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ABSTRACT

Rax is a library for composable Learning-to-Rank (LTR) written
entirely in JAX. The goal of Rax is to facilitate easy prototyping
of LTR systems by leveraging the flexibility and simplicity of JAX.
Rax provides a diverse set of popular ranking metrics and losses
that integrate well with the rest of the JAX ecosystem. Furthermore,
Rax implements a system of ranking-specific function transforma-
tions which allows fine-grained customization of ranking losses
and metrics. Most notably Rax provides approx_t12n: a function
transformation (t12n) that can transform any of our ranking metrics
into an approximate and differentiable form that can be optimized.
This provides a systematic way to directly optimize neural ranking
models for ranking metrics that are not easily optimizable in other
libraries. We empirically demonstrate the effectiveness of Rax by
benchmarking neural models implemented using Flax and trained
using Rax on two popular LTR benchmarks: WEB30K and Istella.
Furthermore, we show that integrating ranking losses with T5, a
large language model, can improve overall ranking performance
on the MS MARCO passage ranking task. We are sharing the Rax
library with the open source community as part of the larger JAX
ecosystem at https://github.com/google/rax.
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1 INTRODUCTION

Learning-to-Rank (LTR) concerns itself with learning a ranking
model or ranker from labeled relevance data or interaction logs.
Unlike traditional classification or regression problems, where the
goal is to predict a label or value for each individual item, ranking
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problems aim to predict an ordering on a list of items in order to
maximize the utility of that list. Ranking models are widely appli-
cable and actively used in Web search, recommendation systems,
question answering systems, and more. Due to the applicability of
ranking models to many different domains, several open-source
LTR libraries have been developed, including TF-Ranking [33] and
XGBoost [9]. Although the current offering of ranking libraries is
impressive, none of them function natively within JAX [4], a new
numerical computing framework that is rapidly gaining popularity.
JAX provides tools for automatic differentiation, compilation to
accelerators, and batching in the form of function transformations
that compose [4]. Unlike Tensorflow [1] or PyTorch [34] which
focus mostly on deep learning, JAX is a library for arbitrary differ-
entiable programming. JAX makes it possible to express complex
machine learning systems that leverage accelerators, while being
written entirely in Python. Due to its ease-of-use, JAX has been
used in computer vision [11], physics [41], differential privacy [43],
reinforcement learning [3] and other fields of machine learning.
However, adoption of JAX in the Information Retrieval (IR) and
Learning-to-Rank (LTR) communities is non-existent, as there is
currently no library that provides ranking capabilities to the JAX
ecosystem. This motivated us to build Rax to bridge this gap. How-
ever, implementing ranking functionality in JAX is challenging for a
number of reasons. First, to be compatible with the JAX ecosystem,
any ranking functionality in JAX needs to uphold the Pure and Stati-
cally Composed (PSC) function requirement of JAX (see Section 3.2).
Second, implementing ranking metric optimization, a key technique
for LTR, in a systematic way is not trivial. Existing LTR offerings
implement approximate metrics as entirely separate loss implemen-
tations, which has a very loose connection between the metrics
and the losses. It thus easily leads to code duplication and does not
scale to new metrics. Finally, how to enable stochastic estimation [5,
45, 48] for all of the ranking losses in a systematic way, without
introducing duplicated code, is desired but not immediately clear.
To overcome these challenges, this paper introduces Rax!, the
first ranking library in the JAX ecosystem. Rax provides three main
components that make ranking functionality feasible in the JAX
ecosystem: (1) ranking losses, (2) ranking metrics, and, (3) function
transformations. First, the ranking losses provide implementations
of standard ranking losses. Each ranking loss is implemented ac-
cording to a consistent function signature which allows users of
RAX to easily switch among different losses in the same code base.
Second, the ranking metrics provide implementations of standard
ranking metrics, which are highly configurable. For example, our
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implementation of the NDCG metric [24] accepts customized gain
and discount functions, which makes them re-usable in different
contexts. Lastly, the function transformations provide a system-
atic way to support ranking metric optimization. One example is
rax.approx_t12n which can transform any of our ranking metrics
into an approximate form that can be optimized using gradient
descent. Another example is rax.gumbel_t12n which transforms
any of our ranking losses into stochastic versions via Gumbel sam-
pling [5]. Each of the components of Rax is implemented using a
functionally pure design, which makes them compatible with JAX
and many libraries in the JAX ecosystem. Furthermore, Rax pro-
vides a number of examples that help users get started, including
examples on how to use Rax to build ranking models with Flax [20]
and Optax [22].

We validate the effectiveness of our new library Rax by run-
ning LTR benchmarks on both the WEB30K [36] and Istella [10]
datasets. We experiment with a large number of ranking losses that
are provided by Rax. Our results suggest constructing new rank-
ing losses by lower bounding or approximating ranking metrics, a
functionality made possible by Rax function transformations, can
provide significantly better ranking models. Furthermore, we inte-
grate several of the ranking losses offered by Rax with T5X, a JAX
implementation of the T5 [39] model and test them by finetuning
a T5 model on the MS MARCO [30] passage ranking dataset. We
find that by fine-tuning on listwise ranking losses we can obtain
significantly better results on this task than what we could obtain
with just pointwise or pairwise losses.

