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ABSTRACT ACM Reference Format:

Embedding-based deep neural networks (DNNs) are widely used
in large-scale recommendation systems. Differentially-private sto-
chastic gradient descent (DP-SGD) provides a way to enable person-
alized experiences while preserving user privacy by injecting noise
into every model parameter during the training process. However,
it is challenging to apply DP-SGD to large-scale embedding-based
DNN s due to its effect on training speed. This happens because the
noise added by DP-SGD causes normally sparse gradients to be-
come dense, introducing a large communication overhead between
workers and parameter servers in a typical distributed training
framework. This paper proposes embedding-aware noise addition
(EANA) to mitigate the communication overhead, making train-
ing a large-scale embedding-based DNN possible. We examine the
privacy benefit of EANA both analytically and empirically using
secret sharer techniques. We demonstrate that training with EANA
can achieve reasonable model precision while providing good prac-
tical privacy protection as measured by the secret sharer tests.
Experiments on a real-world, large-scale dataset and model show
that EANA is much faster than standard DP-SGD, improving the
training speed by 54X and unblocking the training of a large-scale
embedding-based DNN with reduced privacy risk.
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1 INTRODUCTION

Embedding-based deep neural networks have been successfully
deployed in large-scale recommendation systems [7, 16, 18, 26, 28,
30]. While these models enrich users’ personalized experience, they
can also raise privacy concerns as there are potential risks of leaking
user information encoded in the model.

A standard technique for mitigating privacy leaks in deep neural
networks is differentially private stochastic gradient descent (DP-
SGD) [1]. DP-SGD modifies the standard stochastic gradient descent
(SGD) algorithm for training machine learning models by clipping
the gradients of individual examples and then adding Gaussian
noise to the result. This results in provable differential privacy (DP)
guarantees for the resulting model, usually with a tradeoff to both
model utility and training speed.

Applying DP-SGD to large-scale embedding-based models is
particularly challenging due to an extra penalty in training speed.
Large-scale models are usually trained in a distributed fashion, with
a collection of central parameter servers hosting model parameters
and hundreds of workers accessing the parameters and performing
the training jobs. Each worker computes the gradients for their
input examples locally and sends the model updates back to the
parameter servers. A key feature of embedding-based models is
that the embedding table comprises most of the parameters of the
model. The gradient of the embedding table is thus usually sparse
for each training step, being nonzero only for those rows whose
corresponding vocabulary items are in an input example. Thus,
without DP-SGD, a worker only needs to send a small amount
of data to the parameter servers at each step. However, with DP-
SGD, noise is added to each parameter, and the previously sparse
gradients become dense. The resulting extra traffic between the
workers and parameter servers and the extra computation cost
significantly slows down the training speed, making it difficult or
even prohibitive to train a model with DP-SGD in practice.

We propose a modified version of DP-SGD that we refer to as
embedding-aware noise addition, or EANA, to address the training
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speed issue. Specifically, EANA only adds noise to embedding pa-
rameters with non-zero gradients at each training step, thus keeping
the gradients sparse. This eliminates the slowdown caused by tra-
ditional DP-SGD, but with the important drawback that EANA no
longer guarantees differential privacy. Nonetheless, we demonstrate
that EANA still has both analytical and empirical privacy. We also
confirm experimentally that EANA effectively resolves the training
speed issue on the real-world, large-scale embedding-based model,
unblocking the training of large-scale embedding-based models
with good practical privacy protection.
More explicitly, our key contributions are these:

e Propose EANA to address the slowness issue when training
large-scale embedding-based deep neural networks with DP-
SGD (see Section 3), making it possible to train a large-scale
personalization model with practical privacy protection (see
Section 4.2).

o Perform detailed theoretical analysis on the privacy benefits
provided by EANA and the constraints of the technique (see
Section 3.1).

o Show that models trained with EANA have comparable or
acceptable precision (see Figure 6) compared to those trained
without privacy.

e Perform empirical evaluation with secret sharer [5] tests on
the MovieLens 20M [15] next movie prediction task, and
demonstrate that EANA is as effective as DP-SGD regarding
reducing the exposure of user’s private data (see Section 4.1).

e Evaluate EANA on areal-world large-scale embedding-based
DNN model and an industry large-scale dataset (see Sec-
tion 4.2). We show that EANA is 54X faster than standard
DP-SGD in terms of training speed (see Table 3).

e Perform secret sharer test on the real-world, large-scale
model and show that EANA significantly reduces the ex-
posure and thus the privacy risk (see Figure 7).

Related Work: Given the challenges of applying DP-SGD in
practice, several recent works have tried to modify or improve
on it in different ways. Du et al. [9] devise a technique, dynamic
differential-privacy preserving SGD, to improve the model accuracy
by adjusting the clipping value and the noise level during training,
in contrast with the fixed hyperparameters in traditional DP-SGD.

Zhang et al. also consider taking advantage of the sparse na-
ture of gradients in embedding models in [31]. After first showing
some results for the broader class of sparse empirical risk minimiza-
tion problems, they devise a modified version of DP-SGD tailored
for embedding models. The modified algorithm involves using a
differentially private sampling step to select a small number of
embedding rows for noising instead of adding noise to all rows as
in standard DP-SGD. Experiments on a small word embedding task
show that this approach gives better utility than DP-SGD for the
same provable privacy bound.

