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Abstract

During software development, developers need answers to queries about semantic
aspects of code. Even though extractive question-answering using neural ap-
proaches has been studied widely in natural languages, the problem of answering
semantic queries over code using neural networks has not yet been explored. This
is mainly because there is no existing dataset with extractive question and an-
swer pairs over code involving complex concepts and long chains of reasoning.
We bridge this gap by building a new, curated dataset called CodeQueries, and
proposing a neural question-answering methodology over code.
We build upon state-of-the-art pre-trained models of code to predict answer and
supporting-fact spans. Given a query and code, only some of the code may be
relevant to answer the query. We first experiment under an ideal setting where
only the relevant code is given to the model and show that our models do well. We
then experiment under three pragmatic considerations: (1) scaling to large-size
code, (2) learning from a limited number of examples and (3) robustness to minor
syntax errors in code. Our results show that while a neural model can be resilient
to minor syntax errors in code, increasing size of code, presence of code that is not
relevant to the query, and reduced number of training examples limit the model
performance. We are releasing our data and models1 to facilitate future work on
the proposed problem of answering semantic queries over code.

1 Introduction

Extractive question-answering in natural language settings is a venerable domain of NLP, requiring
detailed reasoning about a single reasoning step (“single hop” [Rajpurkar et al., 2016]) or multi-
ple reasoning steps (“multi-hop” [Yang et al., 2018]). In the context of programming languages,
neural question answering has not grown to similar complexity: tasks are either binary yes/no ques-
tions [Huang et al., 2021] or range over a localized context (e.g., a source-code method) [Bansal et al.,
2021, Liu and Wan, 2021].

Motivated by the recent promise of neural program analyses for learning complex concepts such as
loop invariants [Si et al., 2018] and even inter-procedural data flow analysis [Cummins et al., 2021],
in this work we study extractive question-answering over code, for questions with a large scope
(entire files) and complexity including both single- and multi-hop reasoning. Given the criticality of
program analysis, we formulate our problem as one that extracts not only an answer span, but also
supporting facts that elucidate the reasoning behind the answer and render it more interpretable.

Figure 1 shows an illustrative example (compressed for space). We elide some code with “...”.
The Python module exhibits a buggy behavior: the subclass ThreadedTCPServiceServer inherits

1https://github.com/thepurpleowl/codequeries-benchmark

Preprint. Under review.

https://github.com/thepurpleowl/codequeries-benchmark


1 class TCPServiceServer:
2 def __init__(self, service, ...): ...
3

4 def serve(self, address): ...
5

6 # Supporting Fact 1
7 def acceptConnection(self, conn): ...
8

9 def handleConnection(self, conn): ...
10

11 class ThreadingMixin:
12 # Supporting Fact 2
13 def acceptConnection(self, conn): ...
14

15 # Answer Span
16 class ThreadedTCPServiceServer(
17 ThreadingMixin, TCPServiceServer):
18 pass

Figure 1: Example code annotated with
the answer and supporting-fact spans for
the conflicting-attributes query.
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Figure 2: Data preparation setup. All source-code files
are analyzed against each of the 52 queries to gather
multiple positive and negative examples for that query.
We derive answer spans, supporting-fact spans and code
relevant for answering the query for each example. The
details are discussed in Section 3.

from the two base classes ThreadingMixin and TCPServiceServer, both of which define method
acceptConnection, which causes a conflict during multiple inheritance. Given this code, a neural
model capable of answering the query about “Conflicting attributes in base classes” should point at
the declaration of the subclass (lines 16–17) as the answer span, and the conflicting declarations of
the acceptConnection method at lines 7 and 13 as the supporting facts.

Neural approaches to this problem are challenging, since (1) there are no existing datasets with
such complex extractive question and answer pairs; and (2) the underlying program analyses can
include complex concepts with long chains of reasoning, spanning multiple methods and classes. For
instance, the conflicting-attributes query requires multi-hop reasoning. For the code in Figure 1, it can
be answered only by simultaneously reasoning about all the three classes, the inheritance relations
among them, and their methods.

