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ABSTRACT 1 INTRODUCTION

Prior work in Dense Retrieval usually encodes queries and docu-
ments using single-vector representations (also called embeddings)
and performs retrieval in the embedding space using approximate
nearest neighbor search. This paradigm enables efficient semantic
retrieval. However, the single-vector representations can be inef-
fective at capturing different aspects of the queries and documents
in relevance matching, especially for some vertical domains. For
example, in e-commerce search, these aspects could be category,
brand and color. Given a query “white nike socks”, a Dense Retrieval
model may mistakenly retrieve some “white adidas socks” while
missing out the intended brand. We propose to explicitly represent
multiple aspects using one embedding per aspect. We introduce an
aspect prediction task to teach the model to capture aspect informa-
tion with particular aspect embeddings. We design a lightweight
network to fuse the aspect embeddings for representing queries and
documents. Our evaluation using an e-commerce dataset shows
impressive improvements over strong Dense Retrieval baselines.
We also discover that the proposed aspect embeddings can enhance
the interpretability of Dense Retrieval models as a byproduct.

CCS CONCEPTS

« Information systems — Document representation; Query
representation; Retrieval models and ranking.

KEYWORDS
Dense Retrieval; Multi-Aspect; Multi-Task Learning

ACM Reference Format:

Weize Kong, Swaraj Khadanga, Cheng Li, Shaleen Kumar Gupta, Mingyang
Zhang, Wensong Xu, and Michael Bendersky. 2022. Multi-Aspect Dense
Retrieval. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD °22), August 14-18, 2022, Washington, DC,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3534678.
3539137

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

KDD °22, August 14-18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539137

Instead of relying on lexical-based representations as in keyword
search, Dense Retrieval represents queries and documents as dense
vectors, also called embeddings. It usually employs a bi-encoder
design [15, 22, 28] to encode a query and a document independently
and then computes a relevance score using some similarity func-
tions, e.g., cosine, between the query embedding and document
embedding. With fast approximate nearest neighbor search [2, 11],
this paradigm enables efficient semantic retrieval as one can pre-
compute document embeddings and index them offline [22].

One critical limitation of Dense Retrieval is that the single-vector
embeddings can be inadequate at capturing different aspects of the
query and the document for relevance matching [23], especially in
some vertical domains. For example, in e-commerce search, these
aspects could be category, brand and color. Given a query such as
“white nike socks”, a Dense Retrieval model may mistakenly retrieve
some “white nike shoes” or “white adidas socks”, while missing out
the intended category or brand. Similarly, in people search [14, 27],
Dense Retrieval models may fail to capture the intended location,
company or education aspect of a person.

To address this limitation, we propose to explicitly represent
multiple aspects for both queries and documents, using one embed-
ding per aspect. To implement this idea, we design a Multi-Aspect
Dense Retrieval model (MADRM), illustrated in Figure 1.
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Figure 1: Multi-Aspect Dense Retrieval model (MADRM).
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MADRM contains three major innovations. First, we design an
Aspect Extraction Network based on Attention [32] to extract em-
beddings for multiple aspects, called aspect embeddings. Second,
we introduce an aspect prediction task for training the aspect em-
beddings. We call this Aspect Learning. This is a critical step which
not only teaches the model domain knowledge but also guides
the model to represent each aspect (e.g., category or brand) with a
particular aspect embedding. Lastly, we design lightweight Aspect
Fusion Networks to combine multiple aspect embeddings together
as the final query or document embedding for fast approximate
nearest neighbor search (ANNS). This helps to save index space
and reduce indexing/querying complexity in ANNS.

MADRM provides several advantages over a regular bi-encoder
Dense Retrieval model. First, MADRM can more effectively capture
multiple aspects for relevance prediction and improve retrieval qual-
ity, as shown by our experiments and case studies on an e-commerce
dataset (Section 9). Second, with Aspect Learning, MADRM also
learns domain knowledge in addition to general language semantics.
For example, it could effectively recognize category, brand and color
for the e-commence domain (Table 5). Last, but equally importantly,
since we explicitly represent aspects for queries and documents,
our model offers enhanced interpretability as demonstrated by our
case study (Section 9.4).

In addition, the aforementioned improvements do not come at
the cost of indexing, querying and model complexity. For index-
ing/querying complexity, since we fuse the multiple aspect em-
beddings as the final query/document embedding, MADRM does
not add additional cost compared with other regular bi-encoder
models. In contrast, the prior work [20, 30] keeps embeddings for
each query and document tokens. As a result, its ANNS index size
grows linearly with the text sequence length. For model complexity,
compared to the BERT based bi-encoder baseline (Section 8.2), our
MADRM implementation uses less parameters and compute in serv-
ing (Section 7.2). This is achieved by implementing MADRM with
one-less Transformer layer [32] than the baseline, and then stacking
the Aspect Extraction Network and Aspect Fusion Network as the
last layers.

We summarize our research contributions as follows:

e We propose the Multi-Aspect Dense Retrieval model (MADRM)

- a novel Dense Retrieval model that explicitly represents

different aspects of a query and a document using multiple

embeddings.