2 RELATED WORK

Learning-to-Rank (LTR) is a widely studied area of Information
Retrieval (IR). There are numerous algorithms, models and rank-
ing losses and metrics that are relevant to both researchers and
practicioners of LTR systems. Because of this, a large number of
libraries exist that provide LTR functionality. Notable libraries in-
clude TF-Ranking? [33], XGBoost® [9], SVM-Rank* [25], sofia-ml°,
RankLib®, QuickRank7 (8], RankuS, PyLTRg, jforest10 [16], and,
PyTorchLTR!! [23], to name a few.

Out of these libraries, TF-Ranking [33] and XGBoost [9] are
the most widely used open source software solutions for LTR. TF-
Ranking is a "scalable learning-to-rank library in TensorFlow". The
focus of TF-Ranking is on training neural ranking models on large-
scale problems with hundreds of millions of training examples.
Similarly, XGBoost is a scalable machine learning designed for tree
boosting algorithms that can be applied to regression, classification
and ranking. Both libraries focus strongly on scalability and provide
strong ranking performance across existing benchmarks.

Rax is similar to these libraries in the fact that they all provide
standard implementations of ranking losses and ranking metrics.

Zhttps://github.com/tensorflow/ranking
Shttps://github.com/dmlc/xgboost
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However, as in the JAX ecosystem, Rax differentiates itself by
placing emphasis on usability instead of scalability. One way Rax
does this is by providing novel ways of re-purposing ranking met-
ric implementations as ranking losses, which allows new ways of
performing ranking metric optimization that was not easily accom-
plished in libraries such as TF-Ranking. Our design strictly consists
of PSC functions (which will be expanded upon in Section 3.2).
This design decision allows us to leverage the powerful machin-
ery of JAX to both accelerate computation to GPU/TPU devices
(via jax.jit) and scale computation to multi-device clusters (via
jax.pmap). Furthermore, by focusing on ranking losses and metrics,
Rax does not tie itself to any specific choice of model. This means
that Rax could be used for both neural and tree algorithms as long
as there are JAX libraries to support those models. At the time of
writing, there are no libraries offering tree boosting functionality
in JAX but there are numerous neural network libraries such as
Flax [20] and Haiku [3]. This makes it possible to use Rax to train
neural LTR models.

3 BACKGROUND

Before we describe the design of Rax, we first provide background
on Learning-to-Rank (LTR) and JAX. Furthermore, this section
establishes notation that will be used throughout this paper.

3.1 Learning-to-Rank

In this section, we will introduce the general problem of Learning-
to-Rank (LTR) and our notation. Let X denote the universe of all
possible items and x € X be a subset of n candidate items that
we wish to rank. For example, in the case of ad-hoc retrieval we
wish to rank a set of n candidate documents in response to a query,
and in this setting each x; € x represents a (query, document)
pair. Similarly, for personalized recommendation, each x; € x could
represent a (user, item) pair when recommending a set of n items to a
specific user. Furthermore let 7z be a total ordering of x, represented
as a bijection of {1, 2,...,n} = [n] onto itself. The set of all possible
n-sized total orderings, also called the symmetric group, is denoted
as Sp = {r : [n] — [n] | 7 bijective}. We will denote with 7~! the
inverse ordering such that 771 ((i)) = i. Let r be a ranking function
that maps a set of candidate items x € X™ to a total ordering 7 € Sy:

ri X" > S, 1)

Now, suppose there is a ground truth ordering 7* € II"” for any
subset of items x. Broadly speaking, the objective of LTR is to find
a ranking function r that recovers the ground truth ordering 7*.

Because the set of permutations Sy is exponentially large, finding
such a function r is a difficult problem to solve in general. In practice,
instead of assuming a single optimal ordering *, it is common to
assume there is a set of many optimal orderings S;, € S, [12]. These
orderings are induced from relevance labels: real-valued labels that
indicate the relevance of each item in x. We denote such relevance
labels as y € R™ and write S, = S,/ as the set of optimal orderings
induced by y:

Sy ={m € Sn | Yn(iy 2 Yr(j)Vi < j} )

Furthermore, it is common practice to assume a score-and-sort
approach. This means that, instead of finding a ranking function r,
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we are content with finding a scoring function f that maps a set of
candidate items x to real-valued scores:

f: X" >R" 3)

The scores s = f(x) can then be used to induce a total ordering =
by sorting them. To this end, we define rank(s; | s) as the function
that computes the 1-based rank of the it" score s; after sorting the
scores s in descending order:

rank(s; | s) € {ﬂ_l(i) | 7€ Srsz} )

where S3 is defined similarly to S in Equation 2 with the difference
that 7 is induced by scores s instead of labels y. In practice, f is
often a parameterized function fy for which we wish to find the
parameters 6. For example, fy could be a neural network where 6
are the weights of the network. At this point, it is worth noting
that an item x; € X is typically a representation of an item in some
d-dimensional feature space. In other words x; € R? and x € R4,

Given a set of items x and corresponding relevance labels y, it is
now possible to define the risk (or reversely, the utility) of a scoring
function fy by considering a ranking loss function ¢:

£:R"xR" - R (5)
Such a loss function expresses how well the ranking induced by the
item scores fy(x) matches the ranking induced by the relevance
labels y. With this in mind, LTR becomes a supervised learning

problem where items and labels are sets and we wish to find a
scoring function fy that minimizes empirical risk on a dataset D:

Risk(fp) = D, 0.y (©)

(x,y)eD

S|~

where D is defined as:
D c{(xy) | (x,y) € X" xR"} (7

Depending on the specific £ and fjy, this formulation permits
optimization via gradient descent and many existing LTR algo-
rithms minimize this empirical risk estimate. In practical appli-
cations where D is large, a common learning strategy is that of
Stochastic Gradient Descent (SGD). In SGD, the learner samples a
batch of elements 8 C D at each learning step and performs a gra-
dient descent update on the sampled elements. The effectiveness of
SGD in optimizing the empirical risk for LTR is widely documented
in the literature [2, 6, 7, 25, 38, 42, 47]. As the focus of this paper is
on a new library for LTR, we will focus mostly on ranking losses
and metrics. As a result we will not go into detail about different
possible LTR learning strategies and simply assume we wish to
optimize a neural network fp via standard SGD.