We address the first challenge by building a new, curated dataset, CodeQueries. We use an industry-
leading symbolic code-query engine and language, CodeQL2 [Avgustinov et al., 2016], to produce
this dataset. Similar to a database engine interpreting a database query, a CodeQL query is interpreted
by the CodeQL engine on source code. We run 52 public CodeQL queries on every file in a common
corpus of Python code [Raychev et al., 2016]. This gives us positive examples comprising a query
and code as input, and the answer and supporting-facts as output. Since there can be multiple files in
the corpus with code that matches a query, we can gather multiple positive examples per query; e.g.,
several instances of conflicting attributes from different source-code files. We also include code on
which the queries do not return any answer spans so that a model can learn to predict when the code
does not have the queried pattern (e.g., absence of a buggy code pattern). These are analogous to the
no-answer [Clark and Gardner, 2017] or unanswerable scenarios [Rajpurkar et al., 2018]. We call
them negative examples. Figure 2 shows the data preparation setup. CodeQueries contains 171,346
examples, among which 71,603 are positive and 99,743 are negative. With this set of 52 queries, the
goal is to train a neural model on the train split comprising examples from all the 52 queries and
evaluate it to answer the test split examples (over code not seen during training) of those queries.
Thus, from training examples of the conflicting-attributes query, the model should learn to identify
presence or absence of conflicting attributes in new code.

We address the second challenge by building a neural extractive question-answering methodology
using Transformers [Vaswani et al., 2017] to encode input, and span predictors to produce output.
On the encoding side, we start with state-of-the-art pre-trained encoders of code (CuBERT [Kanade
et al., 2020], CodeBERT [Feng et al., 2020] and GraphCodeBERT [Guo et al., 2020]). On the span-
prediction side, we design an output layer that predicts BIO-style tagging [Ramshaw and Marcus,

2https://codeql.github.com/
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1995] (short for Begin, Inside, Outside) over code tokens, to produce answer and supporting-fact
spans that can belong to multiple methods and classes. We use different labels to distinguish the
beginning of answer spans from the beginning of supporting-fact spans.

With these Transformer-based baselines, we study various pragmatic considerations undergirding
a practical solution. First, given a query and code, only some of the code may be relevant. We
experiment under an ideal setting where only the relevant code is given to the model at inference time,
and our models do well. Our best model identifies answer and supporting-fact spans that match the
ground truth on 86.70% examples (72.51% on positive examples and 96.79% on negative examples).
However, as we show, given larger code, simple heuristic splitting of the code does not provide good
results. We therefore design a two-step procedure in which a classifier predicts which parts of the
code are relevant to a query. In the second step, spans are predicted over the relevant parts of the
code identified in the first step. The two-step procedure improves over the heuristic methods but is
inferior to the ideal setting when only the relevant parts from the large-size code are given to the
model. Second, we recognize that, in practice, a developer may have a limited number of labeled
examples. We study how robust our methodology is to limited supervision. Third, to further support
the practical use of our approach, we study its tolerance to minor syntax errors. The results show
that while a neural model can be resilient to minor syntax errors in code, reduced number of training
examples limits the model performance.

One may wonder why it is fruitful to study neural approaches to a problem that is symbolically
“solved”, as evidenced by the existence of frameworks like CodeQL. The answer is twofold. First,
while these frameworks provide powerful mechanisms for querying source code, they come with
upfront cost, e.g., learning a specialized query language, writing detailed formal queries, under-
standing helper functions, maintaining the queries if the query language evolves, and making sure
that the code is free of even minor syntactic errors. In contrast, our work shows that even without
sophisticated analysis techniques, a form of program analysis by example, in which developers only
supply examples of code labeled with answer and supporting-fact spans for a query, can lead to good
learned extractive performance. Second, answers to queries can be obtained even during the software
development process, when minor syntactic errors may still exist in code. Symbolic techniques
cannot process the input with such errors and fail to provide analysis results.

The main contributions of this work are as follows:

• We propose the problem of answering semantic queries over code. It is grounded in the
real-world usage of code-query languages. Solving it requires single-hop or multi-hop
reasoning, and understanding structure and semantics of code.