We design the Aspect Extract Network and the Aspect Fusion

Networks for MADRM to effectively extract and fuse aspect

embeddings.

e We introduce the aspect prediction task for MADRM. It not
only teaches the model domain knowledge, improves the
retrieval quality via multi-task learning, but also guides the
model to represent each aspect with a particular aspect em-
bedding.

e We conduct experiments on an e-commence dataset to test
the effectiveness of MADRM as well as each proposed com-
ponent. The results show impressive improvements over
strong Dense Retrieval and multi-task learning baselines.
We perform a case study to understand our model behavior,
which also demonstrates the interpretability of MADRM.
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2 RELATED WORK

Neural information retrieval [24] is concerned with utilizing deep
neural networks for retrieving and ranking an ordered list of doc-
uments from a corpus given a query. The combination of neu-
ral networks, especially Transformers [32], and self-supervised
pretraining methods, has produced positive results in many do-
mains, e.g., e-commerce [35, 36] and social networks [17]. Among
Transformer based models, BERT [9] is a popular choice [22, 28].
Most applications of BERT for neural information retrieval follow a
retrieve-and-rerank setup. Specifically in the retrieval stage, candi-
date documents are retrieved from the corpus using keyword search
based on a scoring function like BM25 [29]. In the reranking stage,
the BERT model is used to compute the relevance of the given query
and the retrieved documents. Examples that follow such procedure
are the monoBERT model and the duoBERT model [25].

Recently, Dense Retrieval, the focus of this work, has become
an emerging area of research. Instead of relying on the traditional
keyword search, queries and documents are encoded as densified
embeddings, or vectors of fixed-width, and retrieval is performed in
the embedding space using nearest neighbor search of embedding
vectors [22]. A bi-encoder design is usually employed [16] to encode
a query and a document independently, which reduces retrieval
latency by precomputing document embeddings and indexing them
offline. The DSSM model [15] is one of the earliest models for Dense
Retrieval. It uses two deep fully-connected networks as encoders.
More sophisticated encoders have been explored, e.g., CNN [13],
RNN [26] and BERT [4]. Bi-encoders usually underperform cross-
encoders, which consider the interactions between queries and
documents and thus is not scalable for retrieval. A common strat-
egy to improve bi-encoders is to distill a cross-encoder into a bi-
encoder [4]. A body of work has investigated how to mine hard
negative examples to make the bi-encoders more robust [10, 19, 33].

Some studies focus on improving the design of bi-encoders for
better retrieval performance. Our work falls into this direction. The
work most relevant to us considers employing multiple vectors to
represent queries or documents [20, 23]. The vectors of a document
can interact with the vectors of a query after retrieval, improving
the expressiveness of bi-encoders [23]. These methods utilize multi-
vector representations without any explicit assumptions about the
semantics each vector could capture. In contrast, our work explic-
itly considers the existence of the multiple aspects in relevance
matching. In addition, our proposed method only outputs a single
embedding for each document using our lightweight Aspect Fusion
Networks. This significantly saves the space to index documents -
for comparison, the index size grows linearly with the document
length in the previous work [20, 30].

Another line of related research is multi-task learning, which
aims to leverage information contained in multiple related tasks to
help the model generalize better. This paradigm is widely applied to
various domains like computer vision [37], bioinformatics [34] and
natural language processing [7]. Multi-task learning is relatively
less explored in information retrieval. In web search, different mar-
kets or countries are treated as separate tasks and gradient boosting
based methods have been proposed to jointly learn these tasks [3, 5].
Zhang et al. [36] learn the tasks of query-title similarity and query



Multi-Aspect Dense Retrieval

taxonomy classification simultaneously for e-commerce search,
which is included as a baseline in our experiments.

Since our model explicitly considers the aspects present in the
documents and queries, it could enhance the interpretability of the
model as a byproduct. A few retrieval models in the literature have
been designed to enhance the interpretability as well. Hofstétter et
al. [12] compute soft-match counts over the contextualized embed-
dings of each query-document token pair, which provides insights
into model decisions. Leonhardt et al. [21] predict query-document
relevance based on the selected sentences from a document, which
could be treated as an explanation. The EXS system in [31] employs
a post-hoc explanation method by training a simple explanation
model to approximate the ranking model.

3 OVERVIEW

We first provide an overview of our Multi-Aspect Dense Retrieval
Model (MADRM). We illustrate MADRM’s architecture in Figure 1.
As a Dense Retrieval model, MADRM takes in a query Q and a
document D as input, and outputs a score for relevance matching.
The query Q = (g1, ... q|0|) and document D = (dy, ..., d|p|) usually
contain a sequence of tokens as input features. The relevance score
is computed by first independently encoding Q and D as dense
representations, also called embeddings. More formally, we denote
the query embedding as Eg € RH and document embedding as
Ep € RH, where H is the embedding dimension or hidden size.
The relevance score is then computed as the dot product or cosine
similarity between Eg and Ep. We list the frequently used notations
in Table 1.

Table 1: Frequently used notations.

Notation Description

Q,D The query, document in the retrieval task

Ep.Ep The query, document embedding

A={a;} A set of aspects, e.g., {category, brand, color}

a; ora A particular aspect. We omit the subscript i when it
is clear from the context, i.e., a

Eg; or Eq The aspect embedding for either query’s or docu-
ment’s aspect a.

