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ABSTRACT
Building reliable software is challenging because today’s software
supply chains are built and secured from tools and individuals from
a broad range of organizations with complex trust relationships.
In this setting, tracking the origin of each piece of software and
understanding the security and privacy implications of using it is
essential. In this work we aim to secure software supply chains by
using verifiable policies in which the origin of information and the
trust assumptions are first-order concerns and abusive evidence
is discoverable. To do so, we propose Policy Transparency, a new
paradigm in which policies are based on authorization logic and
all claims issued in this policy language are made transparent by
inclusion in a transparency log. Achieving this goal in a real-world
setting is non-trivial and to do so we propose a novel software
architecture called PolyLog. We find that this combination of autho-
rization logic and transparency logs is mutually beneficial – trans-
parency logs allow authorization logic claims to be widely available
aiding in discovery of abuse, and making claims interpretable with
policies allows misbehavior captured in the transparency logs to
be handled proactively.
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1 INTRODUCTION
Following the SolarWinds [38] attack and the more recent Log4j
vulnerability, software supply chain security has become a topic
of more extensive research [28]. Attackers have plenty of oppor-
tunities to deliberately introduce vulnerabilities because a single
piece of open-source software is often produced by a large collec-
tion of individuals, organizations, and tools. Constructing even one
software binary involves the first-party software, the compiler and
linker, software analysis tools, human code reviewers, the organiza-
tions that set best-practices for writing software, and all the similar
software components and participants involved in constructing the
dependencies. Each one of these represents a potential point of fail-
ure in the software supply chain and an opportunity for deliberate
abuse by attackers.

Fundamentally, software supply chain attacks are possible be-
cause these trust relationships involved in constructing software
are implicit and unclear, the terms under which these components
are acceptable to software ecosystem participants are difficult to
control, and even where the source of information (such as a human
review) is known, it is difficult to hold them accountable. To even
understand who is really involved in software authorship, a soft-
ware consumer must manually audit a repository, its tools, and its
dependencies and then keep up with near-constant changes to any
of these. Controlling these trust relationships is another challenge
as individual stakeholders may have differing needs (e.g., software
consumers want strong assurance about dependencies whereas
software authors have limited resources to offer assurance). Finally,
holding abusers accountable is difficult as a bad actor could hide
their abusive actions.

In this paper we present Policy Transparency, a novel framework
in which the trust assumptions involved in constructing software
are understandable, the criteria for trusting evidence for accept-
ing software is controllable by each stakeholder, and abusers can
be held accountable. Policy transparency is a new paradigm for
open-source software authorship in which 1) policies specifying
criteria for acceptance of software and evidence for satisfying these
policies are both expressed as authorization logic, and 2) the poli-
cies and evidence are both retained in transparency logs to aid in
accountability.
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Accountability is crucial. Merely requiring a collection of human
reviews and tools to run on source code is not enough – a mali-
cious reviewer could approve of software with a backdoor and later
hide their approval to avoid detection. Transparency logs [8] are
a promising, practical, and widely-adopted approach to prevent-
ing these attacks. Transparency logs implement a tamper-evident
append-only log of all claims – as long as consumers of this evi-
dence always request a proof that this evidence is in the log, there is
no way to hide malicious claims. Aside from detecting information
hiding attacks, tracking the history of claims made by a claim is-
suer disincentivies misbehavior because of the threat of reputation
harm.

By representing the criteria for approving software as an autho-
rization logic policy, the trust assumptions in this process are made
clear. Authorization logic [9, 12, 15, 22] is a style of policy language
well-suited to problems in supply-chain security because its lan-
guage features focus on tracking the origins of information and
making trust explicit in the policy code. Policies in authorization
logic are based on logic programming such as Datalog or Prolog.
Logic-based policies can govern a wide range of actions such as
when to trust an imported library by specifying the needed evidence
to take this action with rules. Importantly, all facts in authoriza-
tion logic are attributed to an identity called a principal which is
any entity that can take action or produce information [32, 34]. In
practice principals can represent a human, tool, machine, or others.
The only way for one principal to believe information produced by
another is through a syntax for delegation. As a result, delegations
programmatically express all trust assumptions.

Policy Transparency offers more than the sum of its parts. Autho-
rization logic can produce proof trees that show what evidence was
used to make a decision – this feature compliments transparency
logs because each piece of evidence is discoverable on the log and
cannot be removed, facilitating re-verification of policies. Because
acceptance of software dependencies is controlled by policies, we
can also use logs for proactive security by writing policies that
prevent use of claims by misbehaving issuers.

To build a practical system for implementing Policy Transparency,
we need to address a number of challenges:

• Compatibility with the outside world: We cannot expect im-
mediate adoption of our policy language, and existing tools pro-
vide outputs in their own formats. We need to interpret these
outputs in our policy language without losing the trust-tracking
benefits of authorization logic.

• Revocation: Claims that are used as credentials in real-world
policies need to be revocable, for example, when these credentials
were abused. Similarly policies need to be changed to meet new
regulations. Because transparency logs are append-only, revoked
entries cannot be removed, so we need another solution.

• Multi-issuer transparency: Prior applications of transparency
logs such as certificate transparency typically track claims by
a single category of issuer (certificate authorities) and with a
single purpose (binding keys to identities). Supply chain vulner-
abilities could result from failures from a range of information
sources including human reviews, automated tools, or dependen-
cies. Therefore, we need logs that can support many kinds of
issuers producing claims about many topics.

• Multi-purpose monitors: Generalized logging of claims re-
quires generalized detection of misbehavior, so we need a way
to write monitors that can report failures from many sources.
To address these challenges, we propose a novel software archi-

tecture, PolyLog, for realizing Policy Transparency. Importantly,
PolyLog utilizes authorization logic as a policy metasystem [20] –
rather than expecting all issuers of claims to adopt our policy lan-
guage directly and immediately, we provide a framework in which
users of our system can convert existing information sources into
facts interpretable by authorization logic and made discoverable
by inclusion in verifiable logs. Our architecture proposes Trusted
Wrappers (which we sometimes call just "wrappers") which use
software constructed using a reproducible build system to convert
information from the outside world into authorization logic claims.
We propose Revocation Monitors which are a special case of Trusted
Wrappers that detect misbehavior for a particular type of claim,
and punish this misbehavior by revoking an issuer’s credentials for
issuing claims.