3.2 JAX

JAX is an "extensible system for function transformations that com-
pose: differentiation, vectorization, JIT-compilation to GPU/TPU,
and more" [4]. JAX can transform python functions using various
transformations such as:

e jax.grad: Differentiates a function with respect to its inputs.

e jax.vmap: Vectorizes a function by mapping it across a batch
dimension of its inputs.

e jax.jit: Compiles a function using Accelerated Linear Algebra
(XLA).
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To enable these transformations, JAX is designed to operate only
on Pure and Statically Composed (PSC) functions. PSC functions
are functions that satisfy the following two requirements [15]:

o Functionally pure: the function does not read/write global state
and is deterministic so that it always produces the same output
given the same inputs.

o Statically-composed (relative to a set of primitive functions):
the function should be representable as a static data depen-
dency graph on a set of primitives (addition, multiplication,
XLA operators, etc.).

Although the PSC requirement restricts the class of python func-
tions that can be transformed with JAX, it turns out that many
machine learning systems can be implemented in this paradigm.
For example, a single training step of a neural network can be en-
tirely written as a PSC function. This makes it possible to use JAX
to accelerate the compute-dominated parts of the machine learning
workload using XLA, while still allowing the dynamism of Python
to orchestrate the overall logic of the entire system.

The design of JAX has proven to be a powerful framework for
implementing machine learning systems. For example, JAX was
found to be consistently faster than alternatives for differential
privacy applications [43]. Furthermore, JAX has demonstrated state-
of-the-art results on the MLPerf benchmark [27], in several cases
outperforming other frameworks such as Tensorflow.

JAX provides the building blocks needed to build machine learn-
ing systems in the form of function transformations. However, it
does not provide out-of-the-box libraries that address the needs of
researchers. Because of this a large ecosystem of well-tested and
actively developed JAX libraries has emerged. Several libraries offer
implementations of neural networks, most notably Flax [20] and
Haiku [21]. Other libraries provide optimizers that can be used to
optimize parameterized functions, for example Optax [22]. More-
over several libraries for specialized domains of machine learning
exist: for example RLax [3] for reinforcement learning, PIX [3] for
image processing, Scenic [11] for computer vision, and, JRaph [17]
for graph neural networks. Since most of these libraries can inter
operate, for example one could use an optimizer from Optax to
optimize the parameters of a neural network designed with Flax, it
is common practice for researchers to pick and choose a subset of
libraries to fulfill their research needs.

By and large, the JAX ecosystem seems to follow a Unix-like
philosophy [29] of developing libraries that do a single thing well
and that can easily inter operate with each other. This stands in
contrast with monolithic frameworks, such as TensorFlow [1] and
PyTorch [34], which combine all of this functionality in a single
library. To prevent re-inventing the wheel and to match this de-
sign philosophy, our library Rax focuses solely on serving the
ranking-specific needs of researchers. As such, Rax does not pro-
vide modeling functionality, optimizers or data pipelines as those
are better served by other libraries in the JAX ecosystem. Instead,
Rax specifically provides ranking losses, ranking metrics and a set
of novel function transformations that allow direct ranking metric
optimization. Rax follows the JAX convention of strictly using PSC
functions. This allows Rax to inter operate with nearly all libraries
in the JAX ecosystem.
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Figure 1: A single training step as a composition of functions
from different libraries in the JAX ecosystem. Yellow nodes
indicate core JAX functionality, blue nodes indicate other
JAX libraries and the red node is the Rax ranking loss. The
dotted line indicates the PSC function boundary.

4 DESIGN OF RAX

The design of Rax is broken down into three main components:
ranking losses, ranking metrics and function transformations. The
API of Rax is a flat collection of functions where the naming con-
vention indicates the type of function:

e rax.*_loss: Losses such as rax.pairwise_hinge_loss.
e rax.*_metric: Metrics such as rax.ndcg_metric.
e rax.*_t12n: Transformations such as rax.approx_t12n.

An overview of how RAx interacts with JAX and other libraries
in the JAX ecosystem is illustrated in Figure 1. This figure displays
how functions from different libraries are composed into a single
training step of a neural network. At the center of this composition
is the Rax training loss that we wish to optimize. Notice how the
entire training step function (as outlined in the dotted line) is repre-
sented as a single PSC function that is compiled using jax.jit. The
resulting training step benefits from optimizations offered by the
XLA compiler including fusion of many different parts of the train-
ing step. This means the training step, written entirely in Python,
is capable of efficiently running on an accelerated device such as
a TPU or GPU without any extra implementation effort. A more
complete code example that demonstrates how Rax can be used to
train a ranking model is provided in Appendix A.

