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Abstract

This paper explores rescoring strategies to improve a two-pass
speech recognition system when the first-pass is a hybrid au-
toregressive transducer model and the second-pass is a neural
language model. The main focus is on the scores provided by
each of these models, their quantitative analysis, how to im-
prove them and the best way to combine them to achieve bet-
ter recognition accuracy. Several analyses are presented to em-
phasize the importance of the choice of the integration weights
for combining the first-pass and the second-pass scores. A se-
quence level combination weight estimation model along with
four training criteria are proposed which allows adaptive inte-
gration of the scores per acoustic sequence. The effectiveness
of this algorithm is demonstrated by constructing and analyz-
ing models on the Librispeech data set. It is shown that the
proposed adaptive weight interpolation technique achieves 5 %
relative gain over the baseline model with non-adaptive weights.

Index Terms: speech recognition, two-pass recognition,
rescoring weights

1. Introduction

State-of-the-art automatic speech recognition (ASR) systems
make their final recognition decision by integrating multiple
sources of information such as acoustic model (AM), language
model (LM), etc. In a single system, all these knowledge
sources are combined to construct a large search space which
allows the search algorithm access every single source of infor-
mation anytime during inference. This exhaustive search can
potentially lead to an accurate recognition output by the means
of significant computation complexity and memory cost. A two-
pass recognition system [1, 2, 3] was introduced to mitigate this
problem. Here some of the knowledge sources are chosen to
serve as the first-pass recognizer generating subset of likely hy-
potheses either in the form of a n-best list [1] or a lattice [2, 3].
These hypotheses are then reordered in the second-pass using
the rest of knowledge sources.

Efficient design of a two-pass recognition system involves
choices of knowledge sources, their placement (whether in the
first-pass or in the second-pass) and finally effective way of
combining scores provided by each of these knowledge sources.
In the context of hybrid autoregressive transducer (HAT) [4],
there are many ways to design an efficient two-pass recogni-
tion system which are detailed in [5]. One such design which is
both server and on-device friendly is to use the HAT model as
the first-pass recognizer without any external language model
and reorder the hypotheses in the second-pass using a power-
ful external language model. For each output hypothesis, the
first-pass HAT model provides an acoustic model (AM) score
along with an internal language model (ILM) score. The acous-

tic score is the likelihood of observing an input acoustic se-
quence conditioned on the hypothesis. The internal language
score provides prior probability that HAT model assigns to the
hypothesis. The hypotheses output of the first-pass system are
ordered by sum of the AM and ILM scores. In the second-
pass these scores are combined by an external language model
(ELM) score. The hypotheses are then reordered based on the
combined score and the most likely one according to this score
is set as the recognition output.

The HAT model formulates AM, ILM and ELM score com-
bination within noisy channel framework using two constant
scalar weights. These weights compensate for different dy-
namic ranges of the score values which is quite significant be-
tween acoustic and language model scores. The values of these
weights are chosen by sweeping over a range of values on a de-
velopment set with the objective of minimizing the word error
rate (WER) on the set. If the dynamic range of scores signifi-
cantly differs during inference, such score combination scheme
might lead to quality degradation. One way of addressing this
issue is to develop an adaptive score combination algorithm
which predicts integration weights per input sequence.

This paper presents: (1) a quantitative analysis of AM,
ILM and ELM scores for a two-pass recognition system with
HAT model as the first-pass and a neural language model as the
second-pass, (2) a way to improve acoustic score by leverag-
ing the availability of the input acoustic sequence and the hy-
pothesis at the end of first-pass (beginning of the second-pass),
(3) a method to evaluate existence of the optimal combination
weights which demonstrates an upper bound for the best achiev-
able WER using adaptive weight methods, and (4) four training
criteria for optimizing sequence level weights. All the analy-
sis and experiments are conducted on the Librispeech dataset
[6]. While the analysis and methods presented in this paper are
used for a very specific two-pass recognition system, it can be
applied to any other two-pass configuration.

