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Abstract

Contrails (condensation trails) are the ice clouds
that trail behind aircraft as they fly through cold
and moist regions of the atmosphere. Avoiding
these regions could potentially be an inexpensive
way to reduce over half of aviation’s impact on
global warming. Development and evaluation of
these avoidance strategies greatly benefits from
the ability to detect contrails on satellite imagery.
Since little to no public data is available to develop
such contrail detectors, we construct and release a
dataset of several thousand Landsat-8 scenes with
pixel-level annotations of contrails. The dataset
will continue to grow, but currently contains 4289
scenes (of which 47% have at least one contrail)
representing 950+ person-hours of labeling time.

1. Introduction

Contrails are cirrus clouds caused by jet aircraft which,
by trapping outgoing infrared radiation, are likely avia-
tion’s largest contribution to global warming (Burkhardt
& Karcher, 2011; Chen & Gettelman, 2013; Schumann
et al., 2015; Boucher et al., 2014; Bock & Burkhardt, 2016;
Bickel et al., 2020; Lee et al., 2021). Contrails are started
by jet engine exhaust, which contains both water vapor and
soot. If the surrounding air is cold and humid enough (Ap-
pleman, 1953), the water vapor condenses and freezes into
ice clouds, using the soot particles as nucleation sites. The
lifespan of these clouds depends strongly on the ambient
humidity level. With low humidity, the ice crystals rapidly
(in seconds or minutes) sublimate away or never even form,
but with higher relative humidity contrails can persist for
hours. While relevant jet engine soot regulation (Jacob &
Rindlisbacher, 2019) as well as hydrogen or electric aircraft
are on the horizon, these mitigations are likely decades away
from comprehensive impact. Fortunately, recent simulation

“Equal contribution 'Google, Mountain View, California
Laboratory for Aviation and the Environment, Massachusetts
Institute of Technology. Correspondence to: Kevin McCloskey
<mccloskey @google.com>.

Tackling Climate Change with Machine Learning workshop at
ICML 2021. Copyright 2021 by the authors.

studies indicate a small percentage of contrails are responsi-
ble for the vast majority of contrail warming. This provides
an opportunity to significantly reduce global warming by
diverting that subset of flights a short distance vertically or
laterally. Although diversions may sometimes increase fuel
burn and associated emissions, these negative effects are
estimated to be more than offset by the reduction in contrail
radiative forcing (RF) (Avila et al., 2019; Teoh et al., 2020).

2. Context and related work

In order to divert aircraft to avoid creating warming con-
trails, one needs to be able to predict which flights will
create them. Models for this, such as CoCIP and APCEMM
(Schumann, 2012; Fritz et al., 2020) explicitly model the
microphysics and radiative transfer effects of individual con-
trails from formation to dissipation, depending on input data
such as the estimated aircraft fuel burn rate (i.e. the jet
exhaust quantity and qualities) and ambient weather condi-
tions. The physics are fairly well established, but the inputs
are subject to uncertainties from multiple sources. These
uncertainties - including the spatial resolution of numerical
weather models and limitations of high-altitude humidity
measurements (Gierens et al., 2020) - have resulted in fairly
large error bars on contrail RF estimates from simulations
(Lee et al., 2021; Sanz-Morere et al., 2020).

Empirical analysis of contrails in satellite imagery also
comes with uncertainty, stemming from the fundamental
physical and visual similarity between contrails and natu-
rally occurring cirrus clouds - and the absence of satellite
orbits that can yield both high spatial and high temporal reso-
lution imagery simultaneously. Contrail detection in satellite
imagery for the last two decades has largely been accom-
plished with the algorithm of Mannstein et al (Mannstein
et al., 1999; Meyer et al., 2002; Palikonda et al., 2005;
Minnis et al., 2005; Meyer et al., 2007; Vazquez-Navarro
et al., 2010; Duda et al., 2013). This algorithm is a series of
hand-engineered convolution and thresholding operations
that operate on brightness temperature imagery, followed by
identifying linear connected components of appropriate size.
It has been tuned to have either high Precision or high Recall
in contrail detections but a single model has not achieved
both simultaneously, necessitating wide lower-bound/upper-
bound approaches in empirical measurements of contrail
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coverage (Duda et al., 2013). One notable exception to the
use of the Mannstein et al algorithm is (Kulik, 2019; Mei-
jer et al., 2021) which trained a deep learning model for
pixel-level contrail detection on GOES-16 satellite imagery.

Highly accurate contrail detection in satellite imagery is
not just useful for validating contrail simulations. Once a
contrail is detected, its lifetime impact can be estimated
(Vazquez-Navarro et al., 2010; 2013; 2015), or attributed to
possible flights that may have caused it. Cumulatively, these
techniques allow measuring the effectiveness of flight diver-
sions in avoiding contrail formations. Making the climate
case for flight diversions to policy makers, airlines and the
general public will be much easier with satellite verification
capability in hand.

