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Abstract—Google’s Spanner database serves multiple exabytes
of data at well over a billion queries per second, distributed over
a significant fraction of Google’s fleet. Silent data corruption
events due to hardware error are detected/prevented by Spanner
several times per week.

For every detected error there are some number of undetected
errors that in rare (but not black swan) events cause corruption
either transiently for reads or durably for writes, potentially
violating the most fundamental contract that a database system
makes with its users: to store and retrieve data with absolute
reliability and availability.

We describe the work we have done to detect and prevent
silent data corruptions and (equally importantly) to remove faulty
machines from the fleet. We present a simplified analytic model
of corruption that provides some insights into the most effective
ways to prevent end-user corruption events.

We have made qualitative gains in detection and prevention
of SDC events, but quantitative analysis remains difficult. We
discuss various potential trajectories in hardware (un)reliability
and how they will affect our ability to build reliable database
systems on commodity hardware.
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I. INTRODUCTION

Spanner [1], [2] is Google’s planet-scale database that
supports 5 of Google’s 7 products with a billion or more users.
Other key infrastructure on Spanner includes AdWords, the
Zanzibar access control system [5], and much of the control
plane for Google Cloud. In aggregate Spanner serves over 1
billion queries per second on multiple exabytes of data stored
in tens of thousands of databases, and is one of the largest
consumers of resources in Google’s fleet.

Availability and data integrity are therefore fundamental to
Spanner.

Spanner data is generally replicated in 3 or more geograph-
ically distributed data centers to provide fast fail-over in the
event of failure, remaining robust even if all data centers in
a metro region are offline. These replicas can also be used
to detect and repair data corruptions. Some customers, such
as Zanzibar, also add tens of read-only replicas to provide
even lower and more consistent latency for reads across
geographies.

Spanner’s availability SLA is 99.999% (“five nines”). Be-
cause of its stringent correctness requirements and its scale,
Spanner has been at the forefront of detecting the phenomenon
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of Silent Data Corruption [3], [4] within Google, and in
implementing measures to detect and prevent it. Spanner’s
geo-replicated nature also means that we can more frequently
detect corruptions than unreplicated services.

In addition to scale, Spanner also has a much higher work-
load diversity than other systems of comparable scale (such
as the Colossus file system). There is a diversity of database
schemas, of read/write workloads, of concurrency semantics,
and of simple reads and writes versus highly complex SQL
sub-programs. This creates a much bigger “attack surface” for
bugs.

II. DETECTION

Because of their rarity and diverse manifestations, reliable
detection of SDC events is a fundamental challenge.

A. Crash Triage

Every crash of a Spanner server in production is investigated
by an engineer, who is responsible for identifying clusters
of failures, filing bugs, and routing them to the appropriate
engineers for root-causing and fixing. They also coordinate
with the Site Reliability Engineering team that runs the Span-
ner service in the event that a bug is detected that warrants
production intervention. Such interventions include rolling
back a software release, disabling a new feature, isolating a
problematic tablet, or otherwise mitigating the issue.

Crash triage is essential for maintaining Spanner’s quality.
Despite running a huge battery of tests on every production
release (Spanner is Google’s single largest consumer of testing
resources), as with all systems bugs do make it past testing.
And Spanner’s scale means that even extremely rare bugs are
often exercised by some workload.

B. Detecting Silent Data Corruption in Production

Almost all software bugs exhibit some sort of correlation.
Most straightforwardly, a failing invariant check or a null
pointer dereference always generates the same stack trace. But
even bugs that are difficult to root-cause, like use-after-free,
usually exhibit some form of correlation. For instance, the
corruptions might all occur in objects of the same size class
as the prematurely freed object.

A number of years ago, Spanner’s crash triage team began
to observe an increase in crashes whose only correlation was
that they occurred on the same machine. Over time we realized



that the trend was worsening, and the increase couldn’t just be
ascribed to an increase in the size of the fleet or in Spanner’s
increased footprint within the fleet.