QK,V The query, key, value input to the Attention layer

WO WX, WV | The projection parameters in the Attention layer

Va The aspect vocabulary for aspect a, e.g., Veolor =
{black,white,...}

Aa The set of aspect value annotations for aspect a, e.g.,
{Sandals, Shoes}

Uq The aspect embedding table for aspect a

Wq The aspect weight for aspect a

As illustrated in Figure 1, to capture different aspects, MADRM
encodes Q as follows: it first passes Q through a BERT encoder [9].
Other Transformer encoders [32] are also applicable here; from
BERT’s sequence output, MADRM then uses an Aspect Extraction
Network (Section 4) to extract embeddings for each aspect, called
“aspect embeddings”; the aspect embeddings are then trained using
available aspect annotations. This process is called Aspect Learning
(Section 5); finally, MADRM combines the multiple aspect embed-
dings together as the query embedding Eg using an Aspect Fusion
Network (Section 6). MADRM encodes D in the same way as Q,

KDD ’22, August 14-18, 2022, Washington, DC, USA

except that the two encoders don’t have to share the same network
parameters. Thus, we only describe our model structures using the
query encoder as an example in Section 4, 5 and 6.

4 ASPECT EXTRACTION NETWORK (AEN)

We illustrate the Aspect Extraction Network (AEN) in Figure 2. We
describe AEN’s structure in this section and defer the description
of the Aspect Learning process to Section 5.

Aspect
Embedding
Table Ug,

Aspect Prediction Loss
for Aspect Learning

Aspect Embeddings |

’ Ea, ‘ ’ Eay ‘ ’ Eas 7‘ 7777777 ,Ef‘f[i

[ Attention Layer ]
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Figure 2: Aspect Extraction Network (AEN). Section 4 and
Section 5 respectively describe the network structure and its
Aspect Learning process.

AEN takes in BERT’s sequence output, ¢grrr(Q) € RIQXH and
outputs embeddings for each aspects, called aspect embeddings.
We denote the set of aspects as A = {a;} llfll and the corresponding
aspect embeddings as Eq, (Q) € R for i = 1, ..., |A]. For brevity,
when it is clear from the context, we omit the subscript i in a; as
well as the query input Q. For example, we use E, for Eg, (Q) and
¢BerT for ¢perT (Q). To facilitate derivation, we pack E, for all
a € A as a matrix and denote it as E4 € RIAIXH,

We compute E4 using Attention as follows,

Ep= Attention(QWQ, ¢BERTWK,¢BERTWV), (1)

K’
VH
AttentioninEquation 2 is as defined in the Transformer paper [32],
where H is our hidden size or embedding dimensions. In Equa-
tion 1, ¢pgrT is the BERT sequence output as mentioned above,
WO WK WY e RE¥H are the projection parameters. Q € RI4XH js
our query! used in the Attention layer. Different from the Atten-
tion query used in BERT [9] which is the previous layer’s sequence
output, our Attention query Q is an input-independent trainable
parameter. This enables the model to attend to different parts of the
input sequence for representing each aspect. We illustrate this idea
in Table 2, which shows the attention scores predicted by our model
over query “ugg sandals” for aspect category and brand. The model
can correctly attend to sandals for extracting the category aspect
embedding and attend to ugg for the brand aspect embedding.

Attention(Q,K,V) = softmax( V. (2)

!Note the distinction between the Attention query Q and the query Q in the retrieval
task.
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Table 2: Attention scores over input [u, ##gg, sandals] for
aspects category and brand.

Token [CLS] | u ##gg | sandals | [SEP]
Category | 0.000 0.1220 | 0.1415 | 0.5870 0.1495
Brand 0.000 0.3672 | 0.2976 | 0.1557 0.1796

We want to highlight three points for AEN. First, AEN is com-
putationally more efficient than the Attention layers used in Trans-
formers (See Section 7.2). Second, when computing E 4 in Equation 1,
we mask the CLS token to avoid attending to it, since the CLS encod-
ing may already mix information from different aspects. Last, aside
from those explicit aspects (Section 5) like category and brand in
Table 2, we also add a special aspect, denoted OTHER, to capture
the remaining important information that may not be covered by
the explicit aspects.

5 ASPECT LEARNING

Without any special learning, the aspect embeddings only represent
latent aspects. That is, the represented aspects are not explicit,
and the model has no control over which aspect or what type of
information a particular aspect embedding represents.

We address this issue via, what we called, Aspect Learning.
Specifically, we can train the aspect embeddings by predicting the
corresponding aspect annotations when they are available. For
instance, given a query “ugg sandals”, its category annotation
(Shoes) and its brand annotation (UGG), we can train the aspect em-
bedding E,; and Eg; by using them to predict the query’s category
and brand respectively. We call this aspect prediction task. These
aspect annotations could be obtained at large scale using some NLP
tools for certain domains (e.g., e-commerce). We acknowledge that
aspect annotations may not be available in some scenarios, thus
we also test our model without Aspect Learning (Section 8.2). In
this case, the aspect embeddings only represent latent, rather than
explicit, aspects.

We compute the aspect prediction loss based on softmax cross
entropy loss, similar to MLM loss [9]. As illustrated in Figure 2,
given an aspect a € A (e.g., brand), we predict the probability P(x)
for each aspect value x (e.g., UGG, Nike) in the aspect vocabulary
V, using softmax(E, UaT + bg), where E, is the aspect embedding,
U, € RIValxH jg the aspect embedding table and b, € RIVal s
the bias term. Note U, and b, are free trainable parameters, ini-
tialized randomly and shared between the query and document
encoders. They are auxiliary parameters for training only - they
are only used for computing the loss and are not used during infer-
ence. We find the aspect embedding tables can capture interesting
aspect semantics as demonstrated in Table 9 from our case study
(Section 9.4).