Geostationary satellites (e.g. GOES-16) and satellites in
low-earth orbits (e.g. Landsat-8) have complementary
strengths and weaknesses when applied to the contrail de-
tection task. The main advantage of Landsat-8 is its high
spatial resolution of 30m and 100m per pixel (cirrus and
thermal infrared bands respectively), allowing for more con-
fident labeling of young contrails. A geostationary satellite’s
strength is its temporal resolution, with as low as 5-minute
refresh rates, allowing tracking of contrails (once detected)
and enabling the use of the relatively sudden onset of con-
trails as a feature to distinguish them from natural cirrus.
However, GOES-16 cirrus and infrared bands have a nadir
spatial resolution of 1km and 2km respectively; by the time
a contrail has persisted long enough (20-60min) to be visi-
ble across multiple GOES pixels, it has often diffused and
become non-linear enough to be difficult even for experts to
distinguish from natural cirrus clouds.

We do accept trade-offs to gain Landsat-8’s high spatial
resolution. Firstly it is temporally sparse, imaging the same
area only once every 16 days. It also has a strong local time-
of-day covariance with the imagery location, due to Landsat-
8’s sun-synchronous polar orbit. That is, each latitude is
imaged at almost the same time of day (or night) on every
orbit, with the daytime equator crossing occurring between
10:00-10:25am local time. Landsat-8 never captures low-to-
mid-latitude imagery at dusk or dawn. In isolation then, this
dataset is not ideal for analysis that requires disentangling
physical contrail phenomena that might vary with time-of-
day and machine learned model errors that might vary with
time-of-day.

We anticipate this dataset will be useful for a number of
purposes, including: as a benchmark for evaluating contrail
detection methods; for validating high-confidence subsets
of GOES-16 contrail labels/predictions; as training data
for super-resolution models focused on GOES-16 contrail
detection/tracking; for analyzing how frequently contrails
exist but are invisible in colocated GOES imagery; and for
contrail prediction via analysis of the weather conditions of

contrails that persist long enough to become detectable in
aligned GOES imagery.

3. The dataset

Figure 1. An example of a false color Landsat-8 scene as shown
to labelers (top left) and its labeled contrails overlaid in blue (top
right), along with the true color RGB (bottom left) and highlighted
contrails identified by the algorithm of Mannstein et al (bottom
right).

The dataset includes Landsat-8 scenes (primarily from 2018
and inside the viewable extent of the GOES-16 satellite)
which have been reviewed by human labelers taught to iden-
tify and mark the bounding polygon of each contrail in the
scene. The labelers were instructed in contrail identification
initially by training slides containing general instructions
and examples of different types of edge cases and their ideal
labels (the instructions given to the labelers are released here
alongside the data). Labelers then proceeded to iterative
rounds of labeling Landsat-8 scenes and reviewing correc-
tions to their labels provided by the paper authors. Once
corrections were no longer necessary, labelers graduated to
labeling imagery that appears in the dataset. Each Landsat-
8 scene was labeled by two to four labelers. In our own
analyses we have tended to retain only the contrails which
were agreed upon by a majority of labelers who reviewed
the scene, but the dataset includes all labels to allow other
options.

An initial randomly selected sample of 1000 Landsat-8
scenes (from 2018 and in viewable extent of GOES-16)
reviewed by one of the authors resulted in 16.2% of scenes
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containing at least one contrail (data not shown). There-
fore, when selecting Landsat-8 scenes for labeling, scenes
which were likely to contain contrails were oversampled to
improve the class balance in the dataset. Scenes identified
by a high-Recall tuning of the Mannstein et al algorithm
as containing a contrail have been labeled. Next priority
for labeling was given to scenes which contained non-zero
advected flight density and weather conditions satisfying
the Schmidt-Appleman criteria (Appleman, 1953). To help
mitigate dataset bias due to covariance with these factors,
approximately 20% of Landsat-8 scenes introduced to the
labeling pipeline are selected by random sampling.

Multiple types of imagery were shown to the labelers to aid
in their decision making. The primary image was a false
color image with the red channel being the brightness tem-
perature difference between the 12 ym and 11 pm bands,
the green channel being the 1.37 pm cirrus” reflectance
band (omitted for nighttime images), and the blue chan-
nel being the 12 pm brightness temperature. In this false
color scheme, contrails appear as black linear clouds (see
Figure 1). Two supplementary images were included: the
true-color RGB, and an image representing advected flight
density. The advected flight density was generated starting
from waypoint data and advecting waypoints forward in
time — using ECMWF ERAS wind data (Hersbach et al.,
2020) and the Runge-Kutta method (Bogacki & Shampine,
1989) — until they reach the imagery timestamp. Then the
position uncertainty (estimated as a linear function of ad-
vection time length) was used as the standard deviation in
a Gaussian distribution that was plotted orthogonally to
the advected flight trajectory. See the labeler instructions
document available alongside the dataset for examples.

Initial rounds of labeling (done by the authors when develop-
ing the labeling instructions and the imagery shown to label-
ers) made use of full resolution Landsat-8 imagery. However
loading full-resolution imagery caused noticeable latency in
the labeling web app. After reviewing contrail labels identi-
fied in full resolution imagery compared with contrail labels
identified in imagery at 300m per pixel (still approximately
8x higher resolution than is available in GOES-16 infrared
bands), accuracy did not appear to suffer and subsequent
imagery has been labeled at 300m per pixel.