Other techniques have been proposed to speed up DP-SGD by
reducing the cost of the per-example clipping step. Examples in-
clude Bu et al., [3] who propose using JL projections to accelerate
DP-SGD and make it more memory efficient, and Goodfellow [14],
who uses an outer product method on fully connected networks.
These are useful in their own right but do not address the issue of
communications costs in large-scale models.
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Figure 1: An illustration of the dual encoder model, a typical
embedding-based recommendation model.

2 BACKGROUND

2.1 Embedding-based Recommendation
Models

Deep neural network models are widely used in large-scale recom-
mendation systems in the industry. Those recommendation systems
often involve large numbers of discrete items, such as videos [7],
apps [17], etc. A standard approach is to treat the discrete items as
sparse categorical features with large vocabularies, and for models
to use embeddings to represent them as continuous vectors. These
models are referred to as embedding-based models.

The dual encoder model is a typical embeddings-based model
for recommendation systems. These are also referred to as deep
retrieval, two-tower, or encoder-encoder models depending on the
setting [6, 12, 13, 20, 24, 29]. We will focus on this type of embedding-
based model in our paper. As illustrated in Figure 1, a dual encoder
model consists of two towers (encoders): a context tower and a
label tower. Depending on the task, each of them can be a fully-
connected network, convolutional neural network, Transformer,
and so on. The input consists of (context, label) pairs encoded by
the left and right towers, respectively. For example, in a movie
recommendation use case (see Section 4.1), the context is a sequence
of previous movies a user has watched. The label is the next movie
they watch. In this setting, a dual encoder model can predict the next
movie given an unseen sequence of previous movies and produce
embeddings for users’ context and movies.

The model outputs the similarity score between the encoded
context and label, e.g., the inner product of context and item embed-
dings. A loss function is applied to enforce that positive examples
(i.e., similar context and label pairs) have high similarity, and neg-
ative examples have low similarity. Once fully trained, the model
can predict relevant items given a new context. The embeddings
produced by the context and label towers are general representa-
tions of user contexts and label items. They can be used for other
downstream applications, such as classification [6, 12].

2.2 DP and DP-SGD

Differential Privacy: Intuitively, differential privacy (DP) [10, 11]
requires that one user’s record does not affect the algorithm output
significantly. The formal definition is stated below.

DEFINITION 2.1 (DIFFERENTIAL PRIVACY). A randomized algo-
rithm A is (¢, §)-differentially private if for any pair of neighboring
datasets D and D’ differing in one record, and for all S that is a subset
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Algorithm 1 DP-SGD

Require: Data set D = {d1,- - ,dn}, model with p parameters,
loss function: £ : R? x D — R, gradient ¢3-norm bound: L,
number of iterations: T, noise variance: o2, learning rate: .

1: Randomly initialize 6.

2: fort=0,...,T—1do

3. Randomly sample a batch of examples B C D.

& g o« ﬁ Yaepclip(VE(0:;d), L) + N (0,02) where
clip (x,L) = min{1, L/||x||2} - x.

50 Ope1 & 0 —ngs.

6: end for

7: return 6, ..., 0r.

of the range of A, we have
Pr(A(D) € S) < e°Pr (A(D') € S) + 6,
where the probability is over the randomness of A.
Usually, ¢ is assumed to be a small constant, and § < 1/|D|
where |D| is the size of dataset D.

Another related definition is called Rényi differential privacy
(RDP) [19].

DEFINITION 2.2 (RENYI DIFFERENTIAL PRIVACY). A randomized
algorithm A is (a, €)-RDP if for any pair of neighboring datasets D
and D’ differing in one record, we have Do (A(D)||A(D’)) < ¢ where

Pr(AMD) =s) \*!
s~A(D) (Pr (AD’) = S))
is called the Rényi divergence of order a between distributions A(D)
and A(D").

Da(AD)IAD) = —— log

If an algorithm guarantees (a,¢)-RDP, it also guarantees
(g 4 log(1/8)

| ,5)-differential privacy [1, 19]. Tighter conversions
are provided in followup works [2, 4].

DP-SGD: To achieve differential privacy for machine learning mod-
els, a standard approach is to use differentially private stochastic
gradient descent (DP-SGD), described in Algorithm 1. Its main dif-
ference from vanilla SGD is in Step 4, where we clip the per-example
gradient and add Gaussian noise to the aggregated gradient. It has
been shown that DP-SGD guarantees differential privacy, with ¢
and § values determined by the noise value o, the sampling ratio
|B|/|D|, and the number of iterations [1]. Note that this guarantee
of differential privacy applies to the model parameters after each
step, and thus allows for a powerful adversary that can deduce the
gradients for each step of training.

2.3 Secret Sharer Attack

Since our algorithm does not guarantee rigorous differential privacy,
we evaluate the model’s privacy with another metric - the secret
sharer attack [5]. The secret sharer attack is designed to measure
unintended memorization by a model of its input data. The idea is to
purposely inject some out-of-distribution training samples, called
“canaries”, that do not help with generalization, and check whether
the model has memorized them by comparing their losses with those
of similar samples that are not injected. For example, in a language
model, we can inject “My SSN is 123-45-6789” into the training
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data, and check if its perplexity is much smaller than those of other
sequences of the form “My SSN is 0OO-00-0000”. If the perplexity
for the injected example is indeed much lower, it indicates the model
can potentially leak the sequence to an adversary.