Our main novel contributions are as follows:
• Policy Transparency – a novel combination of authorization logic
and general transparency that supports policies in which infor-
mation sources and trust assumptions are clear and all evidence
is discoverable.

• PolyLog – a novel software architecture for realizing Policy Trans-
parency that has addressed the aforementioned challenges to
make this practical.

• A prototype of a core subset of PolyLog that allows for expression
of policies, making policy claims transparent, and interpreting
information from the outside world as authorization logic claims.
These core features can be extended to utilize the full PolyLog
architecture.

• The first mapping of problems in supply-chain security into
authorization logic, which is non-obvious.

• A case study that applies Policy Transparency in a context where
the consumer of software release writes a policy to accept or
deny this release. To make this decision, the policy uses evidence
from software analysis tools, human reviews, and other policies
written by standards writers.
The rest of the paper is outlined as follows: Section 2 gives back-

ground on related work, Section 3 describes the security goals Poly-
Log intends to satisfy, Section 4 describes the PolyLog architecture,
Section 5 describes how our architecture meets these goals, Sec-
tion 6 describes the core subset of PolyLog that we have prototyped,
Section 7 describes our case study, and Section 8 concludes.

2 BACKGROUND AND RELATEDWORK
Our software architecture relies on transparency logs, reproducible
builds, authorization logic, and key management, so we briefly give
background on these topics.

2.1 Transparency Logs
A transparency log, or a verifiable log, is a verifiable and tamper-
evident data structure [8] that implements an append-only log in
which all entries are permanently retained to detect misbehavior.
Verifiable logs have been used for Certificate Transparency [30]
where the entries are certificates issued by a Certificate Authority
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(CA) that bind identities (such as website domain names) to asym-
metric keys, and misbehavior is when a certificate is malicious or
incorrect. The idea is that every issued certificate appears on the
log and every consumer of certificates is shown the same log—this
way, if the CA tries to show a malicious certificate to one consumer
and a trustworthy certificate to another, it will be caught. The same
idea has also been used to implement Binary Transparency [11, 26],
in which the logged entries are metadata about software binaries.
Cryptocurrency [33] can be viewed as applying transparency logs
to the transfer of digital coins using distributed ledgers [14] (al-
though cryptocurrencies usually also provide consensus whereas
transparency logs in general might not). In general, transparency
logs can support non-repudiation for arbitrary entries [2].

Importantly, verifiable logs aim to be untrusted, meaning that
the user of the log does not need to trust the maintainer of the
log, or the issuers of the claims, or trust that these parties won’t
collude together to tamperwith the log. Oneway to achieve this is to
implement verifiable logs usingMerkle Trees [31]. Crucially, Merkle
Tress support efficient inclusion proofs which show that an entry
is a member of the log, and consistency proofs which give evidence
that the log is append-only and has not omitted or modified entries
over time. Inclusion proofs and consistency proofs can both be done
efficiently [8].

Checking the correctness of the log requires a full audit which
is expensive and requires access to the full contents of the log. As a
result, many clients of the log cannot do this, and the ecosystem
relies on additional parties called auditors that periodically perform
full audits. To minimise the chances of unilateral tampering with
the log, we assume the transparency log is public, and that there
are sufficiently many independent auditors.

2.2 SBOM and Reproducible Builds
While open-sourcing the source code allows anyone to inspect it,
most software is distributed pre-compiled with no method to con-
firm whether it corresponds to the source code allegedly used to
build it. To address this, a "Software Bill Of Materials" (SBOM) [6]
has emerged as a key building block in software supply chain se-
curity. An SBOM provides a description of how a binary was built
and from which materials, for instance which revision of the source
code. While an SBOM provides a correspondence between a dis-
tributed software binary and its sources, it cannot be trusted on
its own. To be able to verify the claim provided by an SBOM, one
needs to gather the sources, re-run the build steps, and verify that
the resulting binary and the distributed binary are bit-for-bit iden-
tical, usually by computing and comparing their cryptographic
hashes. This cannot be achieved unless the builds are intentionally
made reproducible. More specifically, reproducible builds guarantee
that for a given hardware architecture, re-running the build steps
with identical input artifacts, at any time, results in an identical
output. Making builds reproducible is not always straightforward
because they may have non-determinism, depend on environment
variables, or have incompletely specified dependencies. Despite this,
the general trend is to make more software projects reproducibly
buildable1.

1See https://reproducible-builds.org/.

2.3 Authorization Logic
Authorization logic is a style of policy language suitable for a broad
class of problems involving authorization ("should this action be al-
lowed?") and authentication ("does this public key belong to Bob?").
A number of authorization logics have been proposed in the litera-
ture [9, 12, 15, 16, 22]. Authorization logic is especially well-suited
to addressing supply chain security because its key features are
related to tracking the source of information and making trust
assumptions clear. The key features of authorization logics are:

• logic programming – policies are based on logic programming
languages such as Datalog or Prolog

• decentralization – policies are decentralized in the sense that the
logical facts do not describe a single global truth, but instead, all
statements are attributed to and express the beliefs of mutually
distrusting actors called principals. A principal is any entity that
can act or provide information [32, 34].

• delegation – the only way for a principal to believe statements
made by another are through clear expressions in the language
for doing delegation. As a result, delegations make the trust
assumptions in the policy clear.

• signing – principals are associated with a public/private key pair
and exported claims are digitally signed to prove the authenticity
and integrity of claims. Because claims are signed, they can be
used as unforgeable credentials in policies that govern access.

In our prototype of PolyLog we use an authorization logic based on
SecPal [15], although in principle any language with these four key
features would be suitable. Authorization logic has also been applied
to operating system authorization [35, 37], privacy policies [17],
networking [10], and remote attestation [36].

In a conventional logic programming language like Datalog, pro-
grams consist of logical facts and rules for deducing new logical
facts from a set of input base facts. Facts are predicates with some
number of arguments like isSystemAdministrator("Alice",
"FinancialDatabase"). Predicate arguments surrounded in quotes
like "Alice" are specific constants, whereas arguments without
quotes like user are variables. Rules consist of one predicate on the
left side of ‘:-‘, and some number of other predicates on the right.
The predicate on the left is proved and added as a new fact if all
the predicates on the right have already been proven. For example,
if we have the rule,

canAccess(file, user) :-

isSystemAdministrator(user, server),

isHostedOn(file, server).

in addition to the facts isSystemAdministrator("Alice",
"FinancialFileServer") and isHostedOn("PriceData",
"FinancialFileServer")wewill also prove canAccess("PriceData",
"Alice".

