
On Optimizing Top-𝐾 Metrics for Neural Ranking Models
Rolf Jagerman
Google Research

jagerman@google.com

Zhen Qin
Google Research

zhenqin@google.com

Xuanhui Wang
Google Research

xuanhui@google.com

Michael Bendersky
Google Research

bemike@google.com

Marc Najork
Google Research

najork@google.com

ABSTRACT
Top-𝐾 metrics such as NDCG@𝐾 are frequently used to evaluate
ranking performance. The traditional tree-based models such as
LambdaMART, which are based onGradient Boosted Decision Trees
(GBDT), are designed to optimize NDCG@𝐾 using the LambdaRank
losses. Recently, there is a good amount of research interest on
neural ranking models for learning-to-rank tasks. These models are
fundamentally different from the decision tree models and behave
differently with respect to different loss functions. For example,
the most popular ranking losses used in neural models are the
Softmax loss and the GumbelApproxNDCG loss. These losses do not
connect to top-𝐾 metrics such as NDCG@𝐾 naturally. It remains
a question on how to effectively optimize NDCG@𝐾 for neural
rankingmodels. In this paper, we follow the LambdaLoss framework
and design novel and theoretically sound losses for NDCG@𝐾
metrics, while the original LambdaLoss paper can only do so using
an unsound heuristic. We study the new losses on the LETOR
benchmark datasets and show that the new losses work better than
other losses for neural ranking models.

CCS CONCEPTS
• Information systems→ Learning to rank.

KEYWORDS
Learning to Rank; Ranking Metric Optimization; LambdaLoss

ACM Reference Format:
Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael Bendersky, and Marc
Najork. 2022. On Optimizing Top-𝐾 Metrics for Neural Ranking Models. In
Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’22), July 11–15, 2022, Madrid,
Spain. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3477495.
3531849

1 INTRODUCTION
Ranking losses play a crucial role in Learning-to-Rank (LTR) tech-
niques [14, 28]. Before neural ranking models, the most effective
models are Gradient Boosted Decision Trees (GBDT). One such im-
portant approach is LambdaMART [5], which uses the LambdaRank

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8732-3/22/07.
https://doi.org/10.1145/3477495.3531849

loss and has long dominated the LTR field. Recently, neural ranking
models have become popular for LTR tasks. These neural models
are fundamentally different from the tree-based models and have
different behaviors with respect to ranking losses. For example,
popular ranking losses to optimize neural ranking models are the
Softmax loss [2, 16, 20] and GumbelApproxNDCG loss [1, 3, 18],
which are usually sub-optimal when applied to tree-based mod-
els [2, 5]. Thus it is worth studying ranking losses with respect to
ranking metric optimization for neural ranking models.

Top-𝐾 metrics such as NDCG@𝐾 are more commonly used
to evaluate ranking performance than their full-list counterparts,
because they reflect the utility of a real-world ranking system better
due to their affinity to user behaviors, in which users are more likely
to focus on results at top ranks only. Thus optimizing top-𝐾 metrics
is practically important. Although this has been studied in tree-
based models, it remains a question on how to do this effectively
for neural ranking models.

Throughout the paper, we focus on NDCG@𝐾 as a represen-
tative example for top-𝐾 metrics. Directly optimizing NDCG is
challenging because ranking metrics are discontinuous and flat
everywhere. Optimizing NDCG@𝐾 can be even more challeng-
ing because the truncation of the list and the top-𝐾 documents
per query can change dynamically during the training procedure,
making it hard to define a loss over a fixed set of documents.