• We prepare a dataset, CodeQueries, which contains 171,346 labeled examples across a
diverse set of 52 queries evaluated on Python code.

• We build upon strong pre-trained models of code. We experiment both under an ideal
setting and under various pragmatic considerations. Our results show that neural models
can be useful for answering code queries but more work is needed to effectively tackle the
challenges of learning from fewer examples and scaling to large-size code.

• We have released our data and models to facilitate future work on the proposed problem of
answering semantic queries over code.

2 Related Work

Learning-based program analysis. Use of program analysis helps improve developer productivity
and software quality. However, implementing analysis algorithms requires expertise and efforts.
There is increasing interest in using machine learning for program analysis. Recent work in this
direction includes learning loop invariants [Si et al., 2018], rules for static analysis [Bielik et al.,
2017], intra- and inter-procedural data flow analysis [Cummins et al., 2021], specification infer-
ence [Bastani et al., 2018, Chibotaru et al., 2019], reverse engineering [David et al., 2020], and type
inference [Hellendoorn et al., 2018, Pandi et al., 2020, Pradel et al., 2020, Wei et al., 2020, Mir et al.,
2021]. These techniques target specific analysis problems with specialized program representations
or learning methods. Our work targets semantic queries over code and presents a uniform extractive
question-answering setup for them. Our queries cover diverse program analyses involving forms of
type checking, control and data flow analysis, among others (see Appendix F of the list of queries). In
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another line of work, Pashakhanloo et al. [2021, 2022] advocate the use of relational representations
of code, as used in CodeQL, in neural modeling and use them on classification tasks.

GitHub has recently launched an experimental feature3 that uses machine learning to classify
JavaScript and TypeScript code with regards to four common vulnerabilities. Similar to our work,
they built the training set using pre-existing CodeQL queries (written to detect those vulnerabilities).
They expect a classifier to catch cases missed by incomplete or stale CodeQL queries. They use
relational representation of code built by the CodeQL engine and take help from human experts in
feature selection4. In contrast, we learn directly on source code. They perform binary classification
to surface security alerts, whereas our goal is extractive question-answering to aid developers in code
understanding. Despite these technical differences, we share the motivation that machine learning
can be used to ease the burden of manually writing or maintaining detailed, formal code queries.

Natural-language questions and queries about code. CoSQA [Huang et al., 2021] includes yes/no
questions to determine whether a web search query and a method match. Bansal et al. [2021] and
CodeQA [Liu and Wan, 2021] are two recent works on question-answering over code. Both consider
a method as the code context, and programmatically extract question-answer pairs specific to the
method from the method body and comments. Bansal et al. [2021] generate questions about method
signatures (e.g., what are parameter and return types), (mis)match between a function and a docstring,
and natural-language function summary. CodeQA is generated from code comments using rule-based
templates. The answers are natural-language sentences extracted from code comments using NLP
techniques. The code in our case can be larger, encompassing multiple methods and classes; queries
are about semantic aspects of code and can need long chains of reasoning; and answers are spans over
code. In an orthogonal direction, natural language queries have been used for code retrieval [Gu et al.,
2018, Husain et al., 2019, Cambronero et al., 2019, Heyman and Cutsem, 2020, Gu et al., 2021].

Question-answering over text. Various datasets for extractive question-answering over text re-
quiring single-hop [Rajpurkar et al., 2016] and multi-hop [Yang et al., 2018] reasoning have been
proposed. Our dataset consists of queries requiring single- and multi-hop reasoning over code. Along
the lines of [Clark and Gardner, 2017, Rajpurkar et al., 2018], we include negative examples in
which the queries cannot be answered with the given context, though the context contains plausible
answers [Yang et al., 2018]. For improving explainability, we also include in our dataset and models
prediction of supporting facts [Yang et al., 2018]; supporting-fact supervision might also be help-
ful in alternative chain-of-thought methodologies [Wei et al., 2022]. We experiment on large-size
code which may contain parts that are not relevant to the query. This is analogous to distractor
paragraphs [Yang et al., 2018] and requires the models to deal with spurious information.