Policies based on logic programming can be used to govern a
wide range of problems related to software supply chain security
by simply writing a piece of software that takes some action only
when a particular goal predicate can be proven, and writing rules
that prove the goal predicate only when the relevant evidence has
been collected. For example, we can use this approach to write a
policy that decides when to import a library or when to connect to
a remote machine.
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"FileAccessPolicy" says {

canAccess(file, user) :-
isSystemAdministrator(user, server),
isIsHostedOn(file, server).

"HR" canSay isSystemAdministrator(user, server).

"FileRoutingDatabase" canSay isHostedOn(file, server).
}

Figure 1: An example of authorization logic code.

However, authorization and identification policies should be re-
silient to adversaries deliberately trying to gain access, perhaps by
providing fraudulent credentials. For example, if "Mallory" is an at-
tacker shemight falsely claim isSystemAdministrator("Mallory",
"FinancialFileServer") to gain access to the "PriceData" file.

Authorization logic is well-suited to dealing with problems in
security because all facts and rules describe the claims and beliefs
of mutually distrusting system participants called principals. A
principal is broadly any entity that can take action such as humans,
machines, tools, organizations, or even policies and protocols. All
facts in authorization logic are prepended with a principal called
the "speaker" using the syntax <Principal> says <Predicate>
to indicate that this principal issues or equivalently believes the
predicate. Rules are similarly prepended with a speaker.

Figure 1 shows an example of authorization logic code. Cru-
cially, because "FileServer" is the speaker for the rule for proving
canAccess, in order to prove
"FileAccessPolicy" says canAccess("PriceData", "Mallory")

using the rule in the code, we now need to prove
"FileAccessPolicy"

says isSystemAdministrator("Mallory", "FinancialServer")

and the fact
"Mallory" says isSystemAdministrator("Mallory", "FinancialServer")

will notwork. In order to use the rule set by the "FileAccessPolicy",
all the relevant facts need to be proved to the "FileAccessPolicy".

For facts produced by one principal to be believed by another,
authorization logic provides a syntax for delegation. In our autho-
rization logic, delegations are expressed using the syntax, "P1"
says "P2" canSay predicateName() which means that when
"P2" says predicateName(), "P1" will also believe it. Delega-
tions can also appear in the head of rules (with conditions on the
right hand side) to specify more restricted conditions under which
the speaker ("P1") delegates. Because the delegation syntax is the
only way for one issuer to prove a fact to another principal, delega-
tions make the trust assumptions clear in the code.

Principals in authorization logic are also associatedwith an asym-
metric keypair. When authorization logic statements are exported,
they are digitally signed using the private key, and when they are
imported, the signature is checked against the public key to ensure
the authenticity and integrity of these claims. Because authorization
logic claims are digitally signed, they can be used as unforgeable
access tokens. Signing also makes these claims non-repudiable.

2.4 Key Management
To both make use of the digital signature feature of authorization
logic and to provide accountability for a wide range of claims, we

need to address two problems related to key management: 1) we
need a trustworthy way to ensure that only these identities can gain
access to these keys, and 2) we need a trustworthy way to associate
public keys to these identities, and. Key management services such
as AWS KMS [3] and Google Cloud Key Management [4] can help
with the second problem.

Certificate authorities bind keys to public websites, but in our
framework far more identities than websites will need keys includ-
ing: automated tools, human reviewers, and policies mechanizing
laws. Interestingly, authorization logic can helpwith this; it can bind
keys to identities by expanding certificates into identity policies.
For example, an X.509 certificate issued by a CA can equivalently
be expressed as "CA" says PUB_KEY canActAs WEBSITE_NAME
where criteria such as time ranges limit use of keys for identities
can be added as conditions in the rule.

3 SECURITY GOALS
Before describing our architecture, we first describe the security
goals our system is meant to satisfy. Our main security goal is to
offer an open-source software authorship attribution framework in
which the parties involved in constructing software are clear, con-
sumers of software and other stakeholders have control over these
trust relationships, and abusers of this trust can be held accountable.
Together our sub-goals achieve this main goal and address other
security-oriented barriers to practical adoption.

Discoverability of Misbehavior: It should be possible to de-
tect misbehavior by generators of evidence, so they can be held
accountable. In other words, claims entailing misbehavior should be
available. For example, if a human reviewer was caught deliberately
approving of software with backdoors, we should have a history of
these malicious approvals.

Explicit TrustAssumptions:With conventional software ecosys-
tems, who or what software must be held accountable and for what
is unclear because the trust assumptions involved in software con-
struction are implicit. Each step involved in generating a software
release that is consumed by a client should instead be spelled out in
a legible policy language, and these assumptions should be evident
from these policies.

Stakeholder Control: Each of the stakeholders in our frame-
work (OSS writers, OSS consumers, human reviewers, tool authors,
standards authors) should have control over how policies they
set are satisfied, including: what evidence must be gathered, the
sources they trust to generate the policy, and the circumstances
under which it can be used. Further, we need a way to express the
distinct and competing needs and goals of these stakeholders, so
that it is clear if and when they can be met.

A Single History of Prior Claims: There should be a single
history of generated claims. If discrepancies in history are possible,
for example if an approval of a backdoor was found in one history
but not another, it is unclear if the human reviewer is at fault or if
the software that maintains this history of claims is faulty. A single,
trustworthy history prevents this potential failure. In other words,
we must prevent split-view attacks in which a bad actor deliberately
presents one history of their claims to a victim, while presenting
another history to others to evade detection.
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Minimal Disclosure: In some cases, the use of evidence is sen-
sitive, and the potential for information leakage could dissuade
participants from using our system in practice. For example, if the
particular open-source packages used by an author of closed-source
software are revealed, the outside world could learn about what
the closed-source developer is building. Second, human reviewers
acting on behalf of their employer may feel uncomfortable giving
reviews under their individual name. Our system should minimize
the need to reveal what evidence is used and how it is used where
possible. We note this goal is at odds with transparency logs in
which evidence is public.