Existing work on ranking metric optimization have mainly fo-
cused on NDCG without a cutoff (e.g., SoftNDCG [22], Smooth-
NDCG [7], ApproxNDCG [18]). However, these approaches do not
generalize to NDCG@𝐾 directly. In contrast, the LambdaRank [6]
loss can be extended to NDCG@𝐾 , which will be referred to as
LambdaRank@𝐾 throughout this paper. Such a loss is based the
delta change of NDCG@𝐾 when two documents are swapped. A nat-
ural question that arises now iswhetherwe can use LambdaRank@𝐾
to optimize NDCG@𝐾 for neural ranking models. As we show in
this paper, direct application of LambdaRank@𝐾 to neural rank-
ing models is not effective. Furthermore, the recently proposed
LambdaLoss [26] framework can also be extended to NDCG@𝐾
using a similar heuristic as what was used in LambdaRank@𝐾 .
Unfortunately, such a heuristic is theoretically unsound and, as we
show in this paper, is not an effective strategy for optimizing top-𝐾
metrics. Finally, other ranking losses used in neural models such as
the Softmax loss are also not designed to optimize NDCG@𝐾 and
thus are not very effective either.

In this paper, we follow the LambdaLoss framework and derive a
novel and sound loss for NDCG@𝐾 , named LambdaLoss@𝐾 . Unlike
LambdaRank@𝐾 which sets a zero weight for pairs where both are
ranked beyond the rank 𝐾 , the new LambdaLoss@𝐾 proposes a

https://orcid.org/0000-0002-5169-495X
https://orcid.org/0000-0001-6739-134X
https://orcid.org/0000-0003-1423-0854
https://doi.org/10.1145/3477495.3531849
https://doi.org/10.1145/3477495.3531849
https://doi.org/10.1145/3477495.3531849

novel correction multiplier to appropriately weigh those pairs. This
correction multiplier is based on NDCGCost@𝐾 , a modification
of the NDCGCost from LambdaLoss [26], which can be used to
appropriately bound NDCG@𝐾 .

To validate the effectiveness of the new LambdaLoss@𝐾 , we
conduct experiments on three LETOR bechmark datasets [17]. Our
experiments show that our new loss can outperform the com-
monly used losses for neural ranking models. It also outperforms
LambdaRank@𝐾 and the original LambdaLoss@𝐾 in [26] when
optimizing NDCG@𝐾 . Furthermore, the LamdaLoss@𝐾 is better
than the LambdaLoss in general, validating our theoretical results.

2 RELATEDWORK
LTR is a widely studied field where numerous ranking losses have
been studied. Several notable losses include Pairwise Logistic [4]
(also called RankNet), ListNet [27], Softmax [2, 16]. Furthermore,
ranking metric optimization has been tackled from various perspec-
tives, for example the works on LambdaRank [5, 6], SoftNDCG [22],
SmoothNDCG [7], ApproxNDCG [18] andGumbelApproxNDCG [3].
Finally, one of the most recent works, LambdaLoss [26], uses the
ideas from LambdaRank to develop a theoretically sound frame-
work for ranking metric optimization and is considered a strong
loss for optimizing neural LTR models. Our work builds on the
LambdaLoss work but extends it by considering a new way to in-
corporate cutoff-based metrics such as NDCG@𝐾 . This is a novel
contribution over the original LambdaLoss paper which was only
able to incorporate top-𝐾 metrics via a heuristic.

There are several existing works that has investigated top-𝐾
ranking metric optimization. First, Oosterhuis and de Rijke [15]
consider the problem of unbiased LTR from interaction logs with
top-𝐾 cutoffs. To be specific, they study item selection bias and
uses a stochastic ranking policy to overcome this bias, meaning it
is situated in between online and counterfactual LTR [9]. Our work
is different in that we develop a novel loss for optimizing top-𝐾
ranking metrics from relevance labels and we do not consider the
problem of item selection bias or unbiased LTR from interaction
logs (e.g., [11, 24, 25]). Second, Lee et al. [12] looks at top-𝐾 metric
optimization in the context of factorization methods for recommen-
dation systems, which is different from our work since we consider
the problem of neural LTR. Finally, we note that the LambdaRank
and LambdaMART frameworks [5] are capable of optimizing top-
𝐾 metrics. Such methods have enjoyed considerable success for
decision-tree based models [13, 19]. However, as we will see in
the results of this paper, applying the LambdaRank loss to neural
LTR models does not work very well, a phenomenon that was also
reported in [20].