The dataset is provided in JSON string format and
includes: the Landsat-8 filename, polygon bounds
of contrails in the scene, and de-identified ad-
vected flight waypoints for each labeled Landsat-8
scene. It is available for download at https:
//console.cloud.google.com/storage/

browser/landsat_contrails_dataset and
at gs://landsat_contrails_dataset via the
command line. Please see the open source code accompa-
nying this paper alongside the dataset for an example of

parsing it, as well as an implementation of the Mannstein
et al algorithm (the first to be open-sourced that we
are aware of). The Landsat-8 scenes themselves are
available from multiple sources including as described at
https://cloud.google.com/storage/docs/
public-datasets/landsat. Landsat-8 imagery is
courtesy of the U.S. Geological Survey. The de-identified
advected flight waypoints are derived from terrestrial
ADS-B data licensed for publication from FlightAware,
LLC (https://flightaware.com).

4. Mannstein baseline results
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Figure 2. Precision/Recall curve for the Mannstein et al algorithm
on this dataset.

The Mannstein et al algorithm (Mannstein et al., 1999) was
developed for use with the AVHRR instrument aboard the
NOAA-12 satellite. The algorithm has tunable parameters
allowing for adapting the algorithm to new types of satellite
imagery. Figure 2 demonstrates the performance of our
open-sourced implementation on a randomly selected 20%
of the scenes of our Landsat-8 dataset. With 10 parame-
ters to tune, we treated it as a black box optimization and
selected the Batched Gaussian Process Bandits method to
maximize Precision and Recall (Golovin et al., 2017). Ex-
amples from the 10 tuned parameters include: thresholds
on brightness temperatures that indicate cirrus clouds, the
widths of the difference-of-gaussian line kernel used to high-
light linear cirrus clouds, and the size and threshold of the

”large scale gradient” operator used to filter out coastline

false positives. See the accompanying open source code for
more details.
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There are multiple choices of metrics for evaluating satellite
contrail detection models, and the ideal metric depends on
which downstream analysis will be performed. For evalu-
ating radiative forcing impact of contrails in aggregate, a
per-pixel metric may be simplest. For analysis connecting
flights to contrails (or further investigation of weather con-
ditions under which contrails were formed) a per-contrail
metric may be appropriate.

We observe that almost all of the identified contrails in
this dataset are relatively young (likely less than 4 hours
old - analysis not shown) and thus still fairly linear. We
suggest for per-contrail metrics that post-processing both
model predictions and polygon labels into linear objects can
provide a common format to evaluate per-contrail metrics
that is fairly easy to implement and which does not introduce
too many additional hyperparameters that would require
tuning.

Therefore the details on what constituted a true positive
detection in this work are as follows: labeled polygons from
individual labelers were converted to pixel masks and then
linearized using a least squares regression of the contrail
pixel coordinates in the image to generate linear contrail
endpoints. These linear contrails were then combined across
labelers to create the ground truth labels, keeping only those
which were agreed upon by at least two labelers. A linear
contrail was considered a match to another linear contrail
if it had the same slope within 10 degrees and a mean dis-
tance of points on the contrail line within 10km to the other
contrail. The Mannstein et al algorithm pixel masks were
similarly converted to linear contrail endpoints and thresh-
olded with the same angle and distance criteria to determine
if they matched a ground truth label.

The line slope and distance thresholds used to match one
linear contrail to another were selected by review of approx-
imately 100 Landsat-8 scenes from the dataset. Each scene
was rendered multiple times with the labels that passed the
“two labelers agree” criterion for a few different options of
line slope and distance thresholds. The authors then ranked
which label set for the scene was most preferable, and the
label sets resulting from “10 degrees slope” and “10 km
mean distance” had the best (or tied for best) rank by a wide
margin.

5. Conclusion

To our knowledge we are publicly releasing here the first
large dataset of pixel-level contrail locations labeled by hu-
mans in Landsat-8 satellite imagery. We expect the labelers
have been able to differentiate contrails from naturally oc-
curring cirrus with good accuracy due to Landsat-8’s high
spatial resolution and the advected flight history information
provided to labelers. This dataset will be useful in bench-

marking contrail detection models and validating contrail
research in colocated geostationary satellite imagery.

The results from the Mannstein et al algorithm above demon-
strate there is room for improvement on this challenging
first task of contrail detection, and we invite others to de-
velop machine learning models and perform other analyses
with this dataset. We also look forward to joining datasets
of detected and tracked contrails with their ambient mete-
orological conditions to use as training data for machine
learned models which are able to predict the formation and
severity of contrails.

We intend to occasionally release new versions of the data
available for download from the same location, with addi-
tional and refined labels. We recommend making a local
copy of the dataset and accompanying license and documen-
tation, since we may remove older versions of the dataset
without advanced warning. We are hopeful this dataset
will contribute to progress in contrail detection accuracy as
well as provide a foundation for further empirical studies
into contrail prediction, tracking, attribution, climate impact
analysis and mitigation.
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