4.1 A Unified Ranking Loss Design

As introduced in Section 3.1, ranking losses are functions that
express, for a given set of candidate items, how well the ranking
induced by the predicted item scores s = fp(x) match the ranking
induced by the corresponding relevance labels y. Ranking losses
are commonly categorized into three categories: pointwise losses,
pairwise losses and listwise losses [28]. The loss function signature
across these three categories are different because each loss function
operates at a different level of abstraction: pointwise losses are
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defined on a single item x;, pairwise losses on a pair of items

(xi,xj), and, listwise losses on a list of items [x1, X2, ..., xn]:
[pointwise :RXR—->R (8a)
fpairwise : R XR? > R (8b)
listwise R"xR" - R (8c)

The fact that these loss function signatures are different is problem-
atic from an engineering perspective. Users would have to carefully
craft their input to match the chosen loss function. As a result,
users would not be able to easily change to a different ranking loss
without changing the call signature.

To resolve this problem, Rax implements the ranking losses using
a unified design that encodes all three categories of ranking losses.
To do so, Rax adopts the most general formulation, the listwise
ranking loss, as the unified ranking loss signature. We can express
the pointwise and pairwise losses using this unified signature by
changing the output of the loss to be a tensor instead of a scalar.
This leads to the following function signatures:

fpointwise :R"xR" = R" (9a)
2

{pairwise R"xR" — R" (9b)

istwise : R" XR" - R (9¢)

A different perspective on this is that, given a list of items x and
relevance labels y, the pointwise losses treat such a list as a batch
of n samples, the pairwise losses treat it as a batch of (at most) n?
samples and the listwise losses treat it as a single sample. So far,
we have assumed the ranking loss is applied to a single list, but in
practice it is more common to compute such losses on a batch 8
containing b = |B| lists. This changes the signature of the losses to:

Lpointwise : R x RPX™ — REXn (10a)
2

{pairwise ROXP x RDX1 5 R (10b)

Olistwise : R xR 5 RP (10¢)

We note that this formulation of the losses is not immediately useful
for optimization. The output of each loss needs to be reduced to a
scalar value in order to use the loss for optimization.

4.1.1 Batch Reduction of Ranking Losses. Common strategies for
reducing a batch of losses to a scalar value include mean reduction
and sum reduction. More generally we can denote with A : R4 — R
the space of all possible aggregation functions. For example sum-
reduction asym € A can be defined as follows:

asum(z) = Z Zj (11)

zi€z

With this formulation, the losses can be reduced to a scalar value by
expressing them as a composition of £ with an aggregation function
a € A. For example:

{ = €pointwise © 4 (12)

More generally, we can now write any ranking loss with the fol-
lowing unified signature:

¢ RPM R A SR (13)
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Example usage!? of several Rax ranking losses, including the point-
wise MSE loss [28], pairwise hinge loss [28] and Softmax loss [33]
are shown in Listing 1.

Listing 1: Pointwise, pairwise and listwise ranking losses.

1 rax.pointwise_mse_loss(s, y)
2 rax.pairwise_hinge_loss(s, y, reduce_fn=jax.numpy.sum)
3 rax.softmax_loss(s, y, reduce_fn=jax.numpy.mean)

It is worth noting that this design of ranking losses in Rax is
a form of inversion of control [14]. The ranking loss gives the
user control over the desired reduction behavior by allowing them
to inject a custom reduce_fn. This is different than libraries such
as TensorFlow or PyTorch, where one would have to supply a
configuration constant that indicates the type of loss reduction.
Such configuration constants can make it difficult to customize
the reduction behavior to more advanced use-cases. By accepting
a reduce_fn keyword argument in Rax, users have full control
over the desired reduction behavior. Note that this does not make
typical reduction scenarios such as sum or mean reduction any more
complicated, as one can simply pass in standard JAX functions such
as jax.numpy.sum Or jax.numpy.mean.

4.1.2 Distributed Reduction of Ranking Losses. A major benefit of
the approach described so far is that it enables more advanced cases
where custom reduction logic is needed. For example, in distributed
machine learning, it may be necessary to reduce loss values across
devices before performing a parameter update step. Since JAX pro-
vides several parallel computing primitives, it becomes extremely
easy to use a Rax loss in a distributed learning setting. An example
of a distributed sum aggregation is provided in Listing 2.

Listing 2: Distributed loss reduction in Rax. This assumes
there is a named batch axis called “device”

1 def psum(a, where):

2 if where is not None:

3 a = jax.numpy.where(where, a, 0.)

4+ return jax.lax.psum(a, axis_name="device")

5

6 rax.pairwise_hinge_loss(scores, labels, reduce_fn=psum)

Note that this code is significantly simpler compared to parallel
training primitives that exist in other frameworks such as Tensor-
Flow or PyTorch. The design of JAX, and by proxy the design of
the ranking losses in Rax, obviates the need for strategy scopes,
custom distributed optimizers and other complex abstractions be-
cause the parallel primitives are transparent to the user and can be
customized effortlessly.

Finally, all the ranking losses are implemented as PSC functions.
This makes computing the gradient of a loss a trivial application of
a jax.grad transformation as shown in Listing 3.

Listing 3: Computing the gradient of a ranking loss.