3 RANKING METRICS
Ranking metrics are commonly used to evaluate Information Re-
trieval (IR) systems. Broadly speaking, ranking metrics express how
well a ranking induced from item scores 𝑠 ∈ R𝑛 matches a ranking
induced from relevance labels 𝑦 ∈ R𝑛 . Let 𝜋 denote the 1-based
ranks of a set of item scores 𝑠 after sorting them in descending
order:

𝜋 (𝑠𝑖 | 𝑠) = 1-based rank of the 𝑖th score 𝑠𝑖 . (1)

For simplicity we will write 𝜋𝑖 = 𝜋 (𝑠𝑖 | 𝑠) where 𝑠 can be inferred
from the context. Using this formulation, we can write the defini-
tions of DCG and NDCG [10]:

DCG(𝑠,𝑦) =
𝑛∑
𝑖=1

G(𝑦𝑖)
D(𝜋𝑖)

, (2)

NDCG(𝑠,𝑦) = DCG(𝑠,𝑦)
DCG(𝑦,𝑦) , (3)

where G is a gain function such as G(𝑦𝑖) = 2𝑦𝑖 − 1 and D is a rank
discount function such as D(𝑟) = log2 (1 + 𝑟). Correspondingly, it
is possible to define the top-𝐾 variants of these metrics:

DCG@𝐾 (𝑠,𝑦) =
∑

𝑖 : 𝜋𝑖 ≤𝐾

G(𝑦𝑖)
D(𝜋𝑖)

, (4)

NDCG@𝐾 (𝑠,𝑦) = DCG@𝐾 (𝑠,𝑦)
DCG@𝐾 (𝑦,𝑦) , (5)

Ranking metrics are traditionally considered hard to optimize
for directly, as the rank function 𝜋 makes ranking metrics discon-
tinuous and flat everywhere. Instead, a common approach taken in
LTR is to optimize a ranking loss, which acts as a surrogate for a
ranking metric.

4 POPULAR RANKING LOSSES
Several popular ranking losses that are used today are pairwise
losses such as pairwise logistic loss [4] (also called the RankNet
loss) and the Softmax cross-entropy loss [16]:

RankNet(𝑠,𝑦) =
∑

(𝑖, 𝑗) : 𝑦𝑖>𝑦 𝑗

log(1 + exp(−𝜎 (𝑠𝑖 − 𝑠 𝑗))) (6)

Softmax(𝑠,𝑦) = −
𝑛∑
𝑖=1

𝑦𝑖 · log
exp(𝑠𝑖)∑𝑛
𝑗=1 exp(𝑠 𝑗)

(7)

where 𝜎 is a hyper-parameter and we set it to 1 in this paper. Al-
though these ranking losses permit optimization via gradient de-
scent, they are only loosely connected to the ranking metrics that
we are really interested in optimizing. To close this gap, existing
work has looked at approximate metric optimization. For example,
the work on ApproxNDCG [18] proposes a differentiable approxi-
mation to 𝜋 :

𝜋 (𝑠𝑖 | 𝑠) ≈ 𝜋̃ (𝑠𝑖 | 𝑠) = 1 +
𝑛∑
𝑗=1

sigmoid(𝑠 𝑗 − 𝑠𝑖) . (8)

Plugging 𝜋̃ into the definition of DCG and NDCG of Eqs. 2 and 3
gives rise to the approximate losses ApproxDCG and ApproxNDCG.
Furthermore, recent work [3] has shown that to effectively opti-
mize an approximate ranking loss, it is important to apply Gumbel
sampling to the scores. This results in the GumbelApproxNDCG
loss [3], which is defined as an application of ApproxNDCG on
scores that are corrupted by Gumbel noise:

GumbelApproxNDCG(𝑠,𝑦) = ApproxNDCG(𝑠 + 𝑔,𝑦) (9)
𝑔𝑖 ∼ Gumbel(𝛼, 𝛽), (10)

where Gumbel(𝛼, 𝛽) is the standard Gumbel distribution with typi-
cal parameters 𝛼 = 0, 𝛽 = 1.

