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Abstract
This paper investigates an end-to-end audio-visual (A/V) mod-
eling approach for transcribing utterances in scenarios where
there are overlapping speech utterances from multiple talkers.
It assumes that overlapping audio signals and video signals in
the form of mouth-tracks aligned with speech are available for
overlapping talkers. The approach builds on previous work in
audio-only multi-talker ASR. In that work, a conventional re-
current neural network transducer (RNN-T) architecture was
extended to include a masking model for separation of encoded
audio features and multiple label encoders to encode transcripts
from overlapping speakers. It is shown here that incorporat-
ing an attention weighted combination of visual features in A/V
multi-talker RNN-T models significantly improves speaker dis-
ambiguation in ASR on overlapping speech relative to audio-
only performance. The A/V multi-talker ASR systems de-
scribed here are trained and evaluated on a two speaker A/V
overlapping speech dataset created from YouTube videos. A
17% reduction in WER was observed for A/V multi-talker mod-
els relative to audio-only multi-talker models.

1. Introduction
It is well known that automatic speech recognition (ASR) from
human-human interaction is a far more difficult problem than
ASR from utterances arising from limited domain human ma-
chine interaction [1]. While there are many reasons for this, one
major issue is the existence of overlapping speech in conversa-
tions. Studies of human-human interaction in meetings scenar-
ios have shown that talker overlap typically occurs in from 10
to 30 percent of talkers’ utterances [2]. Recent work on over-
lapping utterances taken from client-customer interactions in a
call center application has shown that overlapping speech dra-
matically increases ASR word error rates (WERs), especially in
regions where talkers overlap [3].

This paper presents techniques for addressing the problem
of transcribing overlapping utterances from each of multiple
talkers. The contributions of the paper include the following.
First, the paper is the first to present techniques for exploit-
ing both audio and visual features for decoding overlapping ut-
terances from multiple speakers. Visual features in the form
of mouth tracks aligned with speech have been used in audio-
visual end-to-end models for single-talker ASR [4] [5] [6]. Two
approaches are presented here for integrating audio and vi-
sual features in multi-talker ASR. The second contribution is
an experimental study that is performed to evaluate the degree
to which visual features are able to improve the WER of de-
coded text obtained from two overlapping speakers. It is shown
here that the A/V multi-talker approach presented here has a
larger impact on separating and recognizing speech from mul-
tiple overlapping talkers than the impact shown for using A/V
features in single-talker ASR.

There has been a great deal of recent work on audio-only

end-to-end approaches to multi-talker ASR [3] [7][8][9]. The
A/V multi-talker techniques in this paper are motivated by the
work in [3], which extends a single label encoder RNN-T by
applying a masking model to the encoded audio input from an
overlapping speech utterance. That system was developed and
applied to utterances taken from a call center domain, and is
summarized here in Section 2. Many of the recently developed
audio-only multi-talker approaches are similar in that they in-
volve an extension of the single label encoder end-to-end model
with a training procedure that aligns overlapping speech with
transcriptions from multiple speakers.

Work on end-to-end multi-talker ASR has been preceded
by work on speech separation where the goal is to recover
a target speech signal from overlapped speech [10][11][12].
This includes a recent approach that fuses audio-visual features
for speech separation in videos [13]. Explicit speech sepa-
ration systems generally optimize criteria related to signal-to-
background distortion and overall signal fidelity. However, it
has been difficult for these techniques to demonstrate large im-
provements in ASR word error rate (WER), especially when
compared to multi-talker ASR systems that are trained to opti-
mize fully end-to-end multi-talker criteria. There has also been
recent work on A/V ASR in the presence of background speech.
The goal of the work in [14] and [15] is to fuse audio and visual
signals in an effort to improve speech recognition from a target
speaker in the presence of background speech. The goal of the
work presented here is different in that it uses the visual sig-
nal to improve speech recognition from multiple speakers and
decode transcriptions from each speaker.