1 grad_fn = jax.grad(rax.pairwise_hinge_loss)
2 grad_fn(scores, labels)

121n the actual implementation of Rax the loss also accepts an optional boolean tensor
called where. This is needed to model batches with a ragged structure via padding.
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4.2 Ranking Metrics

Ranking metrics are an important component for evaluating IR
systems. There are a number of standard ranking metrics that are
commonly used in practice to measure how well a ranker performs
on a particular task. Most ranking metrics are designed to reward
correctness at the top of the ranked list more than at the bottom.
Recall that rank(s; | s) indicates the rank of the it score s; after
sorting the scores s in descending order. We can use this to define
several common ranking metrics via aggregation over the ranks,
for example:

_ L gain(y;)
Pectsy) = ; discount(rank(s; | s)) o
NDCG(s, y) = DCG(s, y)/ DCG(y, y) (19

where gain(-) and discount(-) are functions that map relevance
labels to gains and ranks to discounts respectively. Common choices
are gain(y;) = 2¥ — 1 and discount(r) = log, (r + 1). Furthermore,
some metrics accept a cutoff value k that indicates the rank at which
results are cut off. We denote such a cutoff function as follows:

cutoff(s; | s, k) = 1[rank(s; | s) < k] (16)

In other words cutoff(s; | s, k) is 1 if the ith score is one of the k
largest scores of s, and 0 otherwise. Some examples of cutoff-based
ranking metrics are:

1 Zn: cutoff(s; | s, k) - gain(y;)
DCG@k(y,y) e discount(rank(s; | s)

NDCG@k(s,y) =

17)
~ Xy cutoff(si | s,k) 1[y; > 0]
Recall@k(s,y) = " Ty > 0] (18)
B S cutoff(si | s, k) 1[y; > 0]
Prec@k(s,y) = ST cutoffts; | 5.K) (19)
APy - i Precarank(si |9G.y) -ty >0l -

Z?:] 1[y; > 0]
Rax provides implementations for a number of standard ranking

metrics. The function signature of a ranking metric function m
largely follows the same signature as that of the loss functions:

m: R x R x4 — R. (21)

An example is given in Listing 4. Note how the keyword argument
topn=20 is used for some metrics to indicate the cutoff rank k.

Listing 4: Example ranking metrics in Rax.

1 rax.ndcg_metric(s, y)

2 rax.mrr_metric(s, y)

3 rax.precision_metric(s, y, topn=20)
rax.recall_metric(s, y, topn=20)

-

A key distinction that sets ranking metrics apart from ranking
losses is their resistance to direct optimization. All ranking metrics
are rank-based, meaning they need to compute rank(s; | s) to ob-
tain 1-based ranks. Although the gradient of the rank operation is
well-defined, it is fairly useless as it is zero everywhere. As a result,
direct optimization of ranking metrics is considered a difficult prob-
lem. In the next section, we will describe how the ranking metric
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implementations in Rax can be transformed to allow approximate
metric optimization.

4.3 Differentiable Metrics via Function
Transformations

As described in Section 4.2, ranking metrics are difficult to optimize
due to the rank operation introducing zero-gradients. Existing work
has looked at finding approximations of ranks that have a useful
non-zero gradients. Examples of methods utilizing this approach
are SoftRank [44], SmoothDCG [46], ApproxNDCG [37] and Neural-
Sort [18, 35]. The general idea is that the rank function rank(s; | s)
can be replaced with an approximation that has non-zero gradients.
ApproxNDCG [37] constructs such an approximation by writing
the rank function as a sum of indicator functions and then replacing
the indicator with a sigmoid:

rank(s; | s) =1+ Z T[sj > si] (22a)
J#i
~ 1+ Z sigmoid(s; — s;) = rank(s; | s) (22b)
J#i

Existing libraries such as TF-Ranking have offered such approxi-
mations as separate ranking loss implementations. However, there
are two problems with this approach: First, it is not easy to extend
the general idea of approximate metric optimization to other rank-
ing metrics without having to write entirely new implementations.
Second, the existing work on approximate metric optimization has
mostly focussed on approximating metrics such as NDCG, but has
neglected work on metrics that necessarily require a cutoff value
such as NDCG@k or Recall@k.

4.3.1 Approximate Metrics. In Rax we solve both issues simulta-
neously by allowing users to provide their own rank and cutoff
functions. In effect, this allows users to replace both rank and cutoff
with differentiable approximations that can be optimized. The way
this is accomplished is by generalizing the function signature of
the metrics from their standard form to a more generic one:

m: R x RP" x A x R x C > R. (23)

where R is the space of all possible rank functions and C is the space
of all possible cutoff functions. In other words, users can freely in-
ject their own rank and cutoff functions to customize the ranking
metrics. For example, by supplying the approximate rank function
defined in Equation 22b we can obtain the standard ApproxNDCG
loss. Note that Rax provides a rax.approx_t12n transformation for
ease-of-use that automatically injects sigmoid-based approxima-
tions as demonstrated in Listing 5.

Listing 5: Transforming a ranking metric to an approximate
differentiable loss.

1 loss = -rax.ndcg_metric(s, y, rank_fn=rax.approx_ranks)
2 # is equivalent to:
3 loss = rax.approx_t12n(rax.ndcg_metric)(s, y)

4.3.2  Approximations for Cutoff-based Metrics. In addition to sup-
porting custom rank functions, RAX metrics also accept custom
cutoff functions. For example, we can define an approximate cutoff
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function as follows:
cutoff(s; | s) = 1[rank(s; | s) < k] (24a)
~ sigmoid (rank(si | s) - k) = cutoff(s; | s) (24b)

This can be used to construct approximations for cutoff-based met-
rics. Consider the definition of NDCG@k in Equation 17. By plug-
ging in an approximations for both cutoff and rank we obtain an
approximate version of this metric that has non-zero gradients:

- cutoff(si | 5.k) - gain(y:)

DCG@k(y,y) 4 discount(rank(s; | s)

(25)
The pluggable rank and cutoff functions make it possible to con-
struct approximate forms of our entire offering of ranking metrics.
In fact, any future metric that follows this same signature, can be
used for approximate metric optimization. This permits re-use of
all the ranking metrics in Rax in an optimization context.