Over time we found that the following symptoms, indi-
vidually or in combination, were reliable indicators of bad
machines:

• An elevated level of kernel panics.
• An elevated level of SIGSEGV, SIGILL, and SIGFPE

crashes in Spanner or other “high reliability” binaries,
especially when concentrated on a single core or hyper-
thread pair.

• An elevated level of unrelated fail-stop invariant check
failures.

• Any fail-stop checksum mismatch failures. Such failures
are particularly strong indicators.

We also learned that such events could be widely separated
in time, sometimes by over a year, and still provide a mean-
ingful diagnostic signal. For example, a Spanner memtable
checksum failure plus a 9-month old kernel panic may be
sufficient to mark the machine as bad.

As we gained experience, and became more confident of our
reading of the symptoms, and as we socialized the problem
with the platforms team responsible for the hardware, we were
able to diagnose faulty machines more and more quickly. The
capability to remove machines from service was also delegated
to triage engineers.

Because of the non-deterministic and ultra-low frequency
of these failures, the normal procedure for “fixing” broken
machines had to be changed since normal screening and
remediation procedures often failed to address the issue, and
bad machines were returned to the fleet. We called these
machines “recidivists”.

Over time, procedures were put in place to explicitly eject
corruptors so that they were not simply put back in production.
Programs specifically designed to screen for bad machines
were developed internally and with CPU vendors. These
screens can catch a significant number, but by no means all,
bad machines.

1) Validating SDC Events: How can we distinguish silent
data corruption from disk and network errors? Disk and
network are protected by hardware- and software-level check-
sums. In addition, Spanner’s compaction logic computes an
application-level checksum, then decodes, decrypts, and vali-
dates the checksum of each block before it is written. It also
performs the same checksum computation as the underlying
filesystem on the in-memory file contents, and uses a special
API that returns the checksum of the file when it is closed.
That checksum is validated against the in-memory file-level
checksum.

How can we distinguish SDC from software failures? Soft-
ware errors virtually always recur across multiple machines.
In a few cases we have determined that multi-machine corrup-
tions are hardware-induced, but the bar for such a conclusion
is very high and needs to be supported by other evidence (e.g.
all suspect machines failing a screening test).

How can we distinguish SDC from failures in other parts
of the machine, e.g. in DRAM? SDC is almost always limited
to a single core, or occasionally to a group of cores sharing a
last-level cache. Once a machine is identified as likely to be
faulty, we look for such core-concentrated crashes – both in
the wild and in our growing repertoir of screening tests.

Note that we do not distinguish between corruption in on-
chip caches versus on-chip functional units (ALU, FPU, etc).
Operationally, it’s irrelevant – in either case our only recourse
is to replace the bad chip.

SDC signals can often be immediately isolated to a particu-
lar core, for instance when there are repeated segmentation
faults. In other cases, like checksums on in-memory data
structures, the detection code may not be proximate to the
event where the corruption occurred. In such cases, we may
be able to validate the corruption with an offline screening
program. In other cases, we return the chip to the vendor who
may be able to verify that the chip is bad.

In the end, determining whether a chip is bad remains part
art, part science. The per-chip failure rate is so low and the
failure modes sufficiently diverse that statistical analysis and
modeling remain elusive. Over time as our screening processes
and vendors’ analysis improves, we are able to confirm past
hypotheses. But new failure modes continue to manifest as
well.

C. Audit

Since Spanner databases are geo-replicated, one mechanism
for detecting and repairing corruptions is to compare the
contents of the database across replicas. Spanner runs such
an audit over each database, by default once per week. There
are also consistency checks between indices and base tables,
and structural invariant checks.

In the very rare event that a corruption is detected, the
corrupted tablet in the minority is destroyed by an operator
and automatically reconstituted from the other replicas. This
mechanism has been helpful in repairing both hardware- and
software-induced corruptions.

However, there are limitations: most obviously, the lag
between corruption and detection could be as long as a week.
Since they perform full scans of all replicas, the audits are
very expensive.