5 OPTIMIZING NDCG@𝐾

Existing work, such as ApproxNDCG has focused on constructing
an optimizable loss directly from the definition of a metric by re-
placing ranks with transformed scores. However, how to extend
such work to top-𝐾 metrics is not immediately clear. An alternative
approach is taken by LambdaRank [6], which is an extension of the
RankNet loss as defined in Eq. 6 that scales the gradient of each pair
of scores (𝑠𝑖 , 𝑠 𝑗) by the difference in a ranking metric if those scores
were swapped, also called the lambda weight Δ𝑖, 𝑗 . This approach
works on any ranking metric, including top-𝐾 ranking metrics. For
NDCG, this delta is

Δ𝑖, 𝑗 =
��G(𝑦𝑖) − G(𝑦 𝑗)

�� · ���� 1
D(𝜋𝑖)

− 1
D(𝜋 𝑗)

���� = ��G(𝑦𝑖) − G(𝑦 𝑗)
�� · 𝛿𝑖, 𝑗 ,

(11)
normalized by the ideal DCG, which is a constant for each query
and is omitted from our formulation for clarity.

To apply LambdaRank to NDCG@𝐾 , a minor modification to
𝛿𝑖, 𝑗 is sufficient:

𝛿𝑖, 𝑗@𝐾 =

����𝟙[𝜋𝑖 ≤ 𝐾]
𝐷 (𝜋𝑖)

−
𝟙[𝜋 𝑗 ≤ 𝐾]
𝐷 (𝜋 𝑗)

���� . (12)

Note that this formulation introduces sparsity: many 𝛿𝑖, 𝑗@𝐾 end up
being 0. It has been shown that LambdaRank@𝐾 works effectively
for tree-based models [5]. Although the empirical effectiveness of
LambdaRank is well documented [13, 19, 20], the method remains
a heuristic and the underlying loss being optimized is unknown.

More recently, the LambdaLoss framework [26] was introduced
and proposes a theoretically-sound framework for Lambda-based
losses such as LambdaRank. In a sense, LambdaLoss is very sim-
ilar to LambdaRank when optimizing NDCG. It makes a minor
adjustment to 𝛿𝑖, 𝑗 :

𝛿𝑖, 𝑗 =

���� 1
D(|𝜋𝑖 − 𝜋 𝑗 |)

− 1
D(|𝜋𝑖 − 𝜋 𝑗 | + 1)

���� . (13)

The derivation of LambdaLoss is based on the concept of NDCGCost,
a cost version of the NDCG metric:

NDCGCost(𝑠𝑖 , 𝑦𝑖) = G(𝑦𝑖)
(
1 − 1

D(𝜋𝑖)

)
. (14)

The original LambdaLoss paper provided a heuristic approach to
use the same loss for top-𝐾 variant NDCG@𝐾 . The authors propose
the following top-𝐾 variant of 𝛿𝑖, 𝑗 :

𝛿𝑖, 𝑗@𝐾 = 𝟙[𝜋𝑖 ≤ 𝑘 or 𝜋 𝑗 ≤ 𝑘]𝛿𝑖, 𝑗 . (15)

In other words, this uses the full 𝛿𝑖, 𝑗 when either item 𝑖 or item 𝑗 is
in the top-𝐾 ranks, and sets it to 0 otherwise. This formulation is a
heuristic providing no guarantees, and is only loosely connected
to NDCG@𝐾 . In fact, as we will see in the experiments, this loss is
not effective at optimizing NDCG@𝐾 .

Here is where we deviate from the standard LambdaLoss to
formulate our novel contribution LambdaLoss@𝐾 . Instead of set-
ting items beyond the top-𝐾 to 0, we weigh them, leading to the
following definition of 𝛿𝑖, 𝑗@𝐾 :

𝛿𝑖, 𝑗@𝐾 =

{
𝛿𝑖, 𝑗 𝜇𝑖, 𝑗 if 𝜋𝑖 > 𝐾 or 𝜋 𝑗 > 𝐾
𝛿𝑖, 𝑗 else , (16)

where 𝜇𝑖, 𝑗 is a correction multiplier defined as

𝜇𝑖, 𝑗 =
1

1 − 1
D(max(𝜋𝑖 ,𝜋 𝑗))

. (17)

Note that for NDCG without a cutoff (i.e. 𝐾 = ∞), this formulation
is identical to the original LambdaLoss.