ApproxNDCG@k (s, y) =

4.3.3 Bounded Metrics. Another advantage of accepting custom
rank and cutoff functions in the RAx ranking metrics is that we
are not restricted to only sigmoid-based approximations. For exam-
ple, existing work [2] has has explored upper-bounding the ranks
instead of approximating them which in turn constructs a lower-
bound for some metrics. As long as the upper-bound on the ranks
is differentiable, this makes the lower-bound for the metric suitable
for optimization. A straightforward differentiable upper-bound on
the ranks is the hinge function:

rank(s; | s) = 1+Z T[sj > si] < 1+Z max(0,1+s; —s;) (26)
j#i j#i

The design of Rax permits plugging such bounds directly into our
collection of ranking metrics, as demonstrated in Listing 6. Note
that, depending on the specific metric, in order to obtain a lower
bound on the metric, we need to either supply a lower or upper
bound for either the ranks or cutoff functions. For simplicity, Rax
offers a rax.bound_t12n function that supplies upper bounds for
ranks and lower bounds for cutoffs automatically.

Listing 6: Differentiable lower bound of NDCG.

1 upperbound_rank_fn = functools.partial(

2 rax.approx_ranks,

3 step_fn=lambda x: jax.nn.relu(l. + x))

4+ loss = -rax.ndcg_metric(s, y, rank_fn=upperbound_rank_fn)
s # is equivalent to:

¢ loss = rax.bound_t12n(rax.ndcg_metric)(s, y)

4.3.4 Gumbel Sampling. Finally, recent work has shown that in
order to effectively optimize an approximate metric loss, it is im-
portant to perform Gumbel-sampling on the scores [5], which is a
form of stochastic estimation of the loss [48]. To support this, Rax
provides a function transformation called gumbel_t12n. This func-
tion transformation replicates the scores a number of times, and
adds gumbel noise to them. Such a transformation can be applied to
any ranking loss, including the losses for approximate or bounded
metrics. See Listing 7 for an example that combines the gumbel
transformation with an approximate metric transformation.
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Listing 7: Creating a GumbelApproxNDCG [5] loss as a com-
position of Gumbel and Approx transformations.

1 loss_fn = rax.gumbel_t12n(rax.approx_ti2n(rax.ndcg_metric))
2 loss = loss_fn(s, y, key=jax.random.PRNGKey(9))

It is important to note here that this makes the loss stochastic, due
to the sampling of random gumbel noise. As such, the returned loss
function requires a new argument key which acts as the random
state on which the random operations such as gumbel noise are
based. To ensure the Rax functionality strictly adheres to the PSC
function requirements, a global random state is prohibited, which
means the random state needs to be passed as an argument. This
is fairly standard behavior for JAX functions, for example all the
functions in jax.random require a key argument.

Overall, the flexibility offered by Rax opens up new ways of
performing ranking metric optimization. For example, Rax makes
it possible to compute approximations and bounds for metrics that
are traditionally considered hard to optimize such as NDCG@K
and Recall@K. All of this is accomplished without introducing code
duplication by carefully constructing a generic metric function sig-
nature and then transforming the functions using rax.approx_t12n,
rax.bound_t12n,and, rax.gumbel_t12n. Moreover, this approach scales
to future metric implementations as long as they adhere to the met-
ric function definition of Equation 23.

5 EXPERIMENTS

To validate the effectiveness of our library Rax we have conducted
several experiments on two large-scale LTR benchmark datasets
WEB30K [36] and Istella [10]. Furthermore we have performed ex-
periments for finetuning a passage ranking task on MS MARCO [30]
using a Rax ranking loss with T5X!3: a JAX implementation of the
T5 [39] large model.

5.1 LTR Benchmarks

For the LTR benchmarks on the WEB30K and Istella datasets we use
a standard supervised LTR setup. Both datasets are comprised of
a collection of queries and corresponding documents to be ranked.
Each query-document pair is represented as a d-dimensional feature
vector, where d = 136 for WEB30K and d = 220 for Istella. Further-
more, each query-document pair has a corresponding relevance
label y € {0, 1,2, 3,4}, where a higher value indicates a higher rel-
evance of the document. Since the Istella dataset has no validation
set we split the training set into 90% training and 10% validation
manually. For WEB30K we use Fold 1 to conduct our experiments.

We train a neural network with the various ranking losses of-
fered by Rax. The network architecture, implemented in Flax [20]
and optimized with Optax [3], is a feedforward neural network
with hidden layers of size [1024, 512, 256], where ReLU activations,
batch normalization and dropout is used at each hidden layer. A
hyperparameter sweep is performed, where the best run is selected
by evaluating it on held-out validation data. For the losses that op-
timize a specific metric (e.g. ApproxAP, ApproxRecall@20, etc.) we
choose the best run in terms of the metric being optimized on the
validation set. For other losses we select the best run by its NDCG
on the validation set. For the optimizer we try both Adam [26]

Bhttps://github.com/google-research/t5x
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with a learning rate € {0.0001, 0.0003, 0.001, 0.003,0.01,0.03} and
Adagrad [13] with a learning rate € {0.01,0.03, 0.1, 0.3}. We tune
the batchnorm momentum € {0.9,0.99,0.999} and, for the approx
losses, additionally tune the temperature parameter € {1, 10,100}
for the sigmoid function. Each network is trained for 100,000 steps
where each step uses a batch size of 128. The entire training proce-
dure runs on a TPU and a single training run finishes in less than 3
hours. We evaluate the ranking models using NDCG, NDCG@10,
Average Precision (AP) and Recall@20. For the AP and Recall@20
metrics we convert graded relevance to binary relevance by con-
sidering items with y € {0, 1,2} as not relevant and items with
y € {3,4} as relevant.