More specifically, we compute a metric called exposure for the
canary, defined as follows: Suppose we have generated n other
sequences and among them, the perplexity of the canary ranks at
the m-th position. Then its exposure is defined as log,(n) — log,(m).
One might notice that if n is not large enough, the canary’s per-
plexity can easily rank first, and this formula does not capture the
difference between two canaries whose perplexities are both small
but different. Therefore, [5] also proposes fitting the perplexities
with some distribution and using the CDF at the perplexity of the
canary as an analogue for m/n.

The secret sharer attack has been used to evaluate privacy prop-
erties of models when there is a lack of good differential privacy
guarantee, for example, in [31].

3 EMBEDDING-AWARE NOISE ADDITION

In practice, using DP-SGD has serious negative effects on both
model performance and training speed (measured in steps per sec-
ond). The degradation in utility can be largely attributed to the
addition of Gaussian noise, while one major factor in training slow-
down is the need to compute per-example gradients. A considerable
body of experience with established models on standard datasets
has shown that these obstacles frequently make it very difficult
to train DP-SGD models with both acceptable privacy and utility
efficiently.

Both of these problems take on additional characteristics in mod-
els with large embedding layers, where the natural gradient of a
training example is zero in all rows of the embedding that are not
affected by that example. In terms of utility, adding noise to zero
gradients means that model weights are distorted by noise without
a chance for the model to correct them. This is necessary to satisfy
the threat model of DP-SGD, which assumes that an adversary can
observe the state of the model after each update. With this assump-
tion, if noise is not added to all model weights in the embedding
layer, an adversary can easily infer which items in the embedding
vocabulary were present in the input batch.

The impact on training speed is more implementation-specific.
One common approach for training large models in a data parallel
fashion is to use parameter servers. This approach stores the cur-
rent model weights on a collection of parameter servers. Worker
machines then iteratively read and update these weights using their
input data. In standard training for embedding models, the weights
that are read and updated are sparse in nature, leading to efficient
communication and computation. When using DP-SGD, however,
noise is added to every model weight, converting sparse values to
large dense values. For large embedding models, this can lead to a
prohibitive increase in communication and computation time.

The above considerations motivate a modified version of DP-
SGD, which we call embedding-aware noise addition, or EANA
(Algorithm 2) for short, in which we only add noise to the nonzero
gradients of the embedding layer. This has the simultaneous benefits
of keeping the noisy gradients sparse for speed purposes while not
harming the parts of the embedding layer that are not affected by
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Algorithm 2 EANA

Require: DatasetD = {di, - ,d,}, model with p non-embedding
parameters and e embedding parameters, loss function: ¢ :
RP*¢ x D — R, gradient £2-norm bound: L, number of itera-
tions: T, noise variance: o2, learning rate: 1.

: Randomly initialize 6.

fort=0,...,T-1do

Randomly sample a batch of examples B C D.

9t « 157 Zdep clip (VE(Br:d), L) + 6 © N (0,0°I) where
clip (x,L) = min{1,L/||x|l2} - x, §g € {0,1}P*€ is 1 for em-
bedding parameters and 0 elsewhere, and © represents the
element-wise product between two vectors.

5: 041 < 0 — ng:.

6: end for

7: return 0r.

oW o e

the input batch. The drawback is that, as mentioned above, the
resulting algorithm is no longer differentially private against an
adversary who can observe the model weights during training.

3.1 Theoretical Analysis

Intuitively, EANA does not guarantee differential privacy against an
adversary that can observe intermediate models, since the adversary
can use the positions of nonzero gradients to infer which vocabulary
items were used in a given time step. More specifically, for zero
coordinates, the algorithm is deterministic and thus would not give
any DP guarantee. However, in the very common situation where
an adversary can only observe the final trained model, we might
expect the adversary to learn much less information, because by
the time the model is fully trained, almost every coordinate has
been updated sometime in the training process. Consequently, the
noise added in the update might give a certain level of privacy.
We demonstrate this by a simple linear loss function {(w, x) =
(w, x) where w € R4 is the model and x € R¥ is the data. The
gradient of this function is V£(w, x) = x. Consider a dataset D =
{x1,...,xn} where ||x;||2 < L (either naturally or through clipping).
For j € [d], let x{ denote the j-th coordinate of example x;. Let

(D) = |{x{ # 0 : x; € D}| be the number of examples in D that
are nonzero in their j-th coordinate. If we run EANA to minimize
L(w,D) = ﬁ 2ix;ep £(w, x;) with one pass of the dataset D, we
can easily see that the j-th coordinate of w would be the summation
of X1, xl’ and CJ (D) pieces of independent Gaussian noise. When

some x; changes such that x: goes from zero to nonzero, then

w/ might change by xl] with one more piece of Gaussian noise.
Intuitively, the larger /(D) is, the more w/ behaves similarly as a
Gaussian with mean shifted. Therefore, if we know a priori that
CJ(D) is large enough for all coordinates, we might be able to get
some privacy guarantee.

In contrast to vanilla DP which considers arbitrary pairs of
neighboring dataset D and D’, here, the privacy guarantee is “data-
dependent”, as we require the dataset D to satisfy a certain property.
Such relaxations of DP are not rare in past work [8, 21-23, 27].