Given a set of aspect annotations A, (ground truth labels for as-
pect a), the aspect prediction (AP) loss for aspect a is then computed
as,

a _
LAP_

1
Ty 2 s (P, ®)
a X€EA,
where A, denotes the set of the aspect annotations. Note that some
aspects may have multiple annotations. For example, a query can be

annotated with both category Sandals and Shoes, i.e., Acategory =

Weize Kong et al.

{Sandals, Shoes}. Equation 3 simply aggregates the losses for all
the annotations by averaging.

We want to highlight three points for this learning procedure.
First, via Aspect Learning, our model not only understands the gen-
eral language semantics as the other pretrained language models, it
also learns some domain knowledge and can recognize aspects for
the specific domain (e.g., categories and brands for e-commerce).
Our experiment shows our model can perform effectively at pre-
dicting the aspects (Table 5). Second, when trained with the aspect
prediction loss, the aspect embeddings can represent aspects more
explicitly, and we call them “explicit aspects”. This could largely
enhance model interpretability, as demonstrated in our case study
in Table 8. Lastly, the OTHER aspect (Section 4) is not trained in
Aspect Learning as there are no available annotations for it.

6 ASPECT FUSION NETWORKS (AFNS)

In alot of scenarios, we need to fuse the multiple aspect embeddings
into a single-vector representation, so that we can use approximate
nearest neighbor search [2, 11] in Dense Retrieval without addi-
tional infrastructure change or cost. This section discusses differ-
ent Aspect Fusion Networks (AFNs) we designed for this purpose.
Again, we only provide details for the query side, as the procedure
is identical for the document side.

6.1 Weighted Sum

To fuse the aspect embeddings E, from all the aspects as the query
embedding Eg, one simple method is to weighted-sum up all the
aspect embeddings,

eYa

Ep 1;4 wq - Eq, Wa S encla (4)
where w, are the aspect weights computed by applying softmax
over the trainable parameter y,.

However, one drawback with this Weighted Sum AFN is that the
aspect weights do not depend on the input, and therefore cannot
adapt to different inputs. For example, a query may not even specify
the brand, thus we may want to discount the aspect weight for the
brand aspect embedding for the particular query.

6.2 Presence Weighting

To address the issue above, we design another AFN called “Presence
Weighting”, which could adjust the aspect weights based on whether
the aspects are presented in the query or not.

More specifically, we decompose the aspect weights w,(Q) into
two factors below.

wa(Q) = Pa(Q) * Va- (5)

Before describing the notations above, note that: (a) the aspect
weight wg(Q) now depends on the input text Q; and (b) we L1-
normalized the aspect weights so that they sum up to one. For the
notations in Equation 5, y, is an input-independent weight used
to capture the aspect importance regardless of aspect presence.
P,4(Q) is the probability of the aspect a being presented in the
query. We predict that by applying one sigmoid layer on top of the
aspect embedding, P,(Q) = SigmoidLayer (E4(Q)). We train this
component based on the aspect annotations (Section 5) when they
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are available, using a, what we called, aspect presence prediction
task. Specifically, we assume that if an aspect does not have any
annotations then that aspect is not presented in the text input.
Based on this aspect presence label, denoted as y,, we compute the
aspect presence prediction (APP) task loss using cross entropy loss,

Lipp = —Yalog (Pa(Q)) = (1 - ya) log (1= Pa(Q)) . (6)

6.3 CLS-Gating

Similar to our multi-aspect problem framing, Mixture-of-Experts
(MoE) models [18] train multiple experts and then use a softmax
gating network for mixture. Inspired by that, we design a gating-
based AFN that uses the CLS encoding from BERT as the input to
the gating network to fuse aspects, which we call “CLS-Gating”. In
this case, each aspect embeddings are regarded as the “experts”, and
the gate-values are equivalent to the aspect weights w, mentioned
above for expert mixture (or aspect fusion).

Specifically, the gate-values or aspect weights are computed by
passing the CLS encoding, E¢| s, through a linear layer to compute
logits for each aspects, i.e., Linear(Ec.s) € RIAl For simplicity,
we use y, to denote the logit computed for aspect a. The aspect
weights are then computed using softmax, w,(Q) = ﬁ,
The query embedding is then computed by weighted sum as above
(Equation 4).

Note that the other AFNs mentioned above do not directly depend
on any output from the BERT encoder. For example, the Presence
Weighting AFN computes the aspect weights only using E, as input
(with other trainable parameters). CLS-Gating AFN instead directly
uses Ecis from BERT, which we find could utilize the information
from BERT more efficiently (Section 9.3).

7 MODEL TRAINING & ANALYSIS

This section describes the training procedure for our Multi-Aspect
Dense Retrieval Model (MADRM), as well as provides model size
and complexity analysis.