Integrity of Evidence: It should not be possible to tamper with
the evidence used to discharge a policy goal. We note this goal is at
odds with the need for compatibility with existing tools and other
sources outside of authorization logic; tampering should also be
prevented if evidence is gathered from existing tools.

4 THE POLYLOG ARCHITECTURE
This section describes our PolyLog Architecture that realizes Policy
Transparency. To do so, PolyLog supports: expression of arbitrary
claims relevant to supply chain in authorization logic, making arbi-
trary claims in authorization logic transparent, policies that refer
to information produced outside the policy language, revocation
of claims, and punishment of misbehavior. In the following sec-
tions, we describe how this is done in more detail. We first describe
the system participants in Section 4.1 and clarify interactions with
policies and claims in Section 4.2 before going into details.

4.1 System Participants
Figure 2 shows the main participants in Policy Transparency in-
cluding humans, organizations, and software components. We now
describe these participants.

SoftwareReleaseConsumers: Consumers of software releases
set policies specifying the criteria for accepting open-source soft-
ware releases according to their needs. Consumers of releases are
generally developers of open-source or closed-source software. Be-
cause many software consumers will have the same needs, many
will use policies written by policy standards writers rather write
their own. However some projects may have specific needs requir-
ing custom policies or extensions of standard ones. To dispatch
their policies, they will collect evidence from the transparency log.
To ensure any misbehavior by the evidence producers cannot be
hidden, the policies set by consumers should check inclusion proofs
for the evidence.

Policy Standards Writers: Organizations for setting policy
standards write policies for broad issues in security, privacy, and
software quality that are be re-used for many software releases.
For example, government agencies write policies for privacy (e.g.,
GDPR). Open-source software and security foundations might write
policies about best practices for applied cryptography, or the cir-
cumstances under which a person can act as a credentialed cryp-
tography reviewer. These policies will either be directly written
in authorization logic, or other other parties interested in policy
transparency will take existing natural language descriptions of
these policies and translate them into authorization logic and make

these policies widely available by open source releases and publica-
tion on transparency logs. These policies are likely to be among the
most complex, so we anticipate these will be standardized and used
across many projects to amortize the effort involved in creating
and vetting these machine-codified policies. Prior work has shown
that it is possible to encode complex legal policies including HIPAA,
GLBA, and COPAA using logic programming [13, 29]

Software Release Developers: Software release developers
prepare open-source software to be consumed by software release
consumers. They use normal open-source software processes and
then run code analysis tools and solicit the aid of human reviewers
to both gain more assurance about the code and to meet the policies
of software release consumers.

SoftwareAnalysis Tools: Conventional software analysis tools
such as fuzz tools, linters, static analyses, and analyses of dependen-
cies run on the software under preparation for release. We need to
interpret the results of these tools with authorization logic policies.
However, many such tools already exist and we cannot expect them
to produce authorization logic facts as outputs.

Code Reviewers: Human reviewers review the source code un-
der preparation for release. Reviewers may either perform general-
purpose software reviews (e.g., to confirm that the code makes
effective use of the language in which it is written), or reviewers
may be credentialed experts in some domain like cryptography;
privacy; or formal methods, and review the code for best practices
within this domain. We need to use these reviews as evidence in
authorization logic policies. While it is possible for code reviews to
be written directly in authorization logic, requiring reviewers to
learn logic programming is a barrier to practical adoption we aim
to avoid.

TrustedWrappers: Trusted wrappers are software components
that bridge the gap between authorization logic and evidence pro-
duced by tools and reviewers. Trusted wrappers comprise 1) code
written in a general-purpose programming language that converts
evidence from its original format into authorization logic and 2) se-
curity features and practices that prevent tampering with this code
or evidence (described in Section 4.4). Tool results may come from
command-line interfaces, SaaS workflows, or serialization formats
(e.g. JSON/protobuf). Human reviews might be entered in IDE tools
(e.g. VSCode plugins) or using code review features from source
code hosting platforms (e.g. GitHub). However, reviews need to be
constrained into predicates rather than natural language prompts,
and suitable interfaces reviews are an area of future work.

Auditors: An auditor is a software service that checks that the
transparent log is consistent by conducting full audits [8], which
entail downloading the entire contents of the log and enumerating
all entries. During the full audits by these auditors the entries are
completely opaque and they have no additional meaning to the
auditors.

Monitors: Monitors are software services or human ecosystem
participants that scan the logs to find claims that are misbehav-
ior. Unlike auditors, monitors do interpret the specific meaning
of claims. What entails misbehavior depends on the type of claim,
and so we anticipate different forms of monitors for different kinds
of claims. For example, a monitor for detecting faulty fuzz tools
might scan the log for claims made by fuzz tools and re-run the tool
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Figure 2: Human, organizational, and software participants of policy transparency.

based on the parameters in the claim to determine if result is re-
peatable. To detect deliberate approval of software with backdoors
by a human reviewer, a monitor would be a human that searches
the log for malicious approvals. In PolyLog, we support revocation
monitors that can be used proactively by revoking credentials as
described in Section 4.5. When a monitor detects misbehavior, it
submits a claim that a particular principal has issued a faulty claim.
Both transparency logs and authorization logic aid in the detec-
tion of misbehavior – transparency logs ensure that all evidence is
available and authorization logic an be used to produce proof trees
showing which evidence was used to make faulty decisions.

4.2 Claims and Policies
Here we clarify the distinction and interactions between claims and
policies and discuss other details about how these are distributed
and used in our system.

Any entity, including but not limited to software analysis tools,
code reviewers, policy standards writers, auditors, and monitors
can issue claims. A claim is any piece of information that an be
used as evidence in support of a policy and is made transparent by
inclusion in the log. The producer of this claim is the issuer, and
when interpreting claims as authorization logic, the issuer is the
principal used as the speaker. Importantly, although many claims
in this system will be about the software in preparation for release,
claims can also be about other system participants (e.g. a claim
made by a policy standard writer could say that a software tool is
approved for fuzz testing).

A policy is authorization logic code that governs some action
(e.g. approval of a software release or assuming an identity) by
describing claims needed as evidence to take this action. When
combined with appropriate evidence, the action governed by the
policy is taken.

Policies use delegations to specify the circumstances underwhich
claims are trusted. In particular, delegations specify which prin-
cipals are trusted by the policy author to produce which claims.
The policy author can make these trust relationships narrower by
adding rules to these delegations (e.g. that make them expire after
some time or if misbehavior has happened).