2. Two-pass Speech Recognition

A HAT model without an external LM is used as the first-
pass and a neural LM is used as the second-pass. Standard
beam-search algorithm is used for the first-pass inference which
outputs n-best hypotheses. The first-pass system provides an
acoustic score and an internal language model score for each
hypothesis. The acoustic score is the logarithm of the sum of all
the alignment paths corresponding to the hypothesis traversed
within beam-search. The ILM score is the logarithm of the prior
probability assigned to each hypothesis by the first-pass HAT
model. In the second-pass, The n-best list of hypotheses is re-
ordered according to linear interpolation of these scores along
with the external language model score within noisy channel
formulation. Next we briefly describe modeling and inference



details of each recognition pass. More details can be found in
[4,5].

For an acoustic feature sequence x = x1.7 corresponding
to a word sequence w, assume y = yi.y be a tokenization of
w where y; € M is either a phonetic unit or a character-based
unit from a finite-size alphabet M. Since usually 7" # U, a no-
tion of alignment is defined between elements of x and y. The
alignment sequence ¢ can be defined as a sequence of 7' 4+ U
labels, where label §¢+.+1 is either equal to blank symbol <b>
or is equal to y,+1. The HAT model formulates the local pos-
terior distribution P(§¢4u|Z, J1:t+u—1) by a Bernoulli distribu-
tion with parameter b; ,, and a label distribution P; ,, by:

{bz,u Yttu = <b>
(1 - btm)Pt,u(yu|$aylzu) Jttu = Yu

The HAT model does not provide any strict neural paramet-
ric form for neither ¢, nor P;,. This means that these dis-
tributions can be modeled by any neural architectures with or
without sharing parameters. By chaining the local posterior
probabilities over an alignment path, the alignment posterior
P(y,g|x) is derived. The posterior probability of y given x
is then modeled by summing all the alignment posteriors:

Plyle)= > Pyl (1)

§:B(9)=y

where B : y — y is the function that maps alignment paths
to their corresponding label sequence (it removes blanks). In
addition to modeling the posterior probability, the HAT model
provides an estimate of the prior, or internal language model
(ILM) probability, for any sequence y [4]:

Punm(y) = H-Pt,u(yu|07y1:u71) )
1:U

which is the chain of label distribution F; ,, over labels, assum-
ing the encoder activations are set to zero. Using this quan-
tity and Bayes’ rule, a pseudo-likelihood sequence-level score
[7,8,9, 10, 4] is derived which can be used for integration with
an external language model either during the first-pass beam
search or the second-pass rescoring [4, 5].

The first-pass inference algorithm searches for the most
likely alignment path §*:

§* = argmax P(j|x)
g

which is corresponding to the most likely hypothesis y* =
B(g*). The decoding strategy used here is time-synchronous
with breadth-first search. Details of decoding parameters are
described in the experiment section. The first-pass system out-
puts n-best hypotheses y1, - - - , y» with the following scores:

* AM scores: s(y1|z), -, $(yn|z) where

sam(yle) =log D

9:B(g)=y, 4€S

P(y,g|z) 3)

which is the sum of all the alignment paths traversed
within the search space S.

e ILM scores: log Pitm(y1), -+ 5 log P (yn)-

2.1. Second-pass: Neural Language Model

The second-pass is a neural language model trained to maxi-
mize sequence level likelihood. This model assigns ELM score
log Perm (y:) for every hypothesis y; in the n-best list. It is as-
sumed that the external language model is trained on the same
tokenization unit as the first-pass model. This assumption is not
needed and only assumed for simplicity of equations.

Given the AM, ILM and ELM scores, the n-best hypotheses
are reordered according to the following combined score:

Arsam(ylz) — Az log Pibm(y) + log Perm (y) 4

where A1 and A2 are two scalar weights and y = y1,- -+ , Yn.
The hypothesis with the highest score is set as recognition out-
put.

3. Scores and Integration Weights

The AM score assigned to each hypothesis y incorporates only
a subset of all the alignment paths 7 corresponding to the label
sequence y, the ones in the intersection of search space S and
the alignment space A, = {§|B(§) = y}. This means that the
AM score in Eq. 3 is always less than log P(y|x):

sam(ylr) = log P(y,glz)
FB(@)=y, §€S

< lg S Pyl
§:B(§)=y

= log P(y|z)

where equality holds iff A, C S. This requires search space pa-
rameters to be set large enough such that the search space cov-
ers all the possible alignment paths. Through the paper, the AM
score from first-pass is called partial AM score and log P(y|x)
is called full AM score of hypothesis y.