7.1 Training

The BERT encoders in MADRM (Figure 1) are initialized from pub-
lic pretrained checkpoint, we then further pretrain MADRM using
a large scale corpus for a specific application domain. For this pre-
training, we combine the aspect prediction loss £, (Equation 3),
the aspect presence prediction loss L4, (only applicable if using
Presence Weighting AFN) as well as the Masked Language Model
(MLM) loss Lasrm [9] as follows for both the query and document

side,
Lyvim + Z
acA\{orHEr}

(Lap + Lipp)- 7

Note that we do not compute any loss for the special OTHER aspect
(Section 4).

For finetining, we use two losses for the retrieval task: (a) the
cross entropy loss L¢g for predicting whether a query-document
pair is a relevant pair, where the query-document pairs usually
come from some candidate ranking lists; and (b) the in-batch soft-
max cross entropy loss Lscg, which uses random negatives from
the training batch. We also find adding a small amount of aspect
prediction loss (and aspect presence prediction loss if applicable) is
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helpful for the retrieval task, so our finetuning loss becomes,
Lep+ Lscrth Tacajommy Lap(Q+LE pp(Q)+L4p (D)+ LS pp (D), (8)

where A is tuned based on a validation dataset.

7.2 Model Size and Complexity

Our MADRM implementation has smaller model size and complex-
ity than the BERT-based bi-encoder model (BiBERT) [22]. Specifi-
cally, we implemented MADRM using one-less Transformer layer [32]
than BiBERT. In other words, we construct MADRM by replacing
the last Transformer layer in BiBERT with the Aspect Extraction
Network (AEN) and Aspect Fusion Network (AFN). In fact, the AEN
and AFN are analogous to the Multi-Head Self Attention (MHSA)
and feedfoward network (FFNN) in Transformers respectively. Thus,
we compare AEN and AFN with MHSA and FFNN in this section.

For model size, AEN and AFN combined use at least 2H X (I—|A|)
fewer parameters than a Transformer layer, where H is the hidden
size, I is the intermediate output size in FFNN and |A]| is the num-
ber of aspects. Note that we usually have I > |A], e.g., [ = 3072
and |A| = 4 in our experiments. Comparing AEN with MHSA,
while both use equal-size projection parameters in the Attention
layer, AEN in addition introduces the Attention query parameter
Q € RlAXH (Section 4). Aside from that, AEN also adds the as-
pect embedding tables U, € RIValXH for each aspect (Section 5).
However, Uy, is only used for training when computing the aspect
prediction loss, and does not affect model size during inference.
Comparing AFNs with FFNN, one of the most compute-expensive
AFNs, CLS-Gating AFN, uses a kernel parameter of size H X |A|
in the gating network, while FFNN uses two kernel parameters of
total size 2H X I.

For time complexity, AEN is also slightly more efficient than
MHSA, since AEN only compute encodings for the |A| aspects
instead of all the input tokens in the sequence. This is similar
to Funnel-transfomer [8]. Note that the number of aspects |A] is
usually much smaller than the number of input tokens. It is also
easy to see our AFNs are less compute-expensive than FFNN.

8 EXPERIMENTAL SETUP
8.1 Datasets

We use the following proprietary e-commerce data, as we are not
able to find public datasets suitable for our experiments 2.

e E-commerce Corpus Dataset (ECD): this corpus contains 9M
distinct documents and 8M distinct queries, used for model
pretraining and our retrieval evaluation (Section 8.3).

e E-commerce Relevance Dataset (ERD): this dataset contains
human relevance judgements for query-document pairs, used for
model finetuning and evaluation. We use 39k, 1.6k, 1.9k queries
for finetuning, validation and testing respectively. The average
query length is 3.4 words. Each query has 8.6 documents with
relevance judgements on average. The relevance judgements
have grades rel € {0, 1,2, 3,4}, where 0 means non-relevant and
1/2/3/4 mean fair/good/excellent/perfect relevance respectively.

2The closest we can find is the Amazon Product Search dataset [1], but it uses synthetic
queries created based on product categories. Since our models explicitly capture the
category aspect, this dataset could bias towards our proposed models over other
baselines.
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We regard rel < 1 as negatives and the rest as positives for
metrics that require binary labels.

For both datasets, the queries only come with their query text as the
input feature, while the documents have titles, descriptions, entities
and keywords. In addition to that, the queries and documents are
annotated with category, brand and color aspect annotations offline
using an in-house high-accuracy NLP tool. Note that these annota-
tions are used as auxiliary labels for model training and evaluation,
and are not required for inference. We report the percentage of
queries and documents having aspect annotations in Table 3 for
each aspect on ECD (the statistics are consistent across the datasets).
For example, 96.5% of the queries have at least one category an-
notation. From ECD, we also collect the aspect vocabularies, used
to create the aspect embedding tables in Section 5. The collected
vocabulary sizes are 13k, 38k, 152 for category, brand, color aspect
respectively after filtering out some low-frequency aspect values.

Table 3: Percentage of queries and documents having aspect
annotations for each aspect on ECD.