More subtly, since Spanner is a multi-version database,
compactions are not synchronized across replicas, and the im-
plementation has flexibility in the representation of deletions,
we can not compare structural equality. Instead we compare
semantic equality at a chosen snapshot timestamp: that is, the
sequence of user-visible rows yielded by a full scan of each
table. As a result, a corruption at t1 in a single replica could
be briefly visible but then hidden as that data is overwritten at
t2. The database is still in a corrupted state, in the sense that
a read below t2 will see the corrupted data, but it will not be
detected if the snapshot timestamp for the audit is at or above
t2.



D. Hardware/Software Bug Antagonism

An under-appreciated aspect of SDC is that it muddies the
waters and slows down the detection and root-causing of both
hardware and software bugs. The more untrusted components
are in a system, the slower engineers will be to put effort
into deeply investigating any particular component. Debugging
corruptions is very hard, and after an engineer has spent hours
or days chasing the cause of a corruption, only to conclude
that it was due to a transient hardware error, they will be less
likely to pursue future errors with such zeal until there are
multiple occurrences.

A high level of SDC errors will materially slow down the
rate at which critical software errors are detected, in some
cases sufficiently that a bug isn’t root-caused before hitting
production. This isn’t theoretical: we have suffered bugs in
production because a very rare failure was mis-classified as
SDC.

SDC therefore reduces software reliability in addition to
hardware reliability.

III. PREVENTION

A. Checksumming

Checksumming has long been part of the arsenal for pro-
tecting data at rest and in transit. As the prevalence of SDC has
grown, it has become an integral part of both our detection and
prevention of SDC. Spanner already had significant checksum
protection for its major in-memory data structures (the mutable
data or “memtables” and the generation of immutable persisted
layers of the LSM tree). These have prevented a significant
number of SDC corruptions, as well as acting as one of our
most reliable indicators of bad machines.

In response to SDC, we added checksum protection in more
places (for instance, buffers used in less frequent code paths),
and focused on end-to-end checksumming, so that data is never
“naked” as it makes its way through various layers of the
system. This ideal is never fully realizable, since many data
transformations do not lend themselves to computation in a
checksummed domain. Nevertheless, it is effective.

SDC can generate various types of incorrect computation,
which includes incorrect addresses. Thus we can no longer rely
on hardware protection of RAM against corruption (e.g. with
ECC). To defend against dynamic corruptions caused by SDC,
long-lived structures (e.g. in the database RAM block cache)
are periodically re-checksummed. We also perform simple
validation checks on the cache block header on each lookup.

Finally, we have added checksum protection to data struc-
tures that are small but have a particularly high blast radius.
The most obvious example is encryption keys, but other
examples include summary data that covers an entire LSM
layer, such as the key range or timestamp range that it contains,
since if those are corrupted, an entire layer of data could be
erroneously omitted from a query.

B. Invariant Checks

Screening for bad machines and running audits are impor-
tant tools for detecting SDC events, but they lack a funda-

mental desirable property: fail-stop behavior. Ideally, even if
we couldn’t prevent faulty execution, if we could crash the
machine before incorrect results were written or returned, the
system would be far more resilient.

However, the nature of SDC is that a significant number
of errors are not fail-stop. In this case, the best we can do is
to stop as early as possible. An effective approach is to add
invariant checks.

Invariant checks in general are good software engineering
practice, and can catch both hardware and software bugs.
However, to be effective at finding SDC, invariant checks
need to cover a large swath of computation and memory.
For example, a traditional invariant check like “a < b” for
the inputs to a function is unlikely to be effective. On the
other hand, invariants such as checking that all key values
returned in a scan are in sorted order, or all the timestamps in
an append-only queue are increasing, have been effective in
practice.

Such checks have the advantage that while they may not be
fail-stop, they can halt the system before bad results can be
returned.

Fail-stop checks work well for uncorrelated low-probability
faults, but can cause crash-loops in the case of software bugs
which do have correlations. Thus we are often trading off
resilience to hardware corruptions versus software bugs – each
invariant check is a judgment call.

C. Software Ejection of Bad Cores?

Our current practice is to eject a bad machine once we have
sufficient evidence. An alternative would be to have the kernel
simply not schedule any work on the bad core, analogously to
what is done in flash chips for bad blocks.