3 Dataset Preparation

Query evaluation. To prepare the CodeQueries dataset, we evaluated the queries from a standard
suite of CodeQL [Query Suite] on the open, redistributable subset [Kanade et al., 2020] of the
ETH Py150 dataset of Python programs [Raychev et al., 2016] (the ETH Py150 Open dataset).
These queries are written by experts and identify coding issues pertaining to correctness, reliability,
maintainability and security of code. We evaluated each query on individual Python files (Figure 2).
To get a reasonable number of positive examples for each query, we selected queries with at least 50
answer spans in the training split of the ETH Py150 Open dataset. This gave us a suite of 52 queries.
The query definitions build upon specialized CodeQL libraries and have 17–689 lines of code with an
average of 61 lines. We inspected the definition of a query to check whether answering it requires a
single reasoning step or multiple reasoning steps, and classified the query accordingly as a single-hop
or multi-hop query. Out of the 52 queries, 15 are multi-hop and 37 are single-hop (see Appendix C
for examples). We identify the answer and supporting-fact spans from the results produced by the
CodeQL engine for each of the queries. These spans come from a wide variety of syntactic patterns,
making it non-trivial for a model to identify the right candidates for answering the queries. In all,
there are 42 different syntactic patterns of spans such as class declarations, with statements and list
comprehensions. We give the statistics of syntactic patterns of spans in Appendix H.

In practice, a developer may want to validate the absence of a pattern (e.g., validate that there is
no unused variable). We therefore handle unanswerable scenarios also. We call examples that do

3https://github.blog/2022-02-17-code-scanning-finds-vulnerabilities-using-machine-learning/
4https://github.blog/2022-02-17-leveraging-machine-learning-find-security-vulnerabilities/
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Training Validation Test
Files 74,749 8,302 41,457
1-hop positive examples 29,202 3,216 16,019
N-hop positive examples 13,893 1,528 7,745
1-hop negative examples 40,111 4,244 22,346
N-hop negative examples 19,756 2,195 11,091
Total examples 102,962 11,183 57,201

Table 1: Dataset statistics.

C1

C2

CN

F

Code
Block 1

Query 
Identifier

Code
Block K

...

Q...

Q1

...

I

B

C3

I

O

C...

O

C... ...

E
nc

od
er

 

S
pa

n 
P

re
di

ct
or

A
ns

w
er

S
up

po
rt

in
g 

F
ac

t

Figure 3: The span prediction setup.

not contain answer spans negative examples. Naively, any code on which a query does not return
an answer could be viewed as a negative example; for instance, in the case of conflicting attributes
(Figure 1), it would be trivial to answer that there are no conflicting attributes if the code does
not contain classes. In natural-language question answering, Yang et al. [2018] recommend that
unanswerable contexts should contain plausible, but not actual, answers; otherwise, it is simple to
distinguish between answerable and unanswerable contexts [Weissenborn et al., 2017]. Therefore,
to obtain negative examples with plausible answers, we manually derive logical negations of the
CodeQL queries and evaluate them on the ETH Py150 Open dataset. We ensure that a negative
query identifies code similar to the original (positive) query but which does not satisfy the key
properties required for producing an answer for the original query. For example, the negated version
of the conflicting-attributes query finds code containing a class with multiple inheritance (similar to
Figure 1) such that the base classes do not have conflicting attributes. Using results of the negative
queries, we derive negative examples. See Appendix D for examples of positive and negative queries.

Deriving labeled examples. A CodeQL query produces answers based only on specific parts of code,
e.g., a single class within a file or a single method within a class. We inspect the query definitions
and automate extraction of the query-relevant parts from code. We treat each method as a code
block. Any code belonging to a class which is not within a method of that class (e.g., declarations of
class variables) or any code belonging a file which is not within any class or method (e.g., import
statements) form separate code blocks. Given the locations of answer and supporting-fact spans for a
query, we programmatically obtain the code blocks needed for arriving at the same results for the
query. We call them relevant code blocks. See Appendix E for additional details.