To derive this new definition of 𝛿𝑖, 𝑗@𝐾 , we start with the defini-
tion of NDCGCost@𝐾 which follows from NDCG@𝐾 from Eq. 5:

NDCGCost@𝐾 (𝑠𝑖 , 𝑦𝑖) =
{

G(𝑦𝑖)
(
1 − 1

D(𝜋𝑖)

)
if 𝜋𝑖 ≤ 𝐾

G(𝑦𝑖) else
. (18)

For 𝜋𝑖 ≤ 𝐾 , we get:

NDCGCost@𝐾 (𝑠𝑖 , 𝑦𝑖) = G(𝑦𝑖)
(
1 − 1

D(𝜋𝑖)

)
(19a)

= G(𝑦𝑖)
𝑛∑
𝑗=1

𝛿𝑖, 𝑗 𝟙[𝑠𝑖 < 𝑠 𝑗] (19b)

= G(𝑦𝑖)
©­«

∑
𝑗 :𝜋 𝑗 ≤𝐾

𝛿𝑖, 𝑗 𝟙[𝑠𝑖 < 𝑠 𝑗] +
∑

𝑗 :𝜋 𝑗>𝐾

𝛿𝑖, 𝑗 𝟙[𝑠𝑖 < 𝑠 𝑗]
ª®¬ (19c)

= G(𝑦𝑖)
©­«

∑
𝑗 :𝜋 𝑗 ≤𝐾

𝛿𝑖, 𝑗 𝟙[𝑠𝑖 < 𝑠 𝑗] +
∑

𝑗 :𝜋 𝑗>𝐾

𝛿𝑖, 𝑗 𝜇𝑖, 𝑗 𝟙[𝑠𝑖 < 𝑠 𝑗]
ª®¬ ,
(19d)

where Eq. 19b follows from the definition of 𝛿𝑖, 𝑗 of LambdaLoss
and Eq. 19d holds because 𝟙[𝑠𝑖 < 𝑠 𝑗] is always zero in the second
sum. Next, for 𝜋𝑖 > 𝐾 , we get:

NDCGCost@𝐾 (𝑠𝑖 , 𝑦𝑖) = G(𝑦𝑖)
(
1 − 1

D(𝜋𝑖)

)
1(

1 − 1
D(𝜋𝑖)

) (20a)

= G(𝑦𝑖)
𝑛∑
𝑗=1

1(
1 − 1

D(𝜋𝑖)

) 𝛿𝑖, 𝑗 𝟙[𝑠𝑖 < 𝑠 𝑗] (20b)

= G(𝑦𝑖)
©­«

𝑛∑
𝑗 :𝜋 𝑗 ≤𝜋𝑖

𝜇𝑖, 𝑗𝛿𝑖, 𝑗 𝟙[𝑠𝑖 < 𝑠 𝑗] +
𝑛∑

𝑗 :𝜋 𝑗>𝜋𝑖

𝜇𝑖, 𝑗𝛿𝑖, 𝑗 𝟙[𝑠𝑖 < 𝑠 𝑗]
ª®¬ ,

(20c)

where we follow the similar reasoning as with Eq. 19. Overall, the
result is that for both cases 𝜋𝑖 > 𝐾 and 𝜋 𝑗 > 𝐾 we always obtain
𝜇𝑖, 𝑗 as an extra multiplier for 𝛿𝑖, 𝑗 , resulting in Eq. 16. Note that
𝛿𝑖, 𝑗@𝐾 is symmetric and can be bounded using the same method
that was used in the original LambdaLoss paper.

6 EXPERIMENTS
To validate the effectiveness of the proposed LambdaLoss@K, we
experiment using a standard supervised LTR setup with 3 public
benchmark datasets: Web30K [17], Yahoo [17], and Istella [8]. Each
data set contains a collection of queries and corresponding doc-
uments where query-document pairs are represented as feature
vectors. Furthermore each query-document pair has a correspond-
ing relevance label ∈ {0, 1, 2, 3, 4}, where higher values indicate
higher relevance of the document to the query.