However, bad cores can only be reliably identified for fail-
stop failures. In some cases we see bad machines where there
is a clear pattern of crashes on a particular core, so this is
probably worthwhile. But the most insidious cases are true
silent corruptions where the detection is far removed in time
and space from the cause.

Our best hope then is to apply screening programs once the
machine is ejected to try to pinpoint the bad core. It’s unclear
as yet how effective this can be.

IV. MODELING A SINGLE FAULTY CHIP

Trying to analyze the factors involved and their mathemat-
ical inter-relationships might help us be more focused in our
approach. This section contains a rough first cut; much remains
to be developed/improved, but it does seem to provide some
useful insights already.

Characterizing the properties of a single chip:
• R: rate of faults on a faulty chip
• K: number of faults required for detection (and removal)

of a bad chip
• E: fraction of faults R that cause actual undetected user-

visible Spanner errors (on reads or writes), as opposed
to crashes or irrelevant faults (such as corrupting a cache
line that gets flushed before being used again).



• D: Fraction of faults R that generate detectable errors
(crashes, checksum errors, etc). Note that D and E are
independent: a fault may cause a corruption and/or be
detected, and some faults will be neither corrupting nor
detected.

• H: Fraction of CPU time that any error signal-producing
program (including Spanner) is running.

• Q: Fraction of CPU time that Spanner is running.
Then for any bad chip i:
• di = R ·H ·D is the rate of detectable errors.
• ki = K/di is the time required to detect and remove it.
• ei = R ·Q · E is the rate of Spanner errors.
• ni = ki ·ei is the number of silent corruptions in Spanner

(writing or serving incorrect data).
That is,

ni = K/R ·H ·D ·R ·Q · E
= K · E ·Q/D ·H
= K · E/D ·H/Q

Intuitively, the number of corruptions served by a bad chip
is:

• the number of corruptions required for detection multi-
plied by

• the ratio between the fraction of faults that cause corrup-
tion and the fraction of faults that are detected multiplied
by

• the ratio between the fraction of time corruption-detecting
applications are running and the fraction of time Spanner
is running.

Some observations based on this formulation:
1) The number ni of Spanner corruptions served is in-

dependent of the error rate R, which is somewhat
counterintuitive.

2) Increasing D (faster detection): The more we can pre-
vent errors and turn them into detection events (e.g. a
checksum failure that prevents a corruption and registers
a data corruption event), the fewer corruptions we serve.
We tend to think of the role of such checks as preventing
the errors themselves, and insufficiently value their role
in preventing future corrupted results.

3) Increasing H (more detectors): The more we can lever-
age other services as “detectors”, the fewer corruptions
we will serve. The more we can put things like checksum
checks in hot code paths, the better. Also, how should
we trade off running screener/detector processes (that
have no other utility) versus their cost in resources?

4) Reducing K (faster ejection): Obviously, the fewer the
number of detected faults we need in order to diagnose a
bad chip, the fewer the number of corruptions we serve.

5) What about Q? Given constant total workload, we could
reduce Q on one machine but would have to increase it
elsewhere to compensate. For the purposes of this single-
chip analysis, we view Q as constant.

What accounts for the unintuitive result that corruptions
are independent of the fault rate on a bad chip? We only

considered removal of chips because they were bad. In fact
we also remove chips over time due to obsolescence. If we
add the parameter

• Y : the time until a chip is removed from the fleet,
regardless of faultiness.

Then
• ki2 = min(ki, Y ) is the time until a chip is removed

(whether bad or not), and
• ni2 = min(ni, Y ·R ·Q ·E) is the number of corruptions

served.
The question then is: how frequently do faults occur once

a chip has gone bad? If a bad chip starts generating faults
so fast that we eject it long before the lifetime of the chip
expires, then reducing the fault rate on bad chips by a factor
of 10 may not reduce the number of corruptions served.

Unfortunately this seems to be precisely the regime in
which we are operating, at least for some of the cases we
are detecting: regardless of whether a newly installed chip is
bad or a chip goes bad over time, it takes us some number of
weeks or months to eject it. Meanwhile, chips live in the fleet
for some number of years.

