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Abstract

This report describes the approach behind our win-
ning solution to the 2022 Epic-Kitchens Action Recogni-
tion Challenge. Our approach builds upon our recent work,
Multiview Transformer for Video Recognition (MTV), and
adapts it to multimodal inputs. Our final submission con-
sists of an ensemble of Multimodal MTV (M&M) models
varying backbone sizes and input modalities. Our approach
achieved 52.8% Top-1 accuracy on the test set in action
classes, which is 4.1% higher than last year’s winning en-
try.

1. Introduction
Transformers have replaced Convolutional Networks

(CNNs) as the de facto backbone for video understand-
ing. State-of-the-art results on popular datasets (e.g., Kinet-
ics [2], Moments in Time [19], Epic-Kitchens [4], etc) are
all obtained using a pure transformer-based approach. Our
approach is built upon a very recent state-of-the-art method
for video classification, Multiview Transformers for Video
Recognition (MTV) [29]. MTV proposed a multi-stream
architecture to process video data in a multiscale fashion
where each stream takes in different-sized tubelets of RGB
frames, however no other modalities (such as sound) were
used for making a prediction.

Epic-Kitchens is a large-scale dataset of first-person
(egocentric) videos recorded in kitchen environments. Con-
testants of the Action Recognition challenge are required to
predict a verb and a noun for each video clip. Videos in this
dataset are multimodal (they contain an audio track) and the
egocentric domain consists of rich sounds resulting from
the interactions between humans and objects, as well as the
proximity of the wearable microphone to the undergoing ac-
tion. Sound is a hence a discriminative feature for identify-
ing actions [17, 20], for example, the sound of running wa-
ter provides important cues to predict actions such as “wash
glass”. Optical flow is another modality that is complemen-
tary to RGB frames as shown in previous work [22]. As we
will show later in the experiments, this observation remains
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Figure 1. Overview of our Multimodal Multiview Transformer
(M&M). The input video consists of three modalities, spectro-
gram, optical flow, and RGB frames (from left to right) and we
create multiple representations or “views” by tokenizing each in-
put modality using tubelets of different sizes. These tokens are
fed into separate encoders and further fused through a Cross View
Fusion module, and finally aggregated by a global encoder. Note
that each encoder can vary in architecture.

true for state-of-the-art video transformer models, such as
MTV. In this work, we extend MTV to process multimodal
inputs where each stream encodes input data from one tem-
poral resolution and from one modality.

2. Multimodal Multiview Transformers

2.1. Background (MTV)

This section presents a brief overview of Multiview
Transformers (MTV) [29]. It consists of separate trans-
former encoders for each view which are connected by lat-
eral connections to fuse cross-view information. A view is
defined as a video representation expressed by a set of fixed-
sized tubelets. A larger view corresponds to a set of larger
tubelets (and thus fewer tokens) and a smaller view corre-
sponds to smaller tubelets (and thus more tokens). Each
transformer layer within the encoders follows the same de-
sign as the original transformer of Vaswani et al. [27]. Fur-
thermore, within each transformer layer, self-attention is
computed only among tokens extracted from the same tem-
poral index, following the Factorised Encoder of [1]. This
significantly reduces the computational cost of the model.
We chose cross-view attention as the fusion method as it
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gives the best performance as shown in [29]. Finally, the
classification tokens from each view are extracted and pro-
cessed with another transformer encoder that aggregates in-
formation from all views.

2.2. M&M

The overall architecture of M&M (shown in Figure. 1)
remains the same as MTV except for the input tokenization
step. In this example, the input video has three modalities,
RGB, optical flow, and short-term magnitude spectrograms
derived from audio. For each modality, we can have mul-
tiple representations or “views” by tokenizing the frames
from this modality using different tubelet sizes. An alter-
native design is to use a single encoder that takes in tokens
from all modalities [11, 16, 20]. Our design of utilizing a
separate encoder for each multimodal view is more flexi-
ble. As Yan et al. [29] have shown, it is sufficient to use a
smaller encoder to learn representations from larger views
of RGB frames. Feichtenhofer et al. [10] applied a smaller
CNN (e.g., a smaller number of channels) to learn motion
information and a larger one for encoding the semantics of
frames. One advantage of our design is that our architecture
also supports multiscale processing within each modality.

3. Experiments
3.1. Experimental setup

Model notation For the backbone of each view, we con-
sider four ViT variants, “Tiny”, “Small”, “Base”, and
“Large”. Their settings strictly follow the ones defined in
BERT [7] and ViT [8], i.e. number of transformer layers,
number of attention heads, hidden dimensions. For conve-
nience, each model variant is denoted with the following ab-
breviations indicating the backbone size, tubelet length, and
input modality. For example, B/2:R+S/4:S+Ti/8:F denotes
a three-view model, where a “Base”, “Small”, and “Tiny”
encoders are used to processes tokens from RGB tubelets of
sizes 16×16×2, spectrogram tubelets of sizes 16×16×4,
and optical flow tubelets of sizes 16× 16× 8, respectively.
Note that we omit 16 in our model abbreviations because all
our models use 16× 16 as the spatial tubelet size following
ViT [8]. If we omit the modality in the notation, we assume
all views use RGB frames as the modality. All model vari-
ants use the same global encoder which follows the “Base”
architecture, except that the number of heads is set to 8 in-
stead of 12. The reason is that the hidden dimension of
the tokens should be divisible by the number of heads for
multi-head attention, and the number of hidden dimensions
across all standard transformer architectures (from “Tiny”
to “Large” [8, 23]) is divisible by 8.