5.2 MS MARCO Passage Ranking

We also conduct experiments on the MS MARCO passage ranking
dataset. The dataset contains a corpus of more than 8.8 million
passages and questions with binary labels on relevant passages.
The task is to rank the passages for each question based on their
relevance. There are more than 530,000 questions in the “train”
partition, and the evaluation is usually conducted on the “dev”
partition of around 6,800 questions.

In our experiments, we first use a dual-encoder retriever [31] to
retrieve the top-1000 passages for each question. Then we concate-
nate the question with each candidate passage in a similar setting
to [32] and feed the concatenated strings into a T5 [40] model. We
use the T5X implementation in JAX and initialize the model with
T5-large checkpoint. We fine-tune the T5 ranker with multiple
ranking losses implemented in Rax. Due to memory limitation, we
sample 36 passages from the retrieved passages of each question
as a list during fine-tuning. As a baseline, we also fine-tune the T5
ranker with the pointwise cross-entropy loss on a data set with a
balanced number of relevant and irrelevant question-passage pairs.

We evaluate the performance of our rankers on the “dev” par-
tition of the MS MARCO dataset. The inference is conducted on
all the retrieved passages and we use MRR@10 as the evaluation
metric which is common practice for this dataset.

6 RESULTS

6.1 LTR Benchmarks

First, let us look at the results for the WEB30K dataset as indicated
by the first 4 columns in Table 1. We note that, again, the Softmax
loss is a strong baseline but does not outperform all other losses.
On this dataset we find that ranking metric optimization has sev-
eral benefits. For example the Rax implementation of ApproxAP
strongly outperforms all other methods on the AP metric. Similarly,
the BoundRecall@20 achieves the highest Recall@20. Finally, we
find that NDCG and NDCG@10 are strongly correlated. As a re-
sult, methods that optimize for either one generally achieve a high
score on both metrics. We note that BoundNDCG@10, a novel loss
offered by Rax, achieves the highest NDCG on this dataset.
Second, we direct our attention to the Istella dataset as indicated
by the latter 4 columns in Table 1. We observe that the Rax imple-
mentation of Softmax is very strong on this dataset, and in fact it
outperforms the TF-Ranking implementation of Softmax on nearly
all metrics. We note that the TF-Ranking version of ApproxNDCG
performs strong on the NDCG metric. Upon further inspection
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Table 1: LTR benchmark results on the test split of WEB30K and Istella. Bold numbers indicate the best result for each metric
and * indicates significantly (p < 0.05, t-test with Benferronni correction) better performance than the TF-Ranking Softmax
baseline. All the Approx* and Bound* losses use Gumbel-sampling with 8 Gumbel samples.

WEB30K Istella
NDCG NDCG@10 AP Recall@20 NDCG NDCG@10 AP  Recall@20
TF-Ranking Softmax 71.36 48.71 20.78 36.66 80.90 71.96 62.18 90.71
TF-Ranking ApproxNDCG 71.13 48.28 20.96 35.84 81.12 71.92 62.25 89.73
Rax Softmax 71.30 48.55 20.76 36.53 80.99 72.11 62.40 90.82
Rax Pointwise MSE 71.28 48.68 20.54 36.42 80.06 70.68 60.65 89.19
Rax Pairwise Logistic 70.53 47.45 18.53 34.88 80.39 71.15 61.19 90.59
Rax ApproxXNDCG 71.08 48.14 20.29 35.10 79.88 70.06 60.33 88.70
Rax ApproxNDCG@10 71.31 48.57 20.53 35.29 79.91 70.21 60.46 88.88
Rax ApproxAP 68.89 44.18 21.384 36.70 79.56 69.67 60.27 88.29
Rax ApproxRecall@20 69.09 44.56 20.99 36.90 79.84 70.23 60.62 89.59
Rax BoundNDCG 70.96 47.96 20.42 35.02 80.69 71.30 61.67 89.01
Rax BoundNDCG@10 71.40 48.87 20.98 36.68 80.61 71.36 61.64 90.52
Rax BoundAP 69.20 44.51 20.79 35.41 79.83 70.02 60.77 87.80
Rax BoundRecall@20 68.16 42.98 21.02 36.80 78.72 68.59 58.99 88.93

Table 2: Performance of T5-large ranker on MS MARCO
trained with different ranking losses. The best performance
is bolded. The Rax ApproxXNDCG@10 loss uses Gumbel-
sampling with 8 Gumbel samples.

Ranking loss Dev MRR@10
BERT TF-Ranking Ensemble [19] 42.13
T5-Large + Rax Pointwise Sigmoid 41.84
T5-Large + Rax Pairwise Logistic 41.79
T5-Large + Rax ApproxNDCG@10 41.62
T5-Large + Rax Softmax 42.74

of this loss we find that the Gumbel sampling procedure used in
TF-Ranking applies an extra log-softmax transformation on the sam-
pled scores, which the Rax version does not do and may explain the
differences in performance. Generally, we find that ranking metric
optimization does not perform very well on this dataset and is not
able to outperform the Softmax loss. We hypothesize that this is
due to the fact that metric-based losses are typically non-convex.
This non-convexity may cause ranking models to get stuck in local
optima, which seems more problematic on the Istella dataset.
Overall, our results show that Rax is able to compete with TF-
Ranking, a state-of-the-art LTR library. Our results suggest that
there is not a clear single superior loss. Generally the Softmax loss
performs strong across all metrics. In some cases, depending on the
metric and dataset, we find that ranking metric optimization can be
beneficial. However, the exact properties of various ranking metric
optimizations are not well understood and our results suggest that
further study should be conducted, which we leave as future work.