Query aspects ‘ Document aspects

Category Brand Color‘ Category Brand Color
96.5%  11.8% 59% | 99.0%  63.1% 15.8%

8.2 Model Implementation

We compare our models with the following bi-encoder baselines,
and describe the model implementation below.

o BiBERT [22, 28]: a BERT bi-encoder baseline, using the 12-layer
BERT-base as the encoders and computes relevance scores us-
ing cosine similarity between the CLS encodings. The model is
pretrained with MLM loss and finetuned with the two retrieval
task losses (Section 7.1).

e MpBERT: an improvement over BiBERT that pools encodings
from multiple tokens instead of just the single CLS token for text
representation [6]. We denote this model as MpBERT, where
Mp stands for multi-token pooling. This is similar to our model,
which also fuses multiple aspect embeddings as the final em-
bedding. We implement both models using the same number
of tokens/aspects for pooling/fusion using the same AFN. This
model is trained in the same way as BiBERT.

e MtBERT: a multi-task (MT) learning baseline. MtBERT uses the
same model architecture as BiBERT, but in addition co-trains
the CLS encoding with the same aspect prediction tasks as our
model (specifically, MADRAL) in both pretraining and finetun-
ing. In other words, MtBERT uses the same multi-task objectives
as MADRAL, and only differs from MADRAL in the model ar-
chitecture. This model is similar to the prior work [36], except
that we upgrade the TextCNN encoder to BERT encoder and
add aspect prediction tasks for all aspects instead of just the
category aspect for co-training.

DSSM [15]: a DNN bi-encoder baseline, which is one of the

earliest bi-encoder Dense Retrieval model. For fair comparison,

we use the BERT wordpiece tokens as input features for DSSM
and initialize the embedding table from BiBERT (after BiBERT
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is being pretrained on ECD). DSSM is then finetuned with the
same retrieval task losses.

e MADR and MADRAL: our proposed Multi-Aspect Dense Re-
trieval models, which add the Aspect Extraction Network (AEN)
and Aspect Fusion Network (AFN) on top of the BERT-base en-
coders (Figure 1). Note that MADR and MADRAL use one-less
Transformer layer than BiBERT in our implementation. As a
result, they contain fewer parameters than BiBERT (Section 7.2).
MADRAL3 uses Aspect Learning for the category, brand, color
aspect. It is pretrained with losses in Equation 7 and finetuned
with losses in Equation 8. MADR instead does not use Aspect
Learning and therefore does not require any aspect annotations.
It is pretrained and finetuned with the same losses as BiBERT,
and only differs with BiBERT in terms of the model architecture.
Unless mentioned otherwise, we use Presence Weighting AFN
in MADR and MADRAL.

For all the models, we use the query text as query input, truncated
at length 32. We concatenate all the document features (Section 8.1)
as document input, truncated at length 128. BERT components in
all the models are initialized from Google’s public pretrained check-
point. All the models do not share query and document encoder
parameters, and are pretrained on ECD for 300k steps and finetuned
on ERD for 560 steps with batch size 1024. The hidden size H = 768
is inherited from BERT-base. However, the aspect, query and docu-
ment embeddings are projected to 128 dimensions for all models to
make approximate nearest neighbor search efficient. Other model
hyperparameters are tuned using the validation dataset.

8.3 Evaluation
We evaluate model performance for the following tasks.

o Retrieval Task: this is our primary task. we use ScaNN [11] to
perform approximate nearest neighbor search to retrieve ten
thousand documents from ECD. We measure Recall@10k using
queries and relevance judgements in ERD.

Ranking Task: we also evaluate models’ ranking performance
by re-ranking the judged documents in ERD for each query. We
report NDCG@5, where the gain (before discounting) is defined
as 2"¢! — 1. In addition to NDCG@5, we also report AUC, which
is calculated per query before averaging.

Aspect Prediction Task: this is not our main objective, but we
also evaluate aspect prediction performance for relevant models.
Specifically, we evaluate accuracy for the top-1 predicted aspect
value according to the estimated probability P(x) (Section 5).
We denote this metric as Accuracy@1.

We report results on the test set and perform paired t-test with
p-value<0.01 for marking statistically significant differences.

9 EXPERIMENTAL RESULTS
9.1 Overall Results

The overall performance is shown in Table 4. Our proposed method
MADRAL outperforms all the competing methods by a large margin
in all metrics. This suggests that our proposed model architecture
and Aspect Learning can indeed bring benefits for retrieval models.

3The suffix “AL” in MADRAL stands for Aspect Learning



Multi-Aspect Dense Retrieval

Table 4: Results for MADRMs and Baselines. Reports rela-
tive performance change with respect to BiBERT. *, ¥, {, %,
§ indicate statistically significant improvement over DSSM*,
BiBERT', MpBERT !, MtBERT* and MADRS? respectively.

Recall@10k  AUC NDCG@5
DSSM -14.54% -6.38% -3.64%
BiBERT  +0.00%* +0.00%* +0.00%*
MpBERT  +2.49%*T -0.54%" +0.16%*
MtBERT  +8.56%*T18  10.01%* +0.57%"
MADR +5.75%* 11 +2.177% T 4154911
MADRAL  +12.44%* 18 12 250xF1E 19 06T 14

Comparing individual models, we see that BiBERT, which en-
codes input by BERTs, performs better than DSSM, which encodes
input by fully-connected networks. This is in line with previous find-
ings that BERT based encoders generally outperform other types
of encoders. As also observed in the previous work [6], MpBERT
further improves BiBERT on recall, since it pools encodings of mul-
tiple tokens instead of just a single CLS token. This is similar to our
idea of fusing multiple aspect embeddings. MtBERT is also superior
to the vanilla BiBERT. This implies that the aspect prediction task
is useful for the retrieval task. The models that jointly learn the two
types of tasks could capture commonality from both and generalize
better.