Notably, the same artifact can be both a policy and a claim. Both
of them are statements attributed to speakers in authorization logic
and either can be included in a transparency log. One policy might
be used as evidence (a claim) in support of checking another larger
policy. The policies written by policy standards writers will often
be used as claims by software consumers. For example, a standard
policy for describing when a person can act as a cryptography
reviewer would be used as a claim in a broader policy set by a
consumer stating that approval is needed by a cryptographer. In
this case, the consumer delegates to the standard policy to decide
who canActAs a "Cryptographer" and only delegates to human
reviewers that can assume this identity.

Because authorization logic policies are decentralized, the policy
entry points emerge in parallel from two sides: 1) a policy about
the open-source software describing the assurance it offers (often a
collection of facts produced by ordinary tools that have been fed
into wrappers), and 2) a policy that the consumer of open-source
packages writes to describe the requirements of packages they
consume. These two policies will evolve in a kind of “negotiation”
– providers of OSS will make their software compatible with as
many analysis tools and human audits as possible to both meet the
requirements of many consumers and also offer as much assurance
as they can; consumers of OSS will write requirements based on
their needs, but may also attenuate their requirements based on
what assurance is commonly available from open-source packages.
Consumers of OSS may make their policies open-source to make
their requirements understood by software producers. The policies
written by standards writers will often serve as a kind of entry point
because they will likely be used across many projects, however, we
note that within the PolyLog architecture, use of standard policies
happens only through explicit delegations by policy consumers, so
they are optional. Policies by both standards writers and consumers
will often be published and distributed on transparency logs – doing
so can both aid inmaking these policies discoverable and in catching
policies with bugs.
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4.3 Transparency for Claims and Policies
To support transparency for both authorization logic claims and
policies, we describe minimal requirements for logging. We need
a serialization format that includes the issuer (the principal mak-
ing the claim/policy) and the body of the claim which can be an
arbitrary list of rules and predicates. As described in Section 4.4,
some claims are generated by Trusted Wrappers, and to support
this we need to include the hash of the Trusted Wrapper code. All
artifacts on the transparency log must be digitally signed, and to
be compatible with the authorization logic signing feature, the key
used must be bound to the principal. So the serialization of the
claim/policy is signed with the key of the speaker principal (which
is the issuer). The same key can be bound to more than one principal
name though, for example to support modularity in policy code. By
signing the serialization of the claim/policy, the same signature can
be used by both the authorization logic compiler when importing
the statement and by the transparency log (because the signature
covers the artifact used for both of these cases).

4.4 Trusted Wrappers
To be useful, authorization logic policies need to refer to informa-
tion generated outside of the authorization logic policy language.
For example, to check the time, read a vulnerability database, or
check the output of a static analysis tool. As a related problem,
relevant claims may be issued in existing standards, such as X.509
certificates. We could try to evangelize yet another standard format
for claims, but adopting new standards is a time-consuming process
requiring many stakeholders to be convinced of the value of this
change and for much pre-existing software to be rewritten. Even
if we could cause authorization logic to be adopted as a standard
way of expressing claims, standards are ultimately imperfect, and
eventually yet another new standard will be desired.

Instead of trying to standardize authorization logic as a way
of expressing claims, we use authorization logic as a metalayer
that can interpret information from many sources. To do so, we
use Trusted Wrappers which convert arbitrary information from
the outside world into claims interpretable as authorization logic.
Trusted Wrappers are similar to oracles [18, 19, 23] from the cryp-
tocurrency domain, however, Trusted Wrappers convert informa-
tion into authorization logic instead of smart contracts.

However, wrappers introduce a new trust assumption – if there is
a flawwithin the wrapper code, it could invalidate the authorization
logic claim. Likewise, the signing feature of authorization logic no
longer gives us assurance about the source of information since
the signatures generated and checked by the authorization logic
compiler only covers the authorization logic claim and not the
original source of information or the wrapper code that transforms
the information. Trusted wrappers need to prevent tampering with
the evidence gathered from the outside world.

To permit compatibility without enabling tampering, trusted
wrappers comprise these components:
• Conversion code written in a general-purpose programming
language (e.g. python) that reads the evidence in its original
source and outputs an equivalent authorization logic fact,

• A reproducible build artifact corresponding to this code, and
which contains the hash of this code

• A principal that represents the code; this is the speaker to which
the emitted statements are attributed

• The inclusion of the hash of the wrapper code in the signature
that covers the serialization of facts produced by the wrapper

• An authorization logic syntax for indicating that that a principal
corresponds to a wrapper with a particular hash. When facts are
deserialized from a principal bound to a hash, the serialization is
checked for this hash (in addition to the usual signature check
over the claim).

Because trusted wrappers are general-purpose code, they place
few assumptions on the source of evidence. Tampering with the
wrapper code would be detected because changes to the code will
result in changes to the hash. Generally, wrapper code will be
open-source, and a claim made by a trusted build artifact that this
wrapper has a particular hash will be included on the transparency
log. Tampering with the evidence read by the wrapper is mitigated
by auditing the open-source wrapper code.

4.5 Revocation Monitors
One of the primary motivations for systems that use transparency
logs is that the activity stored in the log is tracked permanently
and broadcast widely, making it possible to detect misbehavior.
Previous systems for transparency such as Contour [11] make use
of monitors, which are applications that scan the transparency log
to find bad behavior and punish this misbehavior. Howmisbehavior
is defined, detected, and punished depends on the application of
the log. Monitors are reactive rather than proactive because they
can only detect misbehavior rather than preventing it.

In our system, arbitrary claims are made transparent, so we need
monitors that can catch arbitrary misbehavior. At the same time,
we can make monitors proactive by using policies. To achieve both
goals, we propose revocation monitors. Revocation monitors are
implemented as a special case of Trusted Wrappers– they scan the
contents of the log and run arbitrary other code to determine if the
log entries contain bad behavior. If bad behavior is detected, the
monitors emit an authorization logic fact that can be understood
by our policies. As with other wrappers, monitors are built using a
reproducible build system that produces a hash of the monitor and
ties this hash to claims made by the monitor.