At the end of the first-pass, both the acoustic sequence x
and the hypothesis label sequence y are available, thus the scor-
ing function of Eq. 1 can be modified as:

s(z,y:) = A1 log P(yilw) — A2 log Pim(y:) + log Perm (y:)

One way of choosing the scalar weights A1 and A2 in this equa-
tion is to search through a range of values on a development
set and choose the values which minimize the WER on this set.
The chosen weights are then kept constant for every acoustic
sequence in the test time. This might not be the optimal way of
combining scores for two reasons: first, the dynamic range of
scores in the test time might differ from the ones on the devel-
opment set which can cause WER degradation, second, using
different weights per acoustic sequence might lead to WER im-
provement. The next two sections explore the existence of an
optimum weight and how to estimate it with a parameterized
model.

3.1. Optimal combination weights

Let y, be the oracle hypothesis, the one with the lowest WER
among the the n-best hypotheses list. If there exists A\; and
A2 such that the combined score of the oracle hypothesis be
greater than or equal to any other hypotheses in the list, then
the second-pass rescoring can lead to the best achievable WER.
Such weight values exist iff forany ¢ = 1,--- ,n:

A189 — A2sg + 55 > Aish — hash + sh (©)

&)



where si, sé, and sf,, are the AM, ILM, and ELM scores, respec-
tively. This can be formulated within a system of inequalities as
AX < 0 where A is an x 3 matrix with i" row being:

A[Zv :] = [871 - 8?7 SS - Sév Sg - 5(3)]
and A" = [\1, A2, 1.0]. The simplex algorithm [11] can be used
to find the feasible solution region of this system of inequali-
ties. If there exists a solution, then there is a set of combination

weights that move the oracle hypothesis to the top of the hy-
potheses list as the most likely hypothesis.

3.2. Adaptive weight estimation

Instead of using constant weights for every acoustic sequence
z, the combination weights can be adaptive. For hypothesis ¢
the score function s(z, y;; 0) is defined as:

A1(x;0) log P(yilz) — A2(z;0) log PiLm(ys) + log Perm (vi)

Note that the weight function can also depend on hypotheses
Yiin, 1.€. Ai(2,y1:n;0). For experiments in this paper, only
dependency to x is considered. The choice of architecture to
model @ is detailed in Section 4. To optimize modeling param-
eters a proper training criterion £ is required:

* Regression:

L(x,y10:0) = Y [IXi(w;0) = Xi(@)llp

i=1,2

®

where ||.||,, is the p-norm and X;(z) is the groundtruth
value for ™ weight. These values are some solutions of
the system of inequalities in Sec. 3.1. Here, simplex al-
gorithm can be used to find one feasible solution which
is set as the groundtruth. The regression criterion effec-
tively learns the decision boundary that separates oracle
hypothesis score from others.

* Binary Classification:
L(@,y1a;0) = > > H(pis(36), pig(x)) )
i=1j=1
where H (.) is the cross entropy function and

exp(s(z, yi;0))

ii(z;0) =

PilT0) = 5@y 0)) + exp(s(@,55:0))
) 1.0 WER[i] < WER[j]
bij 0.0 Otherwise

where s(z, y;; 0) is the parameterised combined score of
Eq. 5. This criterion pushes the oracle hypothesis to have
the highest score and preserves the order of hypotheses;
lower score, higher WER.

¢ Oracle Prediction:

E(‘raylin;a) = H(p(xaylin;a)v ﬁ(x,ylzn))

where both p(.) and p(.) are discrete distribution defined

(10)

for each hypothesis:
, exp(s(z,yi;0))
p(z,y1n; 0)[i] = 3 (11)
(Priens O] = o e (5(a, 45 0)
) _ 1.0 i=o
pl@yn)li] = {0.0 Otherwise

Q)

where o is the index of the oracle hypothesis. Note that
this is not the only way to define the groundtruth distri-
bution; alternatively it can be defined as a function of
edit-distance:

exp(ed(ys, ref))
27—y exp(ed(y;, ref)

where ed(.) is the edit-distance function and ref is the
reference sequence. The oracle prediction criterion has
been also used in [12]. Unlike the binary classification
criterion, this criterion does not preserve the order of hy-
potheses. It only boosts the oracle score independent of
how the other hypotheses are scored with respect to each
other and their corresponding word error rate.