One important issue in extending the above audio-only mul-
titalker ASR approach to audio-visual multi-talker ASR is the
problem of associating one of multiple on-screen faces with
each overlapping talker’s audio signal. It is necessary to iden-
tify the on-screen face that is associated with the talker so the
mouth track associated with that talker can be synchronized
with the audio features and input to the ASR system. There
are a number of techniques that have been proposed for select-
ing the mouth-track that is associated with the talker. This can
be done prior to combining A/V features for ASR using any of
several techniques including those relying on measurements of
time synchronization between audio and visual signals [16]. It
can also be done as part of end-to-end soft face selection that
is integrated with the ASR model [17]. The end-to-end ap-
proach relies on an attention mechanism for selecting an atten-
tion weighted combination of mouth tracks for each time instant
to be input to the multi-talker system with the audio features.
Both of these techniques will be investigated in the A/V multi-
talker systems described in Section 2.

A simulated overlapping speech A/V corpus was created for
training A/V multi-talker models. The corpus is derived from
the YouTube A/V corpus created for training A/V ASR models
in [6]. This consists of a collection of short utterances where
the audio matches the transcripts uploaded by the user with



the YouTube video[18], and the video mouth track is aligned
with the audio [6]. Each utterance in the simulated overlapped
speech corpus was created by combining two of these short A/V
utterances with randomly selected overlap interval ranging from
one to five seconds. This simulated overlapping speech corpus
is described in more detail in Section 3, and the results of an ex-
perimental study based on this corpus is presented in Section 4.

2. System Description
This section describes the end-to-end RNNT based approach
to multi-talker modeling. First, the basic multi-talker model is
described as a multi-channel RNNT model with an added mask
layer to produce separate activations for the two overlapping
speaker’s utterances. Second, two approaches for integrating
visual features into the multi-talker model are presented.

2.1. Audio-only multi-talker model

The extension of the single label encoder recurrent neural net-
work transducer (RNNT) [19] to an audio-only multi-talker
RNNT [3] is illustrated by the block diagrams in Figure 1. Fig-
ure 1a displays the RNNT as a encoder-decoder framework that
can be trained end-to-end to map discrete audio input sequences
to target label sequences. In this work the audio encoder is a five
layer 1024 cell bidirectional LSTM, the label encoder is a two
layer 2048 cell LSTM network, and the joint network is a 640
dimensional feed-forward neural network. The input audio fea-
tures, Xa = {xat}Tt=1, for a T length utterance are Da = 240
dimensional vectors containing three stacked 80 dimensional
mel-frequency filter-bank vectors. All parameters are trained
end-to-end with the CTC loss function [19].

Figure 1: Extending single label RNNT to audio-only multi-
talker RNNT.

Figure 1b shows how the single label encoder RNNT can be
extended to the multi-talker case by adding an LSTM masking
model as shown in the figure. It is assumed in the figure that
the audio input can contain up to M overlapping utterances. In
training, it is assumed that a separate reference label sequence
exists for each of the M overlapping utterances. Multi-talker
training is performed by separately aligning the overlapped au-
dio frames to each of the M label sequences. A unique channel
sequence index is appended to the audio encoder embedding
for each label sequence before inputting the embedding to the
masking model. This serves to disambiguate speech associated
with label sequence m from competing speech.

Separate RNNT losses are computed for each of the M la-
bel sequences, and the overall RNNT loss is the sum of channel
specific RNNT losses. This is referred to as 2Chan-RNNT loss
in Section 4. All parameters in the model are trained using au-
dio signals containing simulated overlapping speech utterances.
A masking loss is also defined to inhibit the alignment of labels

associated with one speaker to the opposite speaker’s utterance.
For the two speaker case, it is defined as:

MaskLoss = L2
(
M0T

t=TEnd

)
+ L2

(
M1TStart

t=0

)
whereM0 andM1 are the masking model activations for chan-
nels 0 and 1, and TStart and TEnd represent the start and end
frames respectively of the speaker overlap interval in the T
frame input utterance. The goal of the masking loss is to sup-
press the masking layer outputs for a given channel in those re-
gions of the utterances where speech from that channel is not
present. The total loss is computed by summing the RNNT
losses for each channel with the mask loss, and will be referred
to as 2Chan-RNNT+Mask in Section 4. During evaluation, M
strings are decoded on overlapping speech by running decoding
with each of M settings of the channel sequence index.

