the state-of-the-art in SSA by providing the syntactic constructs, structural
rules, and semantics extensions allowing the representation of synchronous reactive behavior.
This overall objective is fully original.

However, particular aspects of our extension have been covered in previous work, in
particular predicated execution [7, 18] and the use of semantic absence/undefinedness [9, 15].
In previous SSA work, predicated execution is explicit: the predicates are represented at

190ur experiments do not involve random elements, so that we assumed that OS-related interferences are
responsible for most of the variance.
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all points where they exert control. We allow an implicit predication specification, akin
to dataflow semantics, where the absence of inputs determines absence of execution. This
requires a clear definition of correctness, which is absent in [7].

Our treatment of semantic absence/undefinedness is also different from that proposed for
LLVM [15]. Our objective is not to ensure that non-deterministic code (involving undefined
values) preserves its set of traces unchanged under various optimizations. Instead, it is
to guarantee that well-defined values are preserved by various optimizations, even in the
presence of undefined behaviors affecting other variables. We attain this goal through the
abstraction theorem of Section 3.4.

We also extend previous work on the compilation of synchronous languages [2, 4, 19].
Existing synchronous language compilers profoundly restructure the code in order to match
an execution model (which, as explained in Section 3.1.2, is in most cases sequential function
calls, even though multi-threaded implementations have also been proposed [16]). We fully
avoid this by ensuring that every reactive SSA specification can be executed as is, and be
subject to any correct SSA transformation. Synchronous-specific code transformations are
still possible, but not mandatory.

More important maybe, instead of advancing the compilation of synchronous languages as
a separate research field, we show that it can be seen as an extension of classical compilation,
allowing the reuse of fundamental techniques for type checking, causality analysis, buffer
allocation etc.

7 CONCLUSION

We presented an embedding of the Lustre synchronous reactive language into SSA, extending
the MLIR framework to allow synchronous programming and code generation. We illustrated
it by capturing the data processing, computational and reactive control aspects of signal
processing and ML applications. Our MLIR extension remains fully compatible with SSA-
based analysis and transformations while also capturing the synchronous composition of
concurrent state machines, logical and physical time synchronization, and compilation passes
specific to synchronous languages, such as clock calculus, causality analysis, initialization
analysis, bounded-memory and clock-directed code generation.

While there had long been connections between the semantics of functional languages,
SSA and dataflow synchronous languages, this paper describes the concrete extension of
SSA capturing the necessary elements for reactive control system. Furthermore, retaining
all SSA-based compilation algorithms and reusing existing code unaware of the the specific
synchronous concurrency semantics allows a tighter integration of reactive system modeling
frameworks with the computationally intensive and general-purpose capabilities of MLIR-
and LLVM-based frameworks for HPC and ML.

Our work paves the way for unified design and implementation flows where the specification
of reactive control, state machines, and real-time ressource orchestration become first class
citizens on par with parallelization and optimization in general-purpose frameworks. One
key objective here is to lift our unification between reactive control and data parallelism
from the level of the MLIR intermediate format (not meant for direct programming) to
that of high-level specification languages such as Lustre, Keras or Jax. Since synchronous
concurrency is highly popular in safety-critical environments, one important future direction
is to fully formalize the core MLIR components our extension relies upon, and to prove
its correctness. A related direction consists in exploring syntax and refinements for state-
machines and control automata expressed in the Esterel synchronous language as well as
hardware design languages such as Bluespec and Chisel. It is also important to further
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investigate which SSA-based algorithms can benefit the compilation flow of reactive control
systems and how domain-specific methods for synchronous languages can enable greater
automation and guarantees in the composition and memory management of concurrent
systems in general.
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