The claims issued by a revocation monitor can be used to revoke
other claims, by writing the claim to be revoked in a particular way.
To allow a predicate predX(arg1, ..., argn) to be revoked by
another predicate predY(arg1, ..., argn), any rule that can
prove predX (i.e., rules of the form predX(...) :- predX1(...),
..., predXn(...)) should be extended to include predY negated
on the right-hand side (that is predX(...) :- predX1(...), ...,
predXn(...), !predY(arg1, ..., argn).).

Figure 3 shows an example of a revocation monitor that revokes
acceptance of a library when a monitor finds it in a vulnerability
database.

Because revocations can cause proof goals that were previously
provable to become false, we need a way for the consumers of these
facts (the proof goals) to know when relevant predicates have been
revoked and policy checks should re-run. To do this, we use: 1) a
publish/subscribe system in which claim consumers "subscribe" to
a set of predicates that might cause their policies to be revoked and
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"SoftwareMaintainer" says {
"TransparencyLog" canSay someApp hasPublishedHash(hashX).

"VulnDBRevocationMonitor" canSay appearsInVulnDB(someApp).

accept(softwareLibary) :-
softwareLibrary hasPublishedHash(hashX),

!appearsInVulnDB(someApp).

}

Figure 3: Revocation monitor code.

monitors "publish" these predicates, and 2) a compiler pass that
runs on the consumer’s policy to populate the list of predicates to
which the consumer should subscribe. Note that when a proof goal
is revoked, the claims that could previously be used as evidence for
this proof are still available on the transparency log in case they
are needed for forensics.

Notably, revocation is also future-proof. A client relying on a
revocation monitor to revoke a credential can allow the monitor to
iterate on the terms for doing revocation by doing an unrestricted
delegation about the predicate that will be used for revocation as
in:
"Client" says

"Revoker" canSay revokeCredentials(userX)}.

With this policy, the "Revoker" can set and change the rules for
revokationCredentials arbitrarily. The client can also limit changes
to revocation terms by adding conditions to this delegation as in
"Client" says

"Revoker" canSay revokerCredentials(userX) :- !inAllowList(userX)}.

Because policies are all transparent and available on the log,
clients wanting to ensure a policy to which they delegate can be
revoked have the opportunity to inspect the policy and ensure it
has revocation terms they are willing to trust before relying on it.

4.6 Summary Claims
Because wrappers are arbitrary code, getting results from them
can make policies slower to check than if they were purely written
in authorization logic. Another issue is that software consumers
will often need inclusion proofs from the remote transparency
log server which requires an internet connection, and consumers
may need to check policies offline. To address both problems, we
propose summary claims, which are just a special case of wrappers
that input an authorization logic policy which may be complex
and require checking evidence produced by other wrappers, and
outputs a simpler claim which may be just one base fact. Checking
the outputs of wrappers producing summary claims can both be
done offline and efficiently because it caches proof results.

5 SECURITY ANALYSIS
We now describe how the architecture presented in Section 4 satis-
fies the security goals described in Section 3.

Discoverability of Misbehavior: Inclusion of claims on trans-
parency logs facilitates detection of misbehavior, because the logs
provide a history of all claims made by a particular issuer. For
example, if a human reviewer of code is accused of deliberately
approving code with backdoors, the log offers a complete history
of code the reviewer has approved to aid in determining if this
reviewer was malicious. Logs are similarly useful for identifying

misbehavior by faulty tools, or policy failures (e.g. if a policy used
to produce a summary claim had a bug in it).

Explicit Trust Assumptions: By expressing the criteria for ac-
cepting a binary as authorization logic policies, the rules describe
the evidence that must be gathered. Because all claims are autho-
rization logic statements attributed to a principal, the source of
the claim is clear. The only way for a policy set by one party to
accept evidence produced by another is through delegations. As a
result, the delegations spell out the circumstances under which each
party is trusted to produce what information. Authorization logic
also lacks escape hatches such as side effects and foreign function
interfaces that are present in most general-purpose programming
languages. As a result, these absent features cannot circumvent
delegations as the only mechanism for crossing the trust boundary.

Stakeholder Control: Stakeholder control is also provided by
delegations. Delegations describe the sources a stakeholder trusts
for a particular piece of evidence. A policy author can also add
rules to a delegation to further limit when evidence can be used,
for example by adding expiration and revocation timestamps.

A Single History of Prior Claims: To ensure a single history
of claims is provided to every client (thereby preventing "split-
view" attacks), policies that consume these claims also request an
inclusion proof ensuring the claim is logged. As long as clients have
inclusion proofs in their policies, an attacker attempting to omit a
malicious claim from the log will be caught because there will be no
way to provide the requested inclusion proof. The full audits by the
auditors also ensure the log is consistent. Another way to prevent
split-view attacks would be to use a blockchain as the transparency
log, as is done with Contour [11] – a blockchain uses a consensus
protocol to ensure that distributed copies of the log are the same.

Minimal Disclosure: The expression of claims as authoriza-
tion logic predicates, the use of roles in authorization logic, and the
signing of authorization logic claims all support minimal disclosure.
Because claims are predicates, we can have predicates that express
the minimum information needed to satisfy a policy; for exam-
ple rather than writing a reviewer’s exact birth date, a predicate
appearing on the log can check if they are over an age.

Similarly, code reviewers working on behalf of an organization
may prefer to hide their individual name. To do so, we can use
authorization logic policies expressing roles. A software consumer
delegates to reviews from the abstract role principal "EFFReviewr",
and another policy expresses the criteria for occupying this role,
(e.g., "Alice" canActAs "EFFReviewer".

Finally, signing of credentials supports minimal disclosure about
the use of evidence even when we check the authenticity of the
evidence. Because authorization logic claims are signed using a key
mapped to each principal, the originator of a claim does not need
to be notified to be assured that the originator authored it.

Integrity of Evidence: For claims made by ordinary principals
(by contrast to trusted wrappers), integrity of claims is provided
by signature checking. Each principal has an asymmetric key pair
and whenever a claim produced by one principal is consumed
by another, the claim is serialized and accompanied by an ECDSA
signature over the serialization of the claim. Because ECDSA covers
the hash of the claim, if the claim is tampered with, this tampering
will be detected when the hash check fails.
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For claims generated by trusted wrappers, the claim was initially
generated from some source other than authorization logic and it
is converted using code in a general-purpose language. In this case,
either the source claim or the conversion code could be tampered
with. To prevent tampering with source claims: trusted wrappers
should be made open-source so that they can be inspected to ensure
they faithfully convert source claims. To prevent tampering with
wrapper code, claims made by trusted wrappers include a hash of
the wrapper code. This hash is checked when deserializing these
claims which will detect any tampering with the wrapper code.