THEOREM 3.1. Let EANA (D) denote the final model obtained
by running EANA on the linear loss described above. Let d(D) =
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maxy, ep |{x{ # 0 : j € [d]}| be the maximum number of non-
zero coordinates over all examples in D. For any pair of neighboring
datasets D and D’ such that for all j € [d], ¢/(D), ¢/(D’) > Cy, and
d(D),d(D’) < dy < d, we have

LZ
Do (EANA(D)||EANA (D)) < —— 2~
2(Co +1—a)o?
do Co+1

+d—01n(1 + i) (1)
2 Co

for all integers a such that a < Cy.

+ n .
20a@-1) Co+1l-«a

Proor oF THEOREM 3.1. The gradient of £(w,x) = (w,x) is x.
Given a sample x;, EANA would add noise N(0, o2) at the nonzero
coordinate of x; and 0 elsewhere. Therefore, after enumerating
through the dataset D, the final model w is such that w/ = w(]) -
n (Zi x{ + N(0, Cj(D)az)) where 7 is the learning rate, and C/(D)
is the number of examples with nonzero j-th coordinate. Denote the
term in the bracket as A/ (D) and the vector (AO(D), cee, Ad(D)) as
A(D). For ease of notation, we will abbreviate C/(D) as C/.

Consider a dataset D’ = D U {x.}. To analyze the privacy
property of w, we need to compare the distribution of A(D) and
A(D’). Since each coordinate of A(D) is independent, we can con-
sider them separately. Let S be the set of indices where x; is
nonzero and let d, = |S,| < do. For j ¢ S., x. is 0 and AJ(D’)
follows the same distribution as N (D). For j € S., N(D') =
> xl’ +x) + N(0,(C7 + 1)0?), and we essentially need to compare
N(0,C7 %) and N(x, (C7 + 1)o?).

Consider the Rényi divergence between the distribution of A(D)
and A(D’). We have

Do(AD)IAD) = ), Da(A (D)||A(D)
Jjeld]
= > DaN(O0.CTa®)IN G (C + 1)o?)
JES.

()

and similarly for Dy (A(D’)||A(D)). We can define the term corre-
sponding to the j-th coordinate as D’,, which can be viewed as the
privacy guarantee of coordinate j.

According to [25, Eqn (10)], the Rényi divergence between
N (o, O'g) and N (u1, 012) at integer « is bounded if o2 = (ZO'g +(1—
a(po—pm)’ o

202 o 0"
In our case, 0'621 = (Cj +1- a)az, and thus the divergence is finite

when a < ¢J + 1. We have

+-—L1In

2 : Ly . .
a)oy is positive, and the divergence is T

D), =Da(N(0,Ca?)IN(L, (C + 1)0?))

\2
) L (O e
T2ACT+1-a)o?  2a@-1) Cl+1-a
\2
a (XJ) 1 Cl=a(Co +1)*

4

< +
20Co+1-a)s?  2a-1) Co+1-a
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where the last inequality holds because (3) is decreasing with re-
spect to /. Summing up over j € S, we have

N2
@y (+) Cl-e(Cy + 1)
(2) < ]\ ds 0 ( 0 )

20Co+1—-a)s?  2(a-1) Co+l-a
2 Cl=(Cy + 1)*
< alL + do n 0 ( 0 ) (5)
20Co+1-a)?  2(a-1) Co+l-a
2
:L+@ln 1+i + do n Cot+l .
2(Co +1 - a)o? 2 Co 20@-1) Co+1l-a
(6)
The direction for Dy (A(D’)||A(D)) is easier. We have
2
el
Do(N(x, (C) +1 N,/ =—
a(N (6, (C + 1)a)IN(0,C %)) 2a + O)o?
o+l (0)”
+ ! n( ) ( ) R 7)
2(a—-1) a+CJ

which is smaller than (3). It is therefore sufficient to analyze
Da(A(D)I|A(D")).

Another way for analyzing the algorithm is to look at each per-
coordinate guarantee D/, in (3) individually. We have

j L2 1 1 1 c+1
D{),SAa—+—ln 1+ — |+ In —

2(CJ +1-a)o2 2 CJ -1 O+1-a
®)

which says that coordinate with larger ¢/ will have less privacy
risk. Notice that if we compose (8) over coordinates, we would
encounter some overhead (at most an additional d factor) in the
first term. However, if we know a priori that some coordinates have
large ¢/, such a composition might provide a better tradeoff. O

Remark 1: How does this bound compare to the privacy guarantee
of DP-SGD? DP-SGD adds Gaussian noise with the same variance
to each coordinate, i.e., Vj € [d], w/ = w(]) -7 (Zi x{ + N(0, Ué))
for some 0. Releasing the final w with DP-SGD would guarantee
(a, ‘X—LZ)-RDP, or (L—Zz + M, 5)-DP. A natural baseline is
204 204 Og

to consider the case where all ¢/(D) = Cy, and set ag = VCyo, such
that the noise added is the same as EANA. In this case, DP-SGD
should give better ¢, as it is essentially the Gaussian mechanism.
Yet we would hope the ¢ from EANA to be comparable.