For each dataset we train neural LTRmodels using TF-Ranking [16].
For all input features, we applied a log1p transformation as in [20].

Table 1: Comparison of several baseline losses against the novel LambdaLoss@K. Bold numbers indicate the best performance.
▲ and ▼ indicate statistically significant (𝑡-test, 𝑝 < 0.05) differences compared to LambdaLoss.

WEB30K Istella Yahoo
NDCG@1 NDCG@5 NDCG NDCG@1 NDCG@5 NDCG NDCG@1 NDCG@5 NDCG

Pairwise 45.31▼ 45.38▼ 70.67▼ 67.76▼ 64.77▼ 79.95▼ 66.47▼ 69.84▼ 82.66▼
Softmax 47.33 46.69▼ 71.45 69.45▼ 66.70▼ 81.02▼ 67.52 70.62 83.15
Gumbel 48.20 46.85 71.31▼ 71.27 66.93▼ 80.89▼ 67.75 70.30▼ 82.91▼

LambdaLoss 47.74 47.11 71.55 71.17 67.62 81.51 67.92 70.78 83.17
LambdaLoss@1 48.50▲ 47.40▲ 71.65 71.72▲ 67.90▲ 81.74▲ 68.06 70.71 83.13
LambdaLoss@5 47.34 47.09 71.57 71.19 67.61 81.56 67.94 70.82 83.17

Table 2: Comparing LambdaRank@𝐾 and LambdaLoss@𝐾

with respect to NDCG@5. Significant differences compared
to LambdaLoss@5 V1 are indicated the same as Table 1.

WEB30K Istella Yahoo

LambdaRank 46.87 67.55▲ 70.08
LambdaRank@1 45.35▼ 65.79▼ 69.46▼
LambdaRank@5 46.68 67.82▲ 70.38

LambdaLoss@5 V1 46.76 66.86 70.34

LambdaLoss 47.11 67.62▲ 70.78▲
LambdaLoss@1 47.40▲ 67.90▲ 70.71▲
LambdaLoss@5 47.08 67.61▲ 70.82▲

The architecture of the model is a basic feedforward neural net-
work with hidden layers [1024, 512, 256], where dropout is set to
0.5, 0.5, and 0.8 and batch normalization are used with batch nor-
malization momentum as 0.999. These parameters are tuned for the
baseline models. We only vary the learning rate ∈ {0.01, 0.1, 1, 10}
for different runs.

To evaluate the trained ranking models we use the test split of
each dataset. We report our comparison on NDCG@1, NDCG@5,
and NDCG metrics.

6.1 Comparison of Ranking Losses
We compare the pairwise RankNet loss, the Softmax loss and the
GumbelApproxNDCG losswith our newly proposed LambdaLoss@𝐾
losses: LambdaLoss@1 LambdaLoss@5. Note that without top-𝐾
truncation, the LambdaLoss is the same as the original paper [26].
Our main results are shown in Table 1. From this table, we can
make the following observations:

First, let us take a look at the three baselines: the Pairwise
RankNet loss, the Softmax loss and the GumbelApproxNDCG loss.
Our findings here show that when evaluating using NDCG@1 or
NDCG@5, the GumbelApproxNDCG loss is a strong contender.
This matches our intuition since, unlike the RankNet or Softmax
loss, GumbelApproxNDCG actually specifically optimizes for NDCG,
so it should come as no surprise that it outperforms the other base-
line losses there. Interestingly, the Softmax loss performs better
across datasets on NDCG without cutoff. Unlike GumbelApprox-
NDCG, the Softmax loss does not specifically optimize for NDCG so

this finding is somewhat unexpected. One possible explanation for
this phenomenon is that, like most LTR losses, the GumbelApprox-
NDCG loss is non-convex and thus easily gets stuck in local optima.
This problem of non-convexity for the GumbelApprox losses has
also been documented in the literature [3, 21, 23].