MADR is one variant of our model, which shares the same model
structure as MADRAL but is not provided with the aspect annota-
tions and thus does not explicitly learn the aspect prediction task.
It outperforms BiBERT, but when compared with MpBERT, the
improvement seems less significant. This indicates fusing multiple
aspect embeddings or pooling multiple token encodings from the
Transformer output can more effectively encode text for relevance
prediction. MADR also surprisingly performs better than MtBERT
on AUC and NDCG, though worse on recall. Considering that Mt-
BERT is provided with the explicit aspect signal while MADR is
not, it might be safe to say that the model structure we propose
fits the retrieval task well. We suspect that the design of the as-
pect extraction and fusion imposes prior knowledge on the model,
which helps the model automatically capture some latent aspects
and generalize better.

With Aspect Learning, MADRAL further improves over MADR,
MpBERT and MtBERT, suggesting that both the proposed model
structure and the aspect prediction task contribute to the enhance-
ment of the performance. Compared with MADRAL, MtBERT relies
on a single embedding, the output representation of the CLS token,
for multiple prediction tasks. This single embedding design has
limited expressiveness. This seems to constrain the model and in-
creases the difficulties of training — we observed that MtBERT’s
performance on the aspect prediction task improves much slower
than that of MADRAL in pretraining. MtBERT’s eventual aspect
prediction performance is also not as good.

We present the performance on the aspect prediction task in
Table 5. We see that our model MADRAL performs much better
than MtBERT on almost all aspects, except for the color aspect in
queries, where both models exhibit an almost perfect performance.
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This supports our hypothesis that using a single embedding for
multi-task learning has limited the ability of MtBERT to handle
both tasks simultaneously.

Table 5: Accuracy@1 for the aspect prediction task

Query aspects ‘ Document aspects

Category Brand Color ‘ Category Brand Color

MtBERT 0.713
MADRAL 0.783

0.631 1.000 | 0.801 0.531 0.991
0.962 0.990 | 0.923 0.978 0.999

9.2 Ablation Studies

To further understand the model, we conduct ablation studies by
removing one component at a time. The results are summarized
in Table 6. Almost all results being negative indicate that most
components contribute positively to the performance gain.

Table 6: Ablation study results. Reports relative perfor-
mance changes with respect to MADRAL, with { indicating
statistically significant changes.

Recall@10k AUC NDCG@5
Removing different aspects
MADRALcategory 3 599, f -1.23%"  -0.64%
MADRALPrand  _5 g7+ +0.48%  +0.26%
MADRALcolor -2.25%" -0.00%  +0.16%
MADRAL©ther -0.70% +0.65%  +0.54%

Disabling Aspect Learning on the query or document side

MADRAL™query -6.23%" -0.62%  -0.82%"

MADRALdoc -4.16%" -0.66%  -0.51%
MADRAL +0.00% +0.00%  +0.00%
BiBERT -11.06% 2.20%  -2.02%

By removing each aspect from MADRAL, it seems like category,
brand and color are all important in the domain of e-commerce
search, especially the category aspect. In contrast, the smaller perfor-
mance drop of MADRAL~°the" in Recall@10k suggests the OTHER
aspect is less important, compared to the other aspects, which come
with aspect annotations for the model to learn from. Note that this
observation is domain-specific and our model could adapt based
on the datasets of a particular domain.

Disabling Aspect Learning on the query or document side also
leads to decrease of performance. This means that learning on both
sides is important. This might be because there is some mismatch
between the vocabularies of user queries and documents. Therefore
it is important to learn on both sides to understand the different
expressions of aspects. Disabling Aspect Learning on the query side
(MADRAL™9"TY) has larger performance drop than the document
side (MADRAL~9°¢). This seems to indicate that the query aspect
understanding is more critical than that for documents. Specifically,
queries are shorter and can be informally or not well formulated,
while documents are usually more informative and well structured.

Lastly, our models in the ablation studies still outperform BiBERT.
This demonstrates the robustness of our model architecture.
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9.3 Aspect Fusion Network Results

In this subsection we examine the effectiveness of different As-
pect Fusion Networks, which aim to fuse multiple aspect embed-
dings into a single one to save the index space. Table 7 lists the
results of different fusion mechanisms we have proposed. The sim-
ple Weighted Sum method is less effective than other methods, but
the performance drop is not very large. By discounting aspects that
are not present in the input, Presence Weighting improves over the
naive Weighted Sum method on recall. The CLS-Gating approach
fuses the embeddings in a similar way as Mixture-of-Experts (MoE)
models [18]. By learning to weight embeddings based on the input
representation, namely the CLS encoding, CLS-Gating achieves the
best performance. This may be explained by CLS-Gating utilizing
the information from BERT more efficiently, as it directly takes the
CLS encoding as input.

Table 7: Results for different Aspect Fusion Networks. Re-
ports relative performance changes with respect to Weight-
edSum, with ¥} indicating statistically significant changes.

Recall@10k AUC NDCG@5
Weighted Sum +0.00% +0.00% +0.00%
Presence Weighting  +1.16% -0.56%  -0.45%
CLS-Gating +1.26% " +0.78%  +0.40%

9.4 Case Studies

To better understand our model as well as to demonstrate its im-
provements on both effectiveness and interpretability, we show an
example query-document pair in Table 8 with different predictions
made by MADRAL using Presence Weighting AFN (Section 6.2).