In Figure 2, we consider the data-dependent (¢,8) privacy
guarantee, i.e., the value of ¢ such that Pr(EANA(D) e S) <
e“Pr(EANA (D’) € S) + 6 for the D, D’ pair under the conditions
in Theorem 3.1. We fix dp = 10, L = 1 and vary Cy and a. We can see
that DP-SGD always gives better privacy, while the gap between
DP-SGD and EANA shrinks as o decreases and Cy increases.

It might look confusing that releasing the same output, i.e, w/ =
wé - (Z, x{ + N(0, C00'2)) gives different privacy guarantees for
the two algorithms. The reason is that the privacy guarantee is a
property of an algorithm instead of one particular run of it. We
are analyzing the privacy guarantee for two different algorithms,
which happen to yield the same output. More specifically, even
if their outputs are the same on one particular D, their behavior
would be different on a neighboring dataset D’.
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Remark 2: Even though the privacy guarantee of EANA is worse
than that of DP-SGD under the above setting, EANA might provide
better per-instance guarantee. The proof of Theorem 3.1 naturally
gives a per-instance RDP guarantee similar to that in [27], which
is essentially defined over the (A, D, x.)-tuple, with A being the
algorithm, and x. being the sample that differs in D and D’, i.e.,
D’ = DU {x.}. Let S be the set of indices where x. is nonzero and
let d = |S«| < dp. In such case, we have

max {Dy(EANA (D)|[EANA (D’)), Do (EANA (D') [EANA (D))}
2
a+!)
Tyl U U
f 2CI(D)+1—a)o? 2 CJ(D)

1 /(D) +1
+ n—
20a-1) CD)+1-«a

©)

where x] is the j-th coordinate of x. This bound implies (1) using

: N2
C/(D) = Co and 3 je[q (xi) < L2 From the per-instance RDP
bound, we can further see that

o If the nonzero coordinates in x, mostly have large counts,
for examples, x; might be a sentence consisting of popular
words, its privacy risk is smaller.

e Even for data-dependent privacy that is not specific to one
example, if we know the per-coordinate bound ¢/, we can
still potentially get a tighter bound compared to (1).

4 EVALUATION

We evaluate the efficacy of EANA on two recommendation tasks.
The first is the next movie prediction, where we train and evaluate a
dual encoder model on a public dataset (MovieLens 20M! [15]). The
model takes a user’s movie-watching history and predicts the next
movie for this user. The second task trains a real-world, large-scale
dual encoder model on an industry dataset. It generates knowledge
graph entity embeddings for downstream recommendation mod-
els. Below we provide details on the datasets, model architectures,
and experiment settings for each task. We analyze the experiment
results on training speed, model quality, and privacy protection.

Table 1: MovieLens 20M Dataset Statistics.

MovieLens 20M

Ratings 20,000,263
Users 138,493
Movies 27,278

Table 2: Industry Large-scale Dataset Statistics.

Industry-100K  Industry-5M

History 1 year 1 year
Individuals  4,556,149,471  4,556,149,471
Vocabulary 100K 5M

!https://grouplens.org/datasets/movielens/20m/
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Figure 2: Left: ¢ at § = 1077, Right: ratio between ¢ of EANA and DP-SGD.

4.1 Next Movie Prediction on MovieLens 20M
Dataset

This task examines how noise addition affects the model quality
and how much privacy benefit EANA provides. It also studies the
differences between EANA and DP-SGD from model quality and
privacy benefits perspectives. The vocabulary size for the ID-based
next movie prediction model is 27278 (the number of movies in
MovieLens 20M as shown in Table 1). The model is of moderate
size so that it can be trained with only a few workers or even
a single machine. The communication overhead resulting from
training with DP-SGD is not huge, and the slowdown is tolerable
(see training speed in Table 3). In addition, the time it takes for
the model to converge is shorter, making it possible to train with
DP-SGD. Therefore, we compare the performance of EANA and
DP-SGD on this task.

4.1.1 Dataset. The MovieLens 20M dataset contains approximately
20 million ratings from 138493 users on 27278 movies (Table 1).
We generate a movie-watching timeline for each user by stitching
the rated movie ID corresponding to that user together, sorted by
ascending timestamps. We use timelines from 80% of the users for
training and the remaining 20% of users’ timelines for testing. To
generate an example for training or testing, we randomly sample a
movie ID from a user’s timeline and use it as a label. The context
is a sequence of 20 movie-watches before the label movie ID in
the same timeline. The examples are sampled on-the-fly during the
training and testing.

4.1.2  Model Architecture. Figure 3 illustrates the ID-based dual
encoder model for the next movie prediction task. The model takes
a movie ID sequence (watch history) as the context and the next
movie ID as the label to form a (context, label) input pair. Note that
both the context and label contain only movie IDs. The context
tower is a bag-of-words encoder, while the label tower performs a
simple embedding lookup. The two towers generate context and
label embeddings, respectively. The similarity between the context
and label embeddings is computed and fed into the softmax loss
function to train the model. We use 64 as the batch size for all
experiments in this task. The output dimensions of the context and
label embedding layers are both 128. The encoded context and label
embeddings are also 128-dimensional.
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Figure 3: ID-based dual encoder model for next movie pre-
diction. The context tower encodes the user’s previous ac-
tivities (i.e., previous watches), and the label tower en-
codes the label candidates. During training, items interact-
ing with similar users will be pulled together in the embed-
dings space. In contrast, embeddings for dissimilar pairs are
pushed apart.