Pz, yin)i] =

¢ Minimum Bayes Risk[13]:

L(z,y1n;0) = > ed(ys,ref)p(@, yra; O)fi]  (12)

i=1

where p(x, y1.n; 0)[¢] is defined in Eq. 11.

4. Experiments

Data: the training data used here is the full 960 hours of the
publicly available Librispeech ASR corpus [6]. The input fea-
tures are 256-dim log Mel extracted from a 64 ms window of the
speech signal with a 30 ms shift [14]. The LSTM baselines are
trained on clean data, while the conformer baselines are trained
with the SpecAugment library [15] using the recipe parameters
described in [16]. The full 810M word token Librispeech text
corpus was used to train the second-pass neural LM. The tran-
scripts are used without any processing and tokenized by the 28
graphemes that appear in the Librispeech data.

Architecture: For the first-pass model, two HAT models are
considered which are only different on the choice of encoder
architecture. Both models use streaming encoder network, first
model uses 5 layers of long short-term memory (LSTM) [17]
with 1024 cells per layer. The encoder output is projected to
768-dim vector with a linear layer, matching the decoder net-
work dimension. The second model uses 12 layer conformer
encoder [16] with model dimension 512 followed by a linear
layer with output dimension 640. Both models use a two layers
decoder network with 256 LSTM cells per layer. The decoder
network output is linearly projected to the same dimension as
the encoder output. The LSTM model has about 38M parame-
ters and the conformer model has 87M parameters. The neural
LM is a 4 layers LSTM with 2048 cells per layer.

The adaptive weight combination model uses 2 layers of
bidirectional LSTM with 256 cells per layer. The second layer
output is linearly projected and summed over sequence to create
a single 128 dimensional sequence embedding. This embed-
ding vector is then linearly projected into a 2-dim vector corre-
sponding to the model weights in Eq. 7. The adaptive weight
combination model has 4M parameters in total.

Training: The LSTM models are trained on 4 x 4 TPUs with
a batch size 4096. The conformer models are trained on 8 X 8
TPUs with a batch size of 2048. The training examples with
more than 768 feature frames or more than 384 labels are fil-
tered out. The LSTM models are trained with Adafactor op-
timizer [18] with all the default parameters. The conformer
model uses Adam optimizer [19] with 81 = 0.9, B2 = 0.98
and e = 10~° with transformer learning rate schedule [20].

Evaluation: The time-synchronous decoding strategy used here
is breadth-first search. At every time frame ¢, all the paths with



san (y1]x) log Prras(y1)

log P(y1|x) log Pera(y1)

Figure 1: Distribution of AM score (top-left), ILM score (top-
right), full AM score (bottom-left), ELM score (bottom-right).

model ILM | ELM constant A adaptive A
score | score | clean | other | clean | other
N N 8.5 20.0 8.5 20.0
LSTM Y 6.8 17.2 5.9 16.5
v N 8.2 194 7.2 17.2
Y 6.0 16.0 5.1 15.1
N N 6.6 11.5 6.6 11.5

Conformer Y 6.1 10.5 5.2 9.3
v N 6.5 114 5.9 10.5

Y 5.8 9.9 4.8 8.6

model clean [WER] other [WER]

Hypl | Oracle | Hypl | Oracle

LSTM-HAT [38M] 8.6 39 20.1 12.3

Confomer-HAT [87M] 6.6 4.0 11.6 7.0

Table 1: First-pass: baselines WER of top hypothesis (Hypl)
and Oracle hypothesis.

the same label prefix(without blank) are merged and their prob-
abilities are summed. The beam size of 100 and beam width of
20 were used for the first-pass inference. The top 20 hypothe-
ses of the first-pass recognition output are passed as n-best list
to the second-pass. The results are reported on standard Lib-
rispeech test sets: test_clean and test_other. Table.1 summarizes
the performances of both first-pass models in terms of top hy-
pothesis and oracle WER.