First, our model can make high-quality predictions for aspects
as well as aspect presences in this case. Using the query-side pre-
dictions as examples, the model correctly predicts the category
and brand to be Juicers and Breville with 1.0 confidence scores,
which are estimated by P(x) defined in Section 5. The model also
correctly predicts that color is not presented in the query — the
predicted presence probability is zero. As a result, color’s aspect
weight, used in aspect fusion, is also zero (see Equation 5). This
effectively ignores the color aspect embedding in the final query
embedding.

Second, this case study demonstrates how our proposed model
MADRAL improves over the baselines. The query breville juicer is
looking for a product in the category of Juicer, while the retrieved
document has the category Books. Since there is a high textual
similarity between the query and the document, the baseline model
BiBERT, which is not trained to explicitly consider aspects, gives a
high relevance score to the document. With the explicit learning of
the aspects, MADRAL has recognized the mismatch of the category
between the query and the document, assigning a much lower score
to the document. Note that the relevance scores are standardized
with zero-mean unit-variance for comparison.

Lastly, we find our model offers enhanced interpretability, com-
pared to other black-box Dense Retrieval models. As showcased in
the example, the intermediate aspect predictions provide a means
to inspect whether the model can correctly understand the aspects.
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Table 8: Predictions from MADRAL for an example query-
document pair. Confidence is the predicted probability in as-
pect prediction (P(x) in Section 5). Presence is the predicted
aspect presence probability (Section 6.2). Weight is the as-
pect weights used to fuse aspect embeddings. Relevance score
is standardized (zero-mean unit variance).

Query: breville juicer

Category Brand Color OTHER
Prediction Juicers Breville Grape
Confidence 0.979 1.000 0.187
Presence 1.000 1.000 0.000 0.761
Weight  0.374 0.350 0.000 0.276

Document: Juicing with the Breville Juice Fountain Extractor: A Simple
Steps Brand Cookbook: 101 Superfood Juice Recipes to ...

Category Brand Color OTHER
Prediction  Books Breville Grape
Confidence  0.993 0.369 0.151
Presence 1.000 0.001 0.000 0.993
Weight  0.500 0.000 0.000 0.500

Standardized relevance score

BiBERT: 0.213 MADRAL: -0.469

Moreover, since the final query and document embedding is a sim-
ple weighted sum of the aspect embeddings, one could explain why
a high or low relevance score is predicted by the model based on
the predicted aspects and the weights that combine them.

Next, we conduct another case study to demonstrate the seman-
tics captured by the aspect embedding tables (U, in Section 5). In
Table 9, we select one example aspect value per aspect, and retrieve
their nearest neighbors in the embedding space. We can see the
nearest neighbors aspect values are all semantically related to the
querying aspect values. For example, for the Bedding category, its
related categories are all product categories used for beds and sleep-
ing. This implies that our model is able to position semantically
similar aspect values close to each other in the embedding space.

Table 9: Examples of semantically related aspect
values found by MADRAL. Lists top-4 nearest cate-
gories/brands/colors for Bedding, HP and Pink respectively
based on the learned aspect embedding tables U, (Section 5).
Numbers in the parentheses are the dot-products between
embeddings.

Category Brand Color

(1.00) Bedding (1.00) HP (1.00) Pink
(0.626) Comforters (0.45) Dell (0.34) Light Pink
(0.563) Bedding Sets (0.37) Intel (0.28) Hot Pink
(0.540) Quilts & Bedspreads (0.35) Canon (0.25) Rose

(0.513) Sheets (0.35) Brother  (0.19) Red
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10 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a model to represent multiple aspects of
a query and a document using multiple embeddings for Dense Re-
trieval, called Multi-Aspect Dense Retrieval model. We design an As-
pect Extraction Network to effectively extract aspect embeddings by
attending to different parts of the text input. We also design Aspect
Fusion Networks that combine the aspect embeddings as the final
query/document embedding based on input-independent weighted
sum, aspect presence weighting or a gating network. When aspect
annotations are available, we propose an aspect prediction task to
teach the model domain knowledge and guide the model to repre-
sent aspects explicitly with the aspect embeddings. Our evaluation
on an e-commerce dataset shows impressive improvements over
strong baselines, including BERT-based bi-encoder and its multi-
task learned variant trained with the same signals as our model.
Furthermore, our model offers enhanced interpretability compared
to other black-box Dense Retrieval models, as demonstrated by the
case studies. Lastly, the aforementioned improvements do not come
at the cost of indexing, querying and model complexity.

The idea proposed in this paper opens up a number of directions
for future research in Dense Retrieval. One direction is to better
leverage the learned multi-embedding representations. Instead of
fusing the aspect embeddings, we may preserve them to be used in
more expressive similarity functions and design nearest neighbor
search algorithms that can work efficiently with them. Another
direction is to scale up the number of aspects from a handful to
hundreds / thousands, so that the model can understand rich domain
attributes, including more subtle ones such as TV panel types (e.g.
{LED, OLED}). Instead of computing all the hundreds / thousands of
aspect embeddings, we can investigate using MoE [18] to sparsely
activate certain aspects and make model efficient for practical use.
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