4.1.3 Experiment Settings and Results. We train the models with
SGD, DP-SGD, and EANA. The baseline is the model performance
when training with SGD without adding noise. For DP-SGD and
EANA, we experiment with two different noise multipliers: 0.01 and
0.001. In all the experiments, we measure test precision@k and re-
call@k with k € [1, 5, 10, 20]. This subsection presents precision@k
for model quality. The trends in the recall results are similar to
what we observed with precision@k. We use secret sharer to mea-
sure the model’s potential for unintended memorization of unique
or rare examples in the training dataset and thus to evaluate the
privacy benefit. We inject 9750 canary examples, 50 canaries for
each number of occurrences in [1, 2, 3, 4, 5, 10, 20, 50, 100], into the
training examples. The number of non-inserted random examples
to compute the exposure metric is 16384.

Model Quality: Figure 4 shows the model precision with the
settings mentioned above. When the noise multiplier is small (e.g.,
0.001), both DP-SGD and EANA lead to similar model performance
compared to the baseline model trained with SGD. Increasing the
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Figure 4: Precision of the models trained with and without
DP-SGD, EANA for the next movie prediction task. This fig-
ure shows the results of two different noises (0.01 and 0.001)
when applying DP and EANA. Note that a small noise with
EANA slightly improves model precision, but larger noise
reduces precision.

noise (e.g., when the noise multiplier is 0.01) results in slight perfor-
mance degradation (as illustrated with the black dotted and green
dot-dashed curves), but the overall performance is still acceptable.
Note that EANA (black dotted curve) leads to slightly better model
performance compared to DP-SGD (green dot-dashed curve) when
adding more noise to the model training process.

Model Privacy: Figure 5 presents the secret sharer exposure re-
sults. When the canaries are rarer (e.g., with an occurrence number
of 1 or 2), the measured exposures are small for all settings. The
models show no signs of memorization. When the canaries are
inserted at a higher frequency (e.g., with an occurrence number
of 50 or 100), exposures increase. The inserted canaries become
more likely to be memorized by the model than non-inserted ca-
naries. Adding noise with both DP-SGD and EANA significantly
reduces the exposures compared to SGD. With a noise multiplier
of 0.01, both DP-SGD and EANA demonstrate great empirical pri-
vacy protections by looking at the exposure results. Models trained
with EANA tend to have higher exposures than those trained with
DP-SGD but still show much less unintended memorization than
those without noise addition (SGD). Reducing the noise multiplier
to 0.001 also reduces the privacy protection, especially for EANA.

We conclude that both DP-SGD and EANA effectively reduce
the privacy risk of the movie prediction model. EANA performs
slightly worse than DP-SGD but still shows excellent privacy ben-
efits compared to SGD. Therefore, when the model size becomes
large such that training with DP-SGD is infeasible, EANA becomes
the best choice (see Section 4.2). Decreasing the noise multiplier
leads to better model quality but reduces privacy protection. There
is always a trade-off between model quality and privacy protection.

4.2 Knowledge Graph Entity Embedding
Generation on Industry Large-scale Dataset

In this subsection, we study how EANA performs on a real-world,
large-scale model training with a large-scale industry dataset.
Knowledge graphs (KG) are also known as semantic networks. They
encode structured information of real-world entities - i.e., objects,
events, situations, or abstract concepts - and their rich relations. A
KG entity embedding is a condensed vector representation of this
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entity trained from a large-scale embedding-based model (a dual
encoder model in this paper). Each entity is projected to the em-
bedding space such that semantically related entities are clustered
together. A typical knowledge graph may contain millions of enti-
ties. Therefore, the KG entity embedding generation model needs
to have large embedding tables to encode those entities, resulting
in a large-scale embedding-based model.

4.2.1 Dataset. We use a large-scale industry dataset (see Table 2)
to train the KG embedding generation model. The dataset contains
timelines of billions of individuals. Each individual’s timeline is a
sequence of this individual’s daily activities for one year, sorted
by descending timestamps. The context of each training example
contains three different features extracted from each activity, such
as the KG entities, unigrams, or bigrams. The label is a KG entity.
The process of generating training and testing examples is similar
to the one described in Section 4.1.1. 90% of the timelines are used
for training, and the remaining ones are for testing. We experiment
with two variations of the dataset: Industry-100K and Industry-
5M. The model trained on Industry-100K uses only the top 100K
most frequently appearing items for each context feature and learns
the embeddings for the top 100K KG entities. The corresponding
embedding tables have 100K embeddings for each feature or the
label. We refer to the 100K as the vocabulary size. Industry-5M has
a vocabulary size of 5 million, so the corresponding embedding
table sizes, and thus the model size, are much larger than those
used for Industry-100K. The models used for both industry dataset
variations are larger than those used for the next movie prediction
task.

4.2.2  Model Architecture. The KG entity embedding generation
model is also a dual encoder model, similar to the one presented
in Section 4.1.2. The key differences are (1) the context input, (2)
the model size, and (3) the context tower encoder. As mentioned in
Section 4.2.1, the context input consists of three features instead of
the activity ID. The model size, determined by the vocabulary size,
is much larger than the one for the next movie prediction. Also,
the model uses a transformer as the context tower encoder to learn
better entity representations with such a huge vocabulary size.