6 PROTOTYPE IMPLEMENTATION
To examine the practicality of PolyLog, we prototyped its core fea-
tures. To build our prototype, we used a number of open-source
projects as core components.We use the public instance of Rekor [5],
maintained by Sigstore [24], as the transparency log. Rekor is built
on top of Trillian [2], which implements a Merkle tree. When pub-
lishing entries to Rekor, a LogEntry containing an inclusion proof
for the entry is provided, allowing it to be used as summary proof
of inclusion. We assume regular consistency proofs are done.

Additionally, our prototype implementation builds on top of
SLSA (Supply chain Levels for Software Artifacts) [21], the indus-
try’s leading software supply chain best practices framework. SLSA
provides a series of controls and recommendations that aim to se-
cure the integrity of every link in a given software supply chain.
Based on this, SLSA has provided a SLSA provenances specifica-
tion which describe how a software artifact or set of artifacts was
produced. The SLSA provenance specification extends the in-toto
statement standard [27] (an open standard for specifying meta-
data about binaries). We also use a custom extension of the in-toto
statement standard to express our claims.

6.1 Authorization Logic Compiler
We prototyped 2 an authorization logic language and compiler
based on SecPal [15]. In principle, any variant of authorization
logic with the key features of principals and delegation could be
used to implement Policy Transparency and PolyLog. We chose a
language based on SecPal because SecPal is decidable and translat-
able to Datalog. Our prototype compiles from our policy language
into Souffle Datalog [7] and relies on the Souffle compiler to check
queries. The compiler itself is written in Rust. Our prototype com-
piler supports generation/verification of ECDSA signatures when
statements are exported/imported. The signatures cover a serial-
ized object representing the claim. We have language features for
binding keys to principals and for importing/exporting claims from
files containing these serializations. When exporting, a signature is
generated over the claim using the private key bound to the speaker
of the exported claim. When importing, the signature is checked
using a public key bound to the speaker (principal) of the imported
claim. We note that authorization logic policies are also useful for
binding principals (identities) to public keys as described in Sec-
tion 2.4 and by Abadi et al. [9]. At time of writing, the compiler
totals 2309 lines of code and an additional 827 lines for tests.

2https://github.com/google-research/raksha/tree/rust-auth-logic-
scored/rust/tools/authorization-logic

6.1.1 Negation, Non-monotonicity, and Decidability. To support
revocation monitors, our language must support negation, which
introduces non-monotonic reasoning which can make a logic unde-
cidable. Our language supports negation while remaining decidable.
To do so, our language extends SecPal with stratifiable negation,
similar to Datalog with stratifiable negation. Negations may appear
on the right hand side of rules as long as other restrictions are met
– it must be possible to order the predicates into strata. A negated
base fact such as !foo(a,b,c) is proved when the positive ver-
sion of the fact (foo(a,b,c,)) is not proved. With these language
restrictions, a standard decision procedure can be used to solve
programs as described by Green et al. in Section 2.2 [25].

6.1.2 Handling of Universes. The language restrictions Datalog
places to enable decidable bottom-up solving had a complicated
interaction with the logic of belief semantics of authorization logic.
Datalog requires all variables used as arguments in the LHS of a
rule to occur in a predicate on the RHS of the rule which is in a
stratum ordered before the stratum on the LHS [25]. Essentially,
this keeps the rules finite allowing bottom-up solving to terminate.

A common pattern used to meet these obligations when writing
ordinary Datalog is to: 1) write relations describing the universe
for each type of variable, 2) extend rules that otherwise would not
meet the stratification requirements to refer to this relation on
the RHS of the rule. In the following abstract example, the rule
defining some_predicate would not be stratifiable without adding
is_app which requires the application to be in the universe of
applications. The code on the following line populates this universe
with a particular application.

some_predicate(appX, hashX) :-some_fact(appX), is_app(appX) .

is_app("SpecificApp") .

However, this pattern cannot be used with authorization logic’s
belief semantics in which all facts are attributed to a principal, be-
cause there is no way to communicate membership in universes
across principals. Consider the following example, in which the soft-
ware consumerwould like to delegate to the "TrustedBuilder" the
right to declare any hash as the expected one for "Application".
"SoftwareConsumer" says {
"TrustedBuilder" expected_hash("Application", some_hash) :-

is_hash(some_hash).}

For this rule to be used, the "SoftwareConsumer" also needs to be
convinced the hash is a member of the universe. However, the set
of hashes that needs to be described is only known to the trusted
builder. We could imagine the consumer delegating the builder the
right to claim any hash is a member of the universe, however this
rule would not be stratifiable!

To solve this problem, we implemented a compiler pass that
automatically: 1) modifies otherwise unstratifiable rules to include
conditions that check that variables are in universe relations 2)
populates universes for each principal. To do so, the syntax is also
extended with type declarations so we know which universe in
which to place each variable. Rules are extended by adding a con-
dition to the RHS for each ungrounded variable on the LHS that
places the variable in a universe based on the variable’s type in the
declaration of the relation on the LHS. Universes are populated by
finding the set of all constant principal names and the set of pairs of
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"SoftwareConsumerPolicy" says {
"TrustedBuildPolicy" canSay someHashX canActAs "MLInferenceApp".
"SoftwareConsumerSourceCriteria" canSay

acceptSource("MLInferenceApp").
accept(someHashX) :-someHashX canActAs "MLInferenceApp",

acceptSource("MLInferenceApp").
}

Figure 4: Policy set by software consumer to decide if they
will accept a software release identified using a hash.
other kinds of constants and their types referenced in the program
and adding base facts wherein the constant principals state the
other constants are in the relevant universes. As a side-effect, this
makes writing programs more convenient because developers do
not have to deal with universes.

6.2 Trusted wrappers
At present, we can translate the claims (written using an in-toto
format) on the transparency log into authorization logic by using
wrappers. Eventually, we intend to use this same in-toto format as
a serialization format used by the authorization logic compiler, so
that the signature checking done by the transparency log and the
authorization logic compiler interoperate seamlessly.