2.2. Audio-visual multi-talker model

The block diagrams in Figure 2 describe two approaches for ex-
tending the audio-only multi-talker model to include visual fea-
tures. In both cases, it is assumed that there are M mouth tracks
associated with each of the M speakers that are time synchro-
nized with the speech in the overlapped input utterance. The
input video frames, Xv : {xv

m
t }T, M

t=1,m=1, for each of M over-
lapping speakers in a T length utterance are 128 × 128 × 3
thumbnail images. Visual features, Vm = {vmt }T, M

t=1,m=1, are
Dv = 512 dimensional vectors computed from the input video
frames using a 3 dimensional 5 layer convolutional neural net-
work. A detailed description of the video model can be found
in [6] and [20].

The first approach for integrating video features in the
multi-talker framework, shown in Figure 2a, appends visual
features obtained directly from mouth-tracks aligned with the
two speaker’s utterances. In this case, multi-talker training is
performed by appending the video features associated with the
mth speaker with the audio features obtained from the over-
lapped speech and aligning the A/V features with the mth label
sequence. The configuration in Figure 2a assumes that, dur-
ing decoding, the mouth-track that is associated with a given
speaker is known. This implies that there needs to be some
form of active speaker detection that exists prior to decoding.

Figure 2: Audio-visual multi-talker RNNT: a) Direct input (DI)
and b) Attention weighted (AW) input of visual features.

The second approach, shown in Figure 2b, computes at-
tention weighted visual features, V′, as a weighted combina-



tion of the visual features Vm from M overlapping speakers.
The attention network is similar to the attention weighted ap-
proach for dealing with multiple on-screen faces in A/V ASR
for non-overlapping speech [17], and represents a simplified
version of a more general attention network [21]. It is trained
end-to-end with the RNNT model, and produces a T length se-
quence of attention weights, Am = {am

t }T, M
t=1,m=1. The atten-

tion weight, am
t , represents a normalized measure of similarity

between acoustic and the visual features for the mth speaker at
time t:

am
t = Softmax(InnerProduct(qt, v

m
t )),

where the acoustic query vector, qt, is a 512 dimensional em-
bedding generated from the input audio features using a 1 di-
mensional convolutional network:

qt = 1DConvNet(xat).

The advantage of the attention weighted (AW) input of vi-
sual features, as depicted in Figure 2b, is that there is no need
to determine which set of M video features corresponds to each
of the M label sequences as is needed for the direct input (DI)
of visual features in Figure 2a. The WERs obtained for both of
these approaches on the simulated overlapping speech corpus
described in Section 3 are given in Section 4.

3. Experimental Study
This section describes the experimental study performed to
evaluate the performance of the audio-only and audio-visual
multi-talker models presented in Section 2. The experiments
are limited to the case where there are overlapping utterances
from M = 2 speakers. The overlapping speech datasets, model
parameterizations, and the evaluation measures are described.

3.1. Simulated audio-visual overlapping speech corpus

A training corpus of simulated overlapping speech utterances
was created by combining short audio-visual utterances ex-
tracted from YouTube videos. There are three major steps to
obtain this corpus. First, a process of unsupervised mining
of short audio utterances from YouTube videos with user pro-
vided captions [18] is performed. Audio utterances are derived
from islands of confidence where there is agreement between an
ASR decoded result for a segment and the force-aligned user-
provided transcript.

Second, face-tracking technology is leveraged to select ut-
terances with matching speaking face [6][20]. Video snippets
corresponding to the selected utterances are extracted, and face
tracking is performed to locate all on-screen faces. A visual
speech classifier is used to identify the speaking face, if any,
that spans each audio segment, followed by an audiovisual syn-
chrony detector to reject dubbed videos. The result of this pro-
cess is a collection of short utterances (from a one to two sec-
onds to tens of seconds long) totaling 31k hours of data, where
with high confidence, the audio matches the user-uploaded tran-
scripts, and the selected face video track matches the audio.