AM, ILM and ELM scores: Figure. 1 presents distribution of
the partial AM score, ILM score, full AM score and ELM score
for the top hypothesis output of the first-pass LSTM model. The
distributions are plotted for both dev and test sets in clean and
other. The dynamic range and shape of curves are very con-
sistent between dev and test. The full AM score has less vari-
ance compared to the partial AM score. Similarly the ELM
scores seem more concentrated than the ILM score. The dy-
namic range of AM and LM scores are significantly different
which explains the need for accurate estimation of the combi-
nation weights of Eq. 4.

Rescoring with full AM score: The least expensive rescoring
algorithm of the hypotheses in the second-pass is to use the full
AM score instead of the partial score. The results are shown in
Table. 2 (row 1 and row 5). The full score rescoring does not
bring any significant WER gain. This might suggest that that
the decoding parameters, beam width and beam size, are set
large enough such that the difference between partial and full
AM score does not make a considerable impact on reordering
of hypotheses.

Rescoring with AM and ILM scores: If the external LM
is not present, the hypotheses list can be rescored using ILM
score instead, row 3 and row 7 of Table. 2. This effectively
does not introduce any computation cost while can bring slight
WER improvement particularly for the weaker first-pass model:
8.5% — 8.2% on test_clean and 20% — 19.4% on test_other.
Rescoring with all scores: Combining AM, ILM and ELM
scores together leads to the best WER for both LSTM and Con-
former model (row 4 and row 8 in Table. 2). The relative WER
gains for the LSTM model are 23% and 20% on test_clean
and test_other, respectively. The Conformer model WER is im-

Table 2: Comparison of different rescoring strategies for LSTM
and Conformer models.

regression | binary | oracle | minimum
WER[%] class. | pred. | bayes risk
clean 7.5 6.0 5.6 6.1
other 18.3 15.8 15.6 16.0

Table 3: Comparison of different training criteria for adaptive
weight combination for LSTM model.

proved by 12% and 14% on the same test sets. While the LSTM
model performs significantly weaker than the Conformer model
after first-pass, the performance gap is considerably reduced af-
ter the second-pass rescoring.

Table. 2 also reports the WER for the rescoring strategy
which ignores ILM score and merely uses the interpolation of
AM score with ELM score (row 2 and 6). While this rescor-
ing strategy improves over baseline (no language model), its
performance lags behind the resocring strategy which uses all
three scores. This demonstrates the importance of noisy chan-
nel formulation in Eq. 4.

Best feasible WER: Last column of Table. 2 shows the best
feasible WER for different rescoring strategies assuming the
weights are sequence dependent. These values are calculated
as follows: a system of inequalities like Eq. 6 is formed for
each example in the test set, the feasibility of existence of a so-
lution is evaluated using Simplex algorithm [11], if this system
has a solution then there is a combination weight which boost
the oracle hypothesis to the top, otherwise the hypotheses order
is remained unchanged. This metric approximates the potential
WER gain if the optimal combination weights be used. This
quantity is slightly higher than oracle WER and considerably
lower than best WER with constant weights in Table. 2.
Adaptive weights: Table 3 compares four training criteria pre-
sented in Section 3. The regression criterion performs worse
than constant weight combination. This criterion directly learns
the decision boundary (combination weights) which is not that
straight-forward. The binary classification and minimum bayes
risk criteria are performing on par with the constant weight
combination scheme. The oracle prediction criterion signifi-
cantly improves the other criteria and the constant weight com-
bination scheme: 6% — 5.6% on testclean and 16.0 —
15.6%.

S. Conclusions

Several rescoring strategies for a two-pass speech recognition
system was presented. The first-pass is a HAT model and the
second-pass is a neural LM model. It was shown that combin-
ing the AM, ILM and ELM score within noisy channel formu-
lation can significantly outperform other rescoring strategies.
An adaptive score combination scheme is proposed along with
different training criteria. The benefit of adaptive score combi-
nation scheme was demonstrated on the Librispeech dataset.
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