Optical flow and spectrogram extraction We compute
optical flow using the FlowNet [9] algorithm. Audio spec-

Data augmentation
Random crop probability 1.0
Random flip probability 0.5
Scale jitter probability 1.0
Maximum scale 1.33
Minimum scale 0.9
Colour jitter probability 0.8
Rand augment number of layers [3] 3
Rand augment magnitude [3] 10

Regularisation
Stochastic droplayer rate [14] 0.1
Label smoothing [25] 0.1

Table 1. Data augmentation and regularization parameters.

trograms are extracted in a similar manner to [13]. All au-
dio is converted to monochannel and resampled to 16kHz.
Spectrograms are then extracted using short-term Fourier
transforms with a Hann window of 25ms with 15ms hop.
The resulting spectrogram is integrated into 64 mel-spaced
frequency bins (lower cutoff 125 Hz and upper corner fre-
quency 7500 Hz) and the squared magnitude is extracted.
This gives us mel spectrograms of 96 × 64 bins for 0.96
seconds of audio. For the entire clip, we run the above pro-
cedure in a sliding window fashion with a temporal hop of
40ms to align with RGB frame rate (25FPS). Spectrograms
are normalized to [-1, 1] before feeding into the model.

Initialization We trained two RGB-only models
B/2+S/4+Ti/8 and L/2+B/4+S/8+Ti/16 on WTS [24] and
use them to initialize multimodal models. Optical flow
images have two input channels and spectrogram images
only have one so the initial tubelet embedding layer has a
different shape than the pretrained RGB models. To address
this issue, we simply average the kernel of the embedding
layer along the input channel axis and perform tiling.

Training and inference All models are trained on 64
frames with a temporal stride of 1. In Epic-Kitchens, each
video is labeled with a “verb” and a “noun”. We predict
both categories using a single network with two “heads”.
We train all our models for 50 epochs with a global batch
size of 128 using synchronous SGD with momentum of 0.9
following a cosine learning rate schedule with a linear warm
up. The initial learning rates for all models are set to 0.4.
We follow [1, 6, 29] and apply the same data augmenta-
tion and regularization schemes [3,14,25], which were used
by [26] to train vision transformers more effectively. For
spectrograms we use SpecAugment [21] with a max time
mask length of 96 frames and max frequency mask length of
16 bins following MBT [20]. See Table 1 for detailed set-
tings. During single-model inference, we adopt the standard
evaluation protocol by averaging over four temporal crops.
To produce the final predictions from the model ensemble,
we simply average the logits produced by each model.



Pretraining datasets Top-1 Action Top-1 Noun Top-1 Verb

K400 46.7 60.5 67.8
K700 48.0 61.2 69.1
WTS 49.3 63.0 69.4

Table 2. Effects of different pretraining datasets. All models are
trained and evaluated on 224× 224 crops.

Spatial resolution Top-1 Action Top-1 Noun Top-1 Verb

224p 49.3 63.0 69.4
280p 50.5 63.9 69.9
432p 52.7 66.1 71.2

Table 3. Effects of increasing spatial resolution. All models are
finetuned from a WTS-pretrained checkpoint.

3.2. Ablation study

We use a RGB-only model B/2+S/4+Ti/8 for the studies
in Table 2 and 3. We report Top-1 accuracies on Action,
Noun, and Verb classes obtained from averaging predictions
across four temporal crops. All numbers reported in this
section are from the validation set.

Effects of pretraining Table 2 presents the finetuning re-
sults from models pretrained on Kinetics 400 [15], Kinetics
700 [15], and WTS [24] datasets. Kinetics 400 and 700
consist of 230,000 and 530,000 10s video clips focusing on
human actions with each clip labeled with one of the 400
and 700 classes, respectively. WTS contains 60M videos
with only video-level labels. All three pretraining datasets
are from a different domain than Epic-Kitchens that is com-
posed of egocentric videos. Table 2 shows that it is more
beneficial to pretrain on a large-scale weakly supervised
dataset than on a smaller set of trimmed video clips.

Effects of input resolution As Table 3 shown, as spatial
resolution increases so does top-1 accuracy for nouns. Ac-
curacies for verbs are also improved and this is likely due
to the increased number of tokens that help the model better
understand motion in the scene.

Effects of combining different modalities The first two
rows in Table 4 present the Top-1 accuracies of the RGB-
only and the Flow-only models. Changing input modality of
the “Small” encoder from RGB to flow and to spectrogram
improves Top-1 accuracy on action from 52.7 to 53.4 and
53.2, respectively. Combining all three modalities gives the
best performance on action with a score of 53.6. All models
share similar FLOPs with the only difference being the ini-
tial embedding layers. RGB is the most informative modal-
ity for predicting “nouns”, there is little gain by adding flow
and audio. However, optical flow and audio provide com-
plimentary information to RGB for predicting “verbs”.