6.2 MS MARCO Passage Ranking

The results of the MS MARCO Passage Ranking task are displayed
in Table 2. We find that the standard pointwise sigmoid cross-

entropy loss is a strong baseline for this task. Interestingly, the
ApproxNDCG loss, which was a strong baseline on WEB30K and
Istella performs less well on this dataset. One possible reason is
the extreme sparseness of MS MARCO, where there is effectively
a single relevant result for each list. Finally, we find that Softmax
performs best, achieving a high MRR@10. The number is slightly
higher than the ensemble of multiple BERT-based rankers also fine-
tuned with different ranking losses reported in [19]. However, other
factors such as different pre-trained models or different retrieval
results may also contribute to the improvement.

7 CONCLUSION

In this paper we introduced Rax - the first Learning-to-Rank (LTR)
library in the JAX ecosystem. The library provides implementa-
tions for a number of standard ranking losses and ranking metrics.
Furthermore, Rax provides a set of novel function transformations
that make it possible to re-purpose the ranking metrics as differen-
tiable ranking losses by injecting approximations and/or bounds to
rank and cutoff functions. Unlike existing libraries, this allows for
approximate metric optimization on our entire offering of ranking
metrics in a systematic way. The design of Rax makes it easy to
explore new approximations and bounds for approximate metric
optimization, as well as their Gumbel versions, which opens up
new possibilities for research.

There are several directions for future work. First, Rax provides a
number of ranking losses and metrics but is by no means exhaustive.
Our initial offering of ranking losses can be expanded and we
encourage the open source community to collaborate with us to do
so. Second, the design of Rax opens up new ways of performing
ranking metric optimization, including new ways to re-purpose
metrics as losses via differentiable rank and cutoff functions. We
leave studying the exact properties of various approximations and
bounds of those functions as future work.
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A EXAMPLE WORKFLOW

This appendix provides a reproducible example of using a Rax
ranking loss to optimize a linear ranking model on a synthetic LTR
dataset !4, The code in Listing 8 uses a linear model as indicated
by the score function definition in line 22. The model is essentially
defined as a dot-product between the weights (representing the
model we wish to optimize) and x (representing the features of lists
of items). The training step is implemented as a single PSC function
as defined on line 27. This training step does a few things: First, it
defines a loss function on line 28, which is expressed as a mapping
of weights to a loss value. Second, it uses this loss function to
compute gradients with respect to the weights on line 29. Third, a
single gradient descent step is performed on line 30. The training
step is repeatedly called in a training loop on line 37. Prior to calling
the training step we first evaluate the model on NDCG on lines 39
and 40. Given that this toy dataset is a synthetic example, it is trivial
to reach the optimal NDCG quickly. From the output of this code
we can see that it reaches the optimal NDCG in just three iterations.
This code demonstrates how easy it is to use a Rax ranking loss and
metric to train and evaluate an LTR model. Furthermore, although
this toy problem is very small and has no performance bottlenecks,
the training step is compiled using jax.jit which means it can run
on an accelerated device such as a TPU without requiring any extra
implementation effort.

14This dataset is the example train dataset from SVM-rank [25] obtained from https:
/lwww.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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Listing 8: Workflow of training a linear ranking model using
Rax and JAX.

1 import jax
2 import rax
3

+ # Synthetic LTR data.

5 X = jax.numpy.array([[[1., 1., 0., 0.2, 0.1,
6 [e., @., 1., 0.1, 1.1,
7 [0., 1., 0., 0.4, 0.],
8 [0., 0., 1., 0.3, 0.]1],
9 [[0., 0., 1., 0.2, 0.1,
10 [1., 0., 1., 0.4, 0.1,
11 [e., 0., 1., 0.1, 0.],
12 [0., 0., 1., 0.2, 0.1],
13 [[e., 0., 1., 0.1, 0.1,
14 [1., 1., 0., 0.3, 0.1,
15 [1., 0., 0., 0.4, 1.],
o ., 1., 1., 0.5, 0.117)
17 y = jax.numpy.array([[2., 1., 0., 0.],

" [e., 1., 0., 0.1,

19 [1., 2., 3., 0.1,

21 # Linear model scoring function
22 def score(weights, x):
23 return jax.numpy.dot(x, weights)

25 # Define training step as a single PSC function.

26 @jax.jit

27 def train_step(weights, x, y):

23 loss_fn = lambda w: rax.softmax_loss(score(w, x), y)
20 grads = jax.grad(loss_fn)(weights)

3  weights -= 0.1 * grads

31 return weights

33 # Initialize model weights to 0.
34 weights = jax.numpy.zeros((5,))

3¢ # Perform three gradient descent iterations.
37 for i in range(3):

s # Print NDCG for current model weights.

39 ndcg = rax.ndcg_metric(score(weights, x), y)
40  print(f”NDCG: {ndcg:.4f}")

2  # Perform gradient descent step.
43 weights = train_step(weights, x, y)

Prints:

NDCG: 0.7705
NDCG: 0.9880
NDCG: 1.0000
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