Finally, a training set of simulated overlapped utterances
was created from the above confidence island utterances with
aligned face and mouth tracks. The audio portion of the over-
lapped utterances was created by taking two of the above single
speaker utterances, offsetting one in time with respect to the
other, and adding the two audio signals. The video portion of
the overlapped utterances consists of two mouth tracks where

one of the mouth tracks has been offset to be aligned with the
corresponding offset audio signal. However, shifting the video
frames creates a situation where there are no video frames asso-
ciated with a given speaker in those regions where that speaker
is not speaking. To deal with this issue, video frames for non-
speech regions were filled with forward-backward repetitions
of video frames where speech was present. This provides video
features from the same speaker, but that are not synchronized
with the audio.

The offset used in shifting the audio signals was chosen to
provide overlap intervals randomly selected with a uniform dis-
tribution between 1 and 5 seconds. Each overlapped speech ut-
terance was stored with two reference transcriptions, two mouth
tracks, and overlap interval start and end times which were used
for computing the masking loss described in Section 2. The
resulting training corpus contains 18k hours of training data.

3.2. Evaluation measures

In the two speaker multi-talker case, multi-talker decoding is
run separately for two channels generating hypothesized strings
h1, h2. These must be scored against the reference strings r1, r2
for the two overlapping utterances, and the scoring method must
decide which hypothesized string is assigned to a given ref-
erence string. In this work the minimum permuted reference
(prWER), was used:

prWER(h1, h2, r1, r2) = min(Err(h1, r1) + Err(h2, r2),

Err(h1, r2) + Err(h2, r1)),

where Err() corresponds to the standard WER measure. A
comparison between prWER and the more well known concate-
nated minimum permutation word error rate (cpWER) [22][3]
was performed, and the two measures were found to differ by
less than one percent relative.

3.3. AI Principles

The work presented in this paper abides by Google AI Princi-
ples [23]. We are hoping that this work, by improving the ro-
bustness of speech recognition systems, will increase the reach
of ASR technology to a larger population of users, as well as
the development of assistive technology. It should also be noted
that the data and models developed in this work are restricted
to a small group of researchers working on this project and are
handled in compliance with the European Union General Data
Protection Regulation [24].

4. Experimental Results
Results are presented comparing WERs obtained with audio-
only and A/V multi-talker end-to-end RNNT models on an
overlapping speech test set. The test set was obtained from
human transcribed utterances with aligned mouth tracks taken
from YouTube videos, and not the semi-supervised procedure
described in Section 3. However, the process of forming over-
lapped utterances as a combination of single speaker utterances
is the same as described above. The test set contains 3135 ut-
terances ranging in length from 3.2 to 13.6 seconds. WERs ob-
tained for the multi-talker models are also compared with those
obtained for single channel A/V and audio-only models.

4.1. Audio-only multi-talker results

Table 1 provides a comparison between audio-only multi-talker
and single-channel RNNT performance on the YouTube test



set. The single taker (Single) and overlapped (Overlap) test
sets contain the same number of utterances. The overlapped
set contains the same utterances as the single speaker set ex-
cept waveforms were offset and added to these utterances as
described in Section 3.1. The first row of the table gives the
WER for a baseline audio-only single channel RNNT model
(SingleChan). The second row gives the prWER computed for
that same model evaluated on the overlapped test set. The third
and fourth rows of the table give the prWER for the audio-only
multi-talker RNNT model (MultiTalker) trained with summed
RNNT (2Chan-RNNT) loss with and without mask loss (Mask).

There are several observations that can be made from the
results in Table 1. First, comparing rows one and two, simply
decoding on the Overlap test set with the SingleChan model
gives a large increase in WER, which is a result of a large num-
ber deletions in the overlap intervals. Second, comparing the
WERs from the second and third rows, the WER for the Mul-
tiTalker model decreases by a factor of two compared to the
SingleChan model. This is primarily due to a dramatic reduc-
tion in the number of deletions. Third, comparing rows three
and four, adding the Mask loss reduces the WER by about 4
percent relative to training with the 2Chan-RNNT loss alone.

Table 1: WERs for audio-only single channel RNNT (Sin-
gleChan) and audio-only multi-talker RNNT (MultiTalker)
models on single talker (Single) and 2 talker overlapped speech
(Overlap) test sets. MultiTalker models are trained with
summed RNNT (2Chan-RNNT) loss with and without mask loss.