V. THE FUTURE: HARDWARE VERSUS SOFTWARE BUGS

A common question is whether SDC represents a truly
new or bigger threat, since software bugs are by no means
uncommon. The answer depends on the type of application:

1) For software that has a small deployment, the low
probability of SDC makes it unlikely to be a concern.

2) For software that has a significant number of software
bugs, SDC will remain below the noise floor, even at
scale.

3) For software that is highly reliable and deployed at scale,
SDC is a significant problem.

For Spanner, it is already the case that a significant number
of unique failures investigated by our crash triage team are
caused by bad machines.

As we scale the deployment, the number of SDC events will
go up, and the “bug antagonism” problem will continue to get
worse: more time and resources will be spent on bad machines,
leaving less time and resources for finding and fixing software
bugs.

Software bugs tend to scale with the complexity of the
software system and the size of its team. Software bugs tend
to have a locus of failure, making them (relatively) easy to
group and requiring a single fix. They scale sublinearly with
the size of the fleet.

Hardware bugs scale with the size of the fleet and usually
manifest in completely unrelated ways. Preventive measures
can help limit the damage, and are improving with time and
experience. But repair of corruptions is very expensive in
engineering time. A steady stream of faults is death by a
thousand cuts.

So which is the bigger threat, software bugs or hardware
SDC? At the present time, I still believe software bugs are
the bigger danger, in particular bugs that are low enough



probability to reach production but frequent enough to cause
significant damage. Software bugs in the operating system and
compiler can manifest similarly to SDC in that they violate the
correctness contract of the underlying system upon which we
build the database system. Spanner has encountered these as
well.

If hardware SDC continues to increase and/or hardware
bugs generate repeating but nevertheless non-deterministically
infrequent faults, we may need to make bigger and more
fundamental changes in our hardware and software infras-
tructure. This could involve hardware solutions like redundant
execution (like the old Tandem NonStop systems) or designing
failure redundancy into our software in more fundamental
ways.

VI. SCALING EFFECTS

When a system grows at a substantial rate, the per-CPU-
second error rate must be continually driven down just to
keep the rate of total errors constant. If errors scale with
system size, a growing system is eventually overwhelmed by
the failures. For instance, a certain fraction of SDC events
consume large amounts of engineering time to mitigate or
repair. If the absolute number of such events continues to grow,
eventually engineering resources are overwhelmed.

This applies in both hardware and software. Spanner contin-
ues to grow quickly, due to organic growth of existing services,
creation of new services, and migration of existing services
onto Spanner. While we have made significant improvements
in per-CPU-second SDC events, these improvements have
been offset by service growth.

Similarly, as vendors scale up transistors per chip and scale
down feature sizes, improvements in per-transistor fault rates
may be overwhelmed by transistor growth.

In combination, these trends represent a major threat to
Spanner and other mission-critical systems.

VII. CONCLUSIONS

SDC is a significant threat to the reliability of large-scale
distributed systems, in ways that are both obvious and subtle.
We have found the following software approaches to be
effective ways of detecting and preventing SDC :

• Use end-to-end checksums to protect data when the
semantics of operations allow them to be calculated
easily and reliably (e.g. for filesystem reads or database
mutations).

• Use fail-stop invariant checks when performing opera-
tions with complex semantics on data (e.g. non-trivial
SQL expressions).

• Don’t just protect big data structures. Also focus effort on
components that have the largest “computational mass”
– volume of data times computation on that data – since
SDC tends to strike the CPU.

• Where possible, drive down the noise floor by eliminating
bugs in other components.

For operations:

• Add centralized monitoring of (likely) SDC-implicating
events, and include the likely machine source where
possible to aid in ejection decisions.

• Co-locate high-reliability services so that the higher-
fidelity screening they provide leads to faster ejection of
faulty machines.

For hardware vendors,
• Minimize the number of bad chips, not the rate of faults

once a chip goes bad.
• Invest in software detection methods, and share them

proactively.
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[5] R. Pang, R. Cáceres, et al. Zanzibar: Google’s consistent, global
authorization system. In 2019 USENIX Annual Technical Conference,
pages 33–46, July 2019.