We have prototyped 3 trusted wrappers that can interpret SLSA
provenance files, check the system time, and compare it to the
release time of a binary specified in a specific type of claim (which
we call "endorsements"). However, we have not prototyped a few
trusted wrappers needed to make our case study complete. We do
not yet support external reviewers that publish their reviews, or
integration with static analysis tools.

We have not yet prototyped reproducible builds for other kinds
of wrappers, a language feature for binding principals to hashes
of trusted wrappers, the integration of revocation monitors with a
publish/subscribe system, or a compiler pass for identifying which
predicates need re-evaluation post-revocation. However, none of
these changes impact the expressiveness of our policies.

7 POLICY EXAMPLE
This section gives a comprehensive example of using Policy Trans-
parency and the PolyLog architecture. Here, a software consumer
writes a policy describing the criteria under which they will accept
an open-source software release, "MLInferenceApp" identified by
its hash. This policy makes use of human reviews, software anal-
ysis tools, trusted wrappers, and other policies written by policy
standard writers as evidence to dispatch this policy.

Figure 4 shows the policy used by the software consumers to
decide if they will accept the hash. A particular hash sha256:0x...
is accepted if the evidence gathered from the transparency log is
sufficient to prove accept("sha256:0x..."). This policy checks
two things: 1) that the hash really belongs to the application source,
and 2) that the application source has a number of properties out-
lined by the software consumers. Establishing that the hash be-
longs to a particular application is a general problem applicable to
many applications, so the software consumers delegate to a policy
written by policy standards writers called "TrustedBuildPolicy".
The criteria for accepting the application source is also written by
3https://github.com/project-oak/transparent-release/tree/main/experimental/auth-
logic

"TrustedBuildPolicy" says {
hashX canActAs appX :-

hasAcceptableBuilder(appX),
hashX hasExpectedHash(appX),
appX hasReleaseTime(releaseTime),
currentTimeIs(currentTime),
currentTime > releaseTime,
% 2592000000 is 30 days in milliseconds
currentTime < releaseTime + 2592000000.

"Provenance" canSay appX hasExpectedHash(hashX).
"Provenance" canSay appX hasBuilderId(hashX).
"Endorsement" canSay hasReleaseTime(timeX).

"UnixEpochTime" canSay curentTimeIs(timeX).

hasAcceptableBuilder(appX) :-appX hasBuilderId(
"https://github.com/Attestations/GitHubHostedActions@v1").

hasAcceptableBuilder(appX) :-appX hasBuilderId(
"https://cloudbuild.googleapis.com/GoogleHostedWorker@v1").

}

Figure 5: Policy by standards writers expressing criteria for
associating a hash with an application.

"SoftwareConsumerSourceCriteria" says {
acceptSource("MLInferenceApp") :-

"MLInferenceApp"
adheresToStandard("CryptographyGuidelines:1.52"),

"MLInferenceApp" passes("FuzzTesting"),
!appearsInVulnDB("MLInferenceApp").

reviewerX canSay appX
adheresToStandard("CryptographyGuidelines:1.52") :-

reviewerX canActAs "CryptographyReviewer",
!isBannedReviewer(reviewerX).

"CryptographyReviewCertificationStandard" canSay
reviewerX canActAs "CryptographyReviewer".

"TrustedFuzzTool" canSay appX passes("FuzzTesting").

"ReviewerBanMonitor" canSay isBannedReviewer(reviewerX).
"VulnerabilityDBMonitor" canSay appearsInVulnDB(appX).

}

Figure 6: Criteria for approving the application source.

the software consumers in "SoftwareConsumerSourceCriteria",
and a delegation is used just to make this code modular.

Figure 5 shows the policy for establishing that an application
has a particular hash. This policy relies on a release system built on
top of in-toto and SLSA. The release system generates two types of
in-toto statements about the binary (parsed into authorization logic
using trusted wrappers). First, a SLSA provenance describes how
the binary was built from its sources. The second is provided by the
software release developer to endorse this release until an expiration
time that serves as a passive revocation. A trusted wrapper is used
to check the time in support of this revocation. This wrapper uses a
system utility for the time, however for other threat models, more
trustworthy sources of time such as RoughTime [1] may be desired;
because checking the time happens through delegation, the source
of time is clear in the policy. The policy lists GitHub Actions and
Google Cloud Build as trusted builders that can build the binary to
generate its SLSA provenances.

Figure 6 shows the criteria for the application source code. These
criteria entail: checking that uses of cryptography adhere to a stan-
dard, that the application passes fuzz testing, and that the appli-
cation is not in a database of known vulnerabilities. The policy
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"CryptographyReviewCertificationStandard" says {
reviewerX canActAs "CryptographyReviewer" :-

reviewerX hasFormalTraining("cryptography"),
reviewerX hasPerformedGithubReviews(q), q > 1000.

"Coursera" canSay
reviewerX hasFormalTraining("cryptography").

"ABETAccreditedUniversity" canSay
reviewerX hasFormalTraining("cryptography").

"ABETUniversityList" canSay
universityX canActAs "ABETAccreditedUniversity".

"GitHubCrawlingTool" canSay reviewerX
hasPerformedGithubReviews(numReviews).

"GitHubCrawlingTool" canSay reviewerX
hasReviewedInLanguage(languageX).

}

Figure 7: Policy set by standards writers for granting human
reviewers the right to act as cryptography reviewers.

delegates to reviewers to check adherence to cryptography guide-
lines, but only if the reviewers have a credential for cryptography.
The policy delegates to another policy in Figure 7 to check this
credential. The policy also delegates to a trusted wrapper called
"TrustedFuzzTool" for the fuzz tool. Two revocation monitors
are used: one revokes credentials of reviewers, for example, if they
deliberately approve of malicious software; another rejects the ap-
plications in vulnerability databases.
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8 CONCLUSION
We presented Policy Transparency which controls supply chain
integrity with policies that make trust assumptions explicit and
a transparency log that allows arbitrary policy statements be dis-
coverable, thereby enabling detection of misbehavior. We support
interoperability with other sources of information relevant to con-
trolling the supply chain such as outputs from automated tools by
using trusted wrappers. We have shown that our architecture and
policy language can be used to check a complex policy involving hu-
man reviews, automated tools, and mechanized rules for generating
credentials for human reviewers. A more complete implementation
and evaluation of the PolyLog architecture is left for future work.
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