Audio-only RNNT Model Performance (WER%)
RNNT Model Loss Test Set WER

SingleChan RNNT Single 14.8
SingleChan RNNT Overlap 44.8
MultiTalker 2Chan-RNNT Overlap 21.6
MultiTalker 2Chan-RNNT+Mask Overlap 20.7

4.2. A/V multi-talker results

The impact of the audio-visual multi-talker models is summa-
rized by the results in Table 2. The first row of the table gives
the WER for the baseline audio-visual RNNT model on the sin-
gle speaker test set. The second row of Table 2 gives the prWER
computed for the audio-visual multi-talker model with direct in-
put (DI) of visual features (MultiTalker-DI), as depicted in Fig-
ure 2a, evaluated on the overlapped A/V test set. This represents
an ideal case since, as mentioned in Section 2.2, this scenario
assumes that decoding is preceded by an active speaker detec-
tion module. It is assumed in this result that this module is error
free. The third row of the table gives the prWER for the audio-
visual multi-talker RNNT model with attention weighted (AW)
visual features (MultiTalker-AW), as shown in Figure 2b, also
evaluated on the overlapped A/V test set. The fourth and fifth
rows show the WERs for the multi-talker models trained with
mask loss (Mask). Comparing the WER for the A/V baseline in
the first row of Table 2 to the audio-only WER in the first row
of Table 1, there is a 6.7% reduction in WER with respect to the
audio-only baseline. This is consistent with results obtained for
the impact of using A/V features in [6].

Several observations can be made about A/V multi-talker
ASR performance from this table. First, comparing the DI and
AW A/V multi-talker performance in rows 3 and 4 of Table 2,
the WER for the DI A/V scenario is about 8% lower than for the
AW case. Second, the relative decrease in WER associated with
Mask loss shown in Table 2 is slightly less than that obtained
for the audio-only multi-talker model. Third, comparing the

Table 2: WERs for A/V single channel RNNT and A/V
multi-talker RNNT models using direct input of visual fea-
tures (MultiTalker-DI) and attention weighted visual features
(MultiTalker-AW).

Audio-visual RNNT Model Performance (WER%)
A/V Model Loss Test Set WER
SingleChan RNNT Single 13.8

MultiTalker-DI 2Chan-RNNT Overlap 16.4
MultiTalker-AW 2Chan-RNNT Overlap 17.8
MultiTalker-DI 2Chan-RNNT+Mask Overlap 16.2

MultiTalker-AW 2Chan-RNNT+Mask Overlap 17.2

WERs in the fourth row of Table 1 and the fifth row of 2, there
is a 17% decrease in WER for the AW A/V multi-talker system
relative to the audio-only multi-talker system. This suggests
that the integration of visual features in the A/V multi-talker
models has a significant impact in disambiguating overlapping
speakers relative to audio-only models.

Figure 3 provides a comparison between audio-visual and
audio-only models according to how the WERs for the two
models vary across the percentage overlap for the overlap-
ping utterances. The percentage overlap is defined here as
(TEnd − TStart)/T . Note that the WER for the audio-visual
model is nearly uniform across the range of percent overlap,
while the WER for the audio-only model shows a significant
increase as the degree of overlap increases.

Figure 3: WER by utterance overlap interval for audio-only and
audio-visual multi-talker models.

5. Summary and Conclusions
The work in this paper represents the first attempt at integrat-
ing the visual modality in end-to-end multi-talker ASR on over-
lapping speech utterances. The experimental study has demon-
strated that integrating visual features in multi-talker ASR has
a bigger impact on performance relative to the audio-only case
than the impact of integrating the visual modality in single label
encoder ASR. This was demonstrated by the fact that an atten-
tion based A/V multi-talker system resulted in a reduction in
WER of 17% on a two speaker simulated overlapping speech
corpus, while the A/V single-talker system was responsible for
a decrease in WER of 6.7% relative to audio-only ASR. Further
work is being directed towards replacing the existing end-to-end
encoders with transformer transducers [25] and investigating al-
ternative architectures for fusing A/V features.

6. Acknowledgments
The authors would like to thank Basi Garcia for help with tools
in model evaluation, and Takaki Makino and Hank Liao for their
contribution to A/V speech corpus development.



7. References
[1] M. Meteer and R. Iyer, “Modeling conversational speech for

speech recognition,” in EMNLP, 1996.
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