Second, let us direct our attention to the various versions of the
LambdaLoss. Note that the LambdaLoss is the original loss and the
LambdaLoss@1 and LambdaLoss@5 are our novel losses. What
is clear from these results is that LambdaLoss@1 is a very strong
loss and in fact outperforms all other losses on the NDCG metrics
for both the Web30K and Istella datasets. Furthermore, we see that
LambdaLoss@5 is also a strong loss, and in fact achieves the best
performance for the NDCG@5 metric on the Yahoo dataset. This is
an encouraging finding as it confirms our theoretical intuition: opti-
mizing for a specific metric can result in better performance on that
metric. Another particularly interesting thing to note here is that
the original LambdaLoss does not perform the best on the NDCG
metric without cutoff, despite optimizing for that metric. In fact,
either the LambdaLoss@1 and LambdaLoss@5 always outperforms
the LambdaLoss on this metric. This indicates that performing top-
𝐾 truncation during optimization may be beneficial, even when
evaluating on metrics that have no cutoff. Overall, we demonstrate
that targeting ranking metrics such as NDCG@𝐾 through optimiz-
ing LambdaLoss at various cutoffs can lead to strong performance
improvements across various metrics.

6.2 Top-𝐾 Losses
We then compare the LambdaRank@𝐾 , the original LambdaLoss@𝐾
(based on Eq. 15, denoted as V1 in the table) and the newly proposed
LambdaLoss@𝐾 on the 3 data sets based on the NDCG@5 metrics.
The results are summarized in Table 2. From this table, we can see
that the LambdaRank@𝐾 is not effective for neural ranking models.
They are worse than the non-truncated version LambdaRank. In
contrast, LambdaLoss@𝐾 is not only better than LambdaRank, but
also more effective than their non-trucated version.

6.3 Parameter Study
The only parameter we vary is the learning rate. On the Web30K
data, we show the impact of learning rates on the 4 methods. For
brevity, we omit the results on the other 2 datasets as their behaviors
are similar. From this figure, we can see that the learning rate plays
a big role for the performance. We also see that LambdaLoss@𝐾

0.01 0.1 1 10
0.44

0.45

0.46

0.47

0.48

Learning Rate

N
D
CG

@
5

Softmax LambdaLoss
Gumbel LambdaLoss@1

Figure 1: The impact of learning rates on different losses
measured by NDCG@5 on WEB30K.

is better than other baseline on a large range of the learning rate
values in Figure 1.

7 CONCLUSION
In this paper, we introduce a novel and theoretically sound Lam-
badaLoss to optimize top-𝐾 metrics, called LambdaLoss@𝐾 . The
new loss is able to work well with neural ranking models, in con-
trast to the LambdaRank loss for NDCG@𝐾 . We also show that
such a loss is better than the commonly used Softmax and Gumbel-
ApproxNDCG losses on the LETOR benchmark datasets. This is
an encouraging result, as it suggests that a simple modification
to an existing loss framework such as LambdaLoss can produce
state-of-the-art results for metrics that are highly practically rel-
evant. Meanwhile, we found that the LambdaLoss@𝐾 can work
better on the full NDCG than LambdaLoss, a novel finding that
inspires us to try various top-𝐾 ranking loss surrogates, even for
ranking problems that are evaluated on untruncated NDCG. A pos-
sible direction for future work is extending the LambdaLoss@𝐾 to
incorporate other Top-𝐾 ranking metrics besides NDCG@𝐾 . Our
work has shown the efficacy of LambdaLoss@𝐾 for NDCG@𝐾 , but
it is not immediately clear how to extend this to ranking metrics
such as Recall@𝐾 or Precision@𝐾 , which we leave as future work.
Furthermore, the model being optimized is a simple feed-forward
neural network. How the proposed losses performs under different
architectures is left as future work.

REFERENCES
[1] Sebastian Bruch, Shuguang Han, Michael Bendersky, and Marc Najork. 2020. A

Stochastic Treatment of Learning to Rank Scoring Functions. In Proceedings of
the 13th International Conference on Web Search and Data Mining. 61–69.

[2] Sebastian Bruch, Xuanhui Wang, Michael Bendersky, and Marc Najork. 2019. An
Analysis of the Softmax Cross Entropy Loss for Learning-to-Rank with Binary
Relevance. In Proceedings of the 2019 ACM SIGIR International Conference on
Theory of Information Retrieval (ICTIR ’19). 75–78.