4.2.3  Experiment Settings and Results. The experiment settings for
the embedding generation task are similar to the next movie predic-
tion task as described in Section 4.1.3. For embedding generation,
we train models on two variations of the dataset: Industry-100K
and Industry-5M. When performing the secret sharer tests, we in-
ject 1195000 canaries to the training examples, 1000 canaries for
each number of occurrences in [1, 2, 3, 4, 5, 10, 20, 50, 100, 1000]. We
show the secret sharer test results on the models trained with the
Industry-5M dataset in this section.

Training Speed: The last two columns in Table 3 present the
average training speeds with three different algorithms on the two
variations of the industry dataset. Adding noise to model param-
eters affects the training speed. Thus we see slowdowns for both
EANA and DP-SGD compared to SGD. However, the training speed
with DP-SGD drops more severely due to the communication over-
head between the workers and parameter servers, as explained in
Section 3. With a vocabulary size of 100K, training with EANA is
4.7X faster than training with DP-SGD. The difference gets more
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Figure 5: Secret sharer results on models trained with and without DP-SGD and EANA. Observe that for a noise of 0.01, the
exposure for DP-SGD and EANA is comparable and is significantly reduced compared with SGD with no added noise.
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is as good as the one trained without DP. When we increase the noise to 0.01, the model precision drops, but is still reasonable
and acceptable for downstream recommendation tasks.
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Figure 7: Secret sharer results on models trained with or without EANA for different noise values on Industry-5M dataset.
Note that, we don’t have exposure values for traditional DP-SGD for this model size.

significant when the vocabulary size increases to 5M, where EANA EANA helps to unblock training a large-scale embedding-based
is 54X faster than DP-SGD. Note that the real-world production model for production while still providing privacy protection. We
model uses 5M as vocabulary size. In this case, DP-SGD leads to will discuss more on the privacy aspect later in this section.

a training speed of 1.3 steps per second. A real-world production

model usually trains for millions (e.g., 20 million) of steps to get Model Quality: Figure 6 shows the precision results with the
high-quality embeddings, and those embeddings need to be re- two dataset variations. For Industry-100K, the results are similar
freshed periodically. Hence, it is infeasible to train a large-scale to the next movie prediction task (Section 4.2.3). With a noise
production model with DP-SGD due to the extremely slow training multiplier of 0.001, both EANA and DP-SGD perform similar to
speed. Even though the training speed with EANA is slower than SGD. When increasing the noise multiplier to 0.01, the model quality
training without adding noise (70 steps/s v.s. 232 steps/s), it is still drops but is still reasonable. Note that EANA leads to better model
possible to finish the training within a reasonable time. Therefore, quality than DP-SGD when the noise multiplier is larger (e.g., 0.01),
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Table 3: Training Speed.

MovieLens 20M  Industry-100K  Industry-5M

SGD 363 steps/s 236 steps/s 232 steps/s
DP-SGD 78 steps/s 37steps/s 1.3 steps/s
EANA 223 steps/s 175 steps/s 70 steps/s

consistent with what we observed in the next movie prediction task.
For Industry-5M, we only present the precision results for SGD and
EANA because the training processes with DP-SGD are too slow
to produce any meaningful results. Again we observe that adding a
smaller amount of noise (with a noise multiplier of 0.001) leads to
comparable model performance with SGD. A larger noise multiplier
(0.01) gives a reasonable but slightly worse model quality.

Model Privacy: Figure 7 gives the exposure results for secret
sharer experiments with the Industry-5M dataset. It is easy to see
that EANA with a noise multiplier of 0.01 significantly reduces the
exposures compared to SGD. When the noise multiplier is smaller
(0.001), the model trained with EANA has much higher exposure
results but still performs slightly better than the model trained with
SGD. It indicates that models trained with EANA are less likely
to memorize training examples unintended and thus trigger fewer
privacy concerns.

In summary, we demonstrate that EANA is much more efficient
than DP-SGD for large-scale embedding-based models, moving the
training from the realm of the impossible to the possible. Training
with EANA can achieve good model quality while reducing the
privacy risk.

5 CONCLUSION

This work proposes embedding-aware noise addition (EANA), a
technique that only adds noise to parameters with non-zero gra-
dients at each training step to address the slowness issue when
training large-scale embedding-based deep neural networks with
DP-SGD. EANA not only significantly improves the training speed
but also preserves analytical and empirical privacy. We demon-
strate the effectiveness of EANA on both the public dataset and
a large-scale industry dataset. This technique makes it feasible to
train real-world, large-scale embedding-based models with good
practical privacy protection.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security
(CCS’16). 308-318.

[2] Shahab Asoodeh, Jiachun Liao, Flavio P Calmon, Oliver Kosut, and Lalitha Sankar.
2020. A better bound gives a hundred rounds: Enhanced privacy guarantees via
f-divergences. In 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE, 920-925.

[3] Zhigi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Hanwen Shen, and
Uthaipon Tantipongpipat. 2021. Fast and memory efficient differentially private-
sgd via jl projections. Advances in Neural Information Processing Systems 34
(2021).

[4] Clément Canonne, Gautam Kamath, and Thomas Steinke. 2020. The discrete

gaussian for differential privacy. arXiv preprint arXiv:2004.00010 (2020).

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, and Dawn Song. 2019.