Models Top-1 Action Top-1 Noun Top-1 Verb

B/2:R+S/4:R+Ti/8:R 52.7 66.1 71.2
B/2:F+S/4:F+Ti/8:F 40.5 50.1 68.1

B/2:R+S/4:F+Ti/8:R 53.4 66.5 71.9
B/2:R+S/4:S+Ti/8:R 53.2 66.3 72.0

B/2:R+S/4:S+Ti/8:F 53.6 66.3 72.0

Table 4. Effects of combining different modalities. All models
are trained and evaluated on 432 × 432 crops. As an example
of our naming convention, B/2:R+S/4:S+Ti/8:F denotes a three-
view model, where a “Base”, “Small”, and “Tiny” encoders are
used to processes tokens from RGB tubelets of sizes 16× 16× 2,
spectrogram tubelets of sizes 16×16×4, and optical flow tubelets
of sizes 16× 16× 8, respectively.

Data split Models Top-1 Action Top-1 Noun Top-1 Verb

validation

MoViNet [18] 47.7 57.3 72.2
MeMViT [28] 48.4 60.3 71.4
Omnivore [12] 49.9 61.7 69.5
M&M-B 53.6 66.3 72.0

test 2021 winner [5] 48.7 59.2 70.6
M&M-B 49.6 63.7 68.0

Table 5. Comparisons to state-of-the-art. M&M-B refers to our
three-view multimodal MTV model, B/2:R+S/4:S+Ti/8:F (no en-
sembling). The gray row is the winning entry from last year’s
challenge, which uses a 6-model ensemble. All other rows are
from a single-model evaluation.

3.3. Comparison to the state-of-the-art

Table 5 compares our best single model to the previous
state-of-the-art on the Epic-Kitchens dataset and last year’s
winning entry of the challenge. Our M&M-B model im-
proves over the previous state-of-the-art [12] by a margin
of 3.7% in Top-1 action accuracy and also outperforms last
year’s winning method [5], which uses a 6-model ensemble.

3.4. Model ensemble

To create the final submission, we generated two model
ensembles one for predicting the verbs and the other for
nouns. Table 6 lists all individual models used in this chal-
lenge and their corresponding performance on the valida-
tion set. Table 7 shows which models we used for verbs and
nouns. Using this model ensembling strategy, we improve
the Top-1 action accuracy from 53.6 (from our single best
model) to 56.9 on the validation set. Our final submission
scored 52.8 on Epic-Kitchens test set, which is 4.1% higher
than last year’s winning entry.

4. Conclusions
In this report, we present the approach behind our sub-

mission to the 2022 Epic-Kitchens Action Recognition
challenge. We proposed M&M, a transformer backbone



Model indices Model variants Pretraining datasets Resolution Top-1 Action Top-1 Noun Top-1 Verb

0 B/2:R+S/4:R+Ti/8:F WTS→ K700 432p 53.4 66.4 71.8
1 B/2:R+S/4:F+Ti/8:R WTS→ K700 432p 53.4 66.5 71.9
2 L/2:R+B/4:F+S/8:F+Ti/16:R WTS→ K700 320p 53.0 66.7 71.1
3 L/2:R+B/4:R+S/8:R+Ti/16:R WTS 352p 52.6 67.2 69.8
4 B/2:F+S/4:F+Ti/8:F WTS→ K700 432p 40.5 50.1 68.1
5 B/2:R+S/4:R+Ti/8:R (128×1) WTS 304p 52.4 65.6 71.3
6 L/2:F+B/4:F+S/8:F+Ti/16:F WTS→ K700 352p 40.9 50.6 67.2
7 L/2:R+B/4:F+S/8:S+Ti/16:R WTS 320p 53.6 67.0 71.7
8 B/2:R+S/4:S+Ti/8:F WTS 432p 53.6 66.3 72.0
9 B/2:R+S/4:S+Ti/8:R WTS 432p 53.2 66.3 72.0
10 B/2:R+S/4:R+Ti/8:S WTS 432p 53.4 66.6 72.0

Table 6. All model variants used in our final ensemble and their respective performance on the validation set. WTS→K700 denotes a
pretraining strategy where we first pretrain the model on WTS and then finetune on Kinetics 700. Model 5 is trained and evaluated on 128
frames instead of 64 for all other models.

Model indices Top-1 Action (val/test) Top-1 Noun Top-1 Verb

0,1,2,3,5,6,7,8,9,10 56.9/52.8 69.2/66.2
4,5,6,7,8,9,10 75.0/70.9

Table 7. Results from our final model ensemble on both vali-
dation/test sets. Different sets of models are used for predicting
nouns and verbs.

that learns a multimodal and multiscale representation of
videos. Our final submission is an ensemble of M&M mod-
els with varying backbone sizes and modality mixes. It
scored 52.8 in top-1 accuracy on action classes on the test
set, which is 4.1% higher than the last year’s winner.
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