[3] Sebastian Bruch, Masrour Zoghi, Michael Bendersky, and Marc Najork. 2019.
Revisiting approximate metric optimization in the age of deep neural networks.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1241–1244.

[4] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. 89–96.

[5] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[6] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to
Rank with Nonsmooth Cost Functions. In Proceedings of the 19th International

Conference on Neural Information Processing Systems (NIPS’06). 193–200.
[7] Olivier Chapelle and Mingrui Wu. 2010. Gradient descent optimization of

smoothed information retrieval metrics. Information retrieval 13, 3 (2010), 216–
235.

[8] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Fast ranking
with additive ensembles of oblivious and non-oblivious regression trees. ACM
Transactions on Information Systems (TOIS) 35, 2 (2016), 1–31.

[9] Rolf Jagerman, Harrie Oosterhuis, and Maarten de Rijke. 2019. To model or to
intervene: A comparison of counterfactual and online learning to rank from user
interactions. In Proceedings of the 42nd international ACM SIGIR conference on
research and development in information retrieval. 15–24.

[10] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[11] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. 781–789.

[12] Hyunsung Lee, Sangwoo Cho, Yeongjae Jang, Jaekwang Kim, and Honguk Woo.
2021. Differentiable ranking metric using relaxed sorting for top-k recommenda-
tion. IEEE Access 9 (2021), 114649–114658.

[13] Pan Li, Zhen Qin, Xuanhui Wang, and Donald Metzler. 2019. Combining decision
trees and neural networks for learning-to-rank in personal search. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2032–2040.

[14] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf.
Retr. 3, 3 (mar 2009), 225–331.

[15] Harrie Oosterhuis and Maarten de Rijke. 2020. Policy-aware unbiased learning
to rank for top-k rankings. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 489–498.

[16] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael
Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan
Wolf. 2019. Tf-ranking: Scalable tensorflow library for learning-to-rank. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2970–2978.

[17] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

[18] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework
for direct optimization of information retrieval measures. Information retrieval
13, 4 (2010), 375–397.

[19] Zhen Qin, Suming J. Chen, Donald Metzler, Yongwoo Noh, Jingzheng Qin, and
Xuanhui Wang. 2020. Attribute-Based Propensity for Unbiased Learning in
Recommender Systems: Algorithm and Case Studies. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2359–2367.

[20] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers still
Outperformed by Gradient Boosted Decision Trees?. In International Conference
on Learning Representations.

[21] Pradeep Ravikumar, Ambuj Tewari, and Eunho Yang. 2011. On NDCG consistency
of listwise ranking methods. In Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics. JMLR Workshop and Conference
Proceedings, 618–626.

[22] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. 2008. Softrank:
optimizing non-smooth rank metrics. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. 77–86.

[23] Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. 2009. Learning
to rank by optimizing ndcg measure. Advances in neural information processing
systems 22 (2009).

[24] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to Rank with Selection Bias in Personal Search. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’16). 115–124.

[25] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc
Najork. 2018. Position bias estimation for unbiased learning to rank in personal
search. In Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining. 610–618.

[26] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.
2018. The lambdaloss framework for ranking metric optimization. In Proceedings
of the 27th ACM international conference on information and knowledge manage-
ment. 1313–1322.

[27] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
international conference on Machine learning. 1192–1199.

[28] Le Yan, Zhen Qin, Rama Kumar Pasumarthi, Xuanhui Wang, and Mike Bendersky.
2021. Diversification-Aware Learning to Rank using Distributed Representation.
In Proceedings of the Web Conference 2021 (WWW ’21). 127–136.

http://arxiv.org/abs/1306.2597

	Abstract
	1 Introduction
	2 Related Work
	3 Ranking Metrics
	4 Popular Ranking Losses
	5 Optimizing NDCG@K
	6 Experiments
	6.1 Comparison of Ranking Losses
	6.2 Top-K Losses
	6.3 Parameter Study

	7 Conclusion
	References