The secret sharer: Evaluating and testing unintended memorization in neural

networks. In 28th USENIX Security Symposium (USENIX Security 19). 267-284.

(5

=

407

G

[12

[13

[14

oy
&

[16

(17

[18

=
2

[20

[21]

[22

[23

[24

[25

[26

[27

[29

[30

[31

RecSys '22, September 18-23, 2022, Seattle, WA, USA

Muthuraman Chidambaram, Yinfei Yang, Daniel Cer, Steve Yuan, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2018. Learning cross-lingual sentence rep-
resentations via a multi-task dual-encoder model. arXiv preprint arXiv:1810.12836
(2018).

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys’16). 191—-198.

Rachel Cummings and David Durfee. 2020. Individual sensitivity preprocessing
for data privacy. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM, 528-547.

Jian Du, Song Li, Moran Feng, and Siheng Chen. 2021. Dynamic Differential-
Privacy Preserving SGD. arXiv preprint arXiv:2111.00173 (2021).

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation.
In Advances in Cryptology—EUROCRYPT. 486-503.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-
ing Noise to Sensitivity in Private Data Analysis. In Proc. of the Third Conf. on
Theory of Cryptography (TCC). 265-284. http://dx.doi.org/10.1007/11681878_14
Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessandro Presta, Jason Baldridge,
Eugene Ie, and Diego Garcia-Olano. 2019. Learning dense representations for
entity retrieval. arXiv preprint arXiv:1909.10506 (2019).

Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar. 2018. End-to-end
retrieval in continuous space. arXiv preprint arXiv:1811.08008 (2018).

Ian Goodfellow. 2015. Efficient Per-Example Gradient Computations. arXiv
preprint arXiv:1510.01799 (2015).

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1-19.

Jyun-Yu Jiang, Tao Wu, Georgios Roumpos, Heng-Tze Cheng, Xinyang Yi, Ed Chi,
Harish Ganapathy, Nitin Jindal, Pei Cao, and Wei Wang. 2020. End-to-End Deep
Attentive Personalized Item Retrieval for Online Content-sharing Platforms. In
Proceedings of The Web Conference 2020. 2870-2877.

Manas Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay Adams,
Pranav Khaitan, Jiahui Liu, and Quoc Le. 2020. Neural Input Search for Large Scale
Recommendation Models. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD’20). 2387—-2397.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018.
Modeling task relationships in multi-task learning with multi-gate mixture-of-
experts. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1930-1939.

Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE, 263-275.

Lin Ning, Karan Singhal, Ellie X. Zhou, and Sushant Prakash. 2021. Learning
Federated Representations and Recommendations with Limited Negatives. (2021).
https://arxiv.org/abs/2108.07931

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity
and sampling in private data analysis. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing. 75-84.

Nicolas Papernot, Martin Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal
Talwar. 2016. Semi-supervised knowledge transfer for deep learning from private
training data. arXiv preprint arXiv:1610.05755 (2016).

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Tal-
war, and Ulfar Erlingsson. 2018. Scalable private learning with pate. arXiv
preprint arXiv:1802.08908 (2018).

Pavel Sountsov and Sunita Sarawagi. 2016. Length bias in encoder decoder
models and a case for global conditioning. arXiv preprint arXiv:1606.03402 (2016).
Tim Van Erven and Peter Harremos. 2014. Rényi divergence and Kullback-Leibler
divergence. IEEE Transactions on Information Theory 60, 7 (2014), 3797-3820.
Maksims Volkovs, Guang Wei Yu, and Tomi Poutanen. 2017. DropoutNet: Ad-
dressing Cold Start in Recommender Systems.. In NIPS. 4957-4966.

Yu-Xiang Wang. 2019. Per-instance differential privacy. Journal of Privacy and
Confidentiality 9, 1 (2019).

Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaom-
ing Wang, Taibai Xu, and Ed H Chi. 2020. Mixed Negative Sampling for Learning
Two-tower Neural Networks in Recommendations. In Companion Proceedings of
the Web Conference 2020. 441-447.

Yinfei Yanga, Steve Yuanc, Daniel Cera, Sheng-yi Konga, Noah Constanta, Petr
Pilarc, Heming Gea, Yun-Hsuan Sunga, Brian Stropea, and Ray Kurzweila. 2018.
Learning Semantic Textual Similarity from Conversations. ACL 2018 (2018), 164.
Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Adi-
tee Ajit Kumthekar, Zhe Zhao, Li Wei, and Ed Chi (Eds.). 2019. Sampling-Bias-
Corrected Neural Modeling for Large Corpus Item Recommendations.

Huanyu Zhang, Ilya Mironov, and Meisam Hejazinia. 2021. Wide network learn-
ing with differential privacy. arXiv preprint arXiv:2103.01294 (2021).


http://dx.doi.org/10.1007/11681878_14
https://arxiv.org/abs/2108.07931

	Abstract
	1 Introduction
	2 Background
	2.1 Embedding-based Recommendation Models
	2.2 DP and DP-SGD
	2.3 Secret Sharer Attack

	3 embedding-aware noise addition
	3.1 Theoretical Analysis

	4 Evaluation
	4.1 Next Movie Prediction on MovieLens 20M Dataset
	4.2 Knowledge Graph Entity Embedding Generation on Industry Large-scale Dataset

	5 Conclusion
	References