We represent a labeled example in our dataset as a tuple (Q,C,A, SF ) where Q is the unique
identifier of a query, C is a set of relevant code blocks over which the query is evaluated, A is the
set of answer spans over C and SF is the set of supporting-fact spans over C. Each span is a tuple
(b, i, j) which identifies the code block b ∈ C and the start and end indexes, i and j respectively, over
tokens in b. By definition, the sets A and SF are empty for negative examples. The query identifier
Q is used for uniquely identifying which query among the 52 queries is being applied on C. The
formal query definitions are used only for preparing the dataset.

Table 1 gives the statistics of the CodeQueries dataset according to the splits of the ETH Py150 Open
dataset. We place the examples derived from a Python file in the same split as the file. We train the
neural models on the train split comprising examples from the 52 queries and evaluate them to answer
the test split examples of those queries. The table also gives the number of positive and negative
examples for single-hop and multi-hop queries (see Appendix F for detailed query-wise statistics).

4 Modeling and Metrics

4.1 Span Prediction Model

Input representation and encoding. Given a query identifier Q and a set of code blocks C, we
prepare an input sequence by concatenating Q and the code blocks in C. The code blocks are ordered
by their order of appearance in the code files they are extracted from. They are separated by a special
[SEP] token and the entire sequence is preceded with the [CLS] token, similar to BERT [Devlin et al.,
2019]. We use the pre-trained CuBERT [Kanade et al., 2020] and CodeBERT [Feng et al., 2020]
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models as encoders of input sequences. These models use subword vocabularies. Therefore, the input
sequences are represented as sequences of subword tokens from the respective vocabularies.

We also use the GraphCodeBERT model [Guo et al., 2020], which additionally embeds data-flow
information about code. Our code representation is the same as GraphCodeBERT: code blocks are
concatenated and separated by a special delimiter, followed by the sequence of data-flow graph nodes
for each of the code blocks; data-flow and variable-alignment edges are represented as attention
masks over node sequences and code blocks.

Output representation and span prediction layer. Let {B, I,O} respectively indicate Begin, Inside
and Outside labels [Ramshaw and Marcus, 1995]. An answer span is represented by a sequence of
labels such that the first token of the answer span is labeled by a B and all the other tokens in the
span are labeled by I’s. We use an analogous encoding for supporting-fact spans, but we use the F
label instead of B to distinguish facts from answers. Any token that does not belong to either kind of
span is labeled by an O. This allows us to represent multiple answer or supporting-fact spans for the
given code blocks in a single sequence over {B, I,O, F} labels.

The span prediction layer consists of a token classifier that performs a four-way classification over
the labels {B, I,O, F}. It is applied to the encoding of every code token in the last layer of the
encoder. We finetune the model by minimizing the cross-entropy loss. Note that in the case of
negative examples, all tokens are to be classified as O. Figure 3 shows the setup for span prediction.
The symbols Qi and Cj denote subword tokens of the query identifier and code, respectively. For
simplicity, we do not explicitly show the special delimiter tokens such as [CLS] and the data-flow
information encoded in the GraphCodeBERT based model.

4.2 Two-step Procedure of Relevance Classification and Span Prediction

As discussed in Section 3, we identify the relevant code blocks programmatically using the CodeQL
result during data preparation for an ideal setting in which the model is only invoked on relevant code.
However, at inference time on new code, this relevance information is unknown, and a developer may
provide large-size code (e.g., an entire file) which could contain code irrelevant to the query. We
devise a two-step procedure to deal with this.

Given a query identified by Q and code C comprising code blocks {b1, . . . , bn}, we generate a set of
n examples by concatenating Q and each of bi. A classifier takes each of the examples and predicts
whether bi is relevant to provide an answer for Q. We call this the relevance classification problem.
We use the relevant blocks identified as part of the construction of our dataset, along with irrelevant
blocks, for training the classifier. We finetune pre-trained models of code for classification. These
relevance classifiers are distinct from the span prediction models.

Our two-step procedure to answer a query identified by Q on a large-size code involves first applying
a relevance classifier to every block in the given code w.r.t. Q. In the second step, all the blocks
classified as relevant in the first step are used as input for the span prediction model.

4.3 Evaluation Metrics

We measure the performance of a span prediction model as the percentage of examples for which the
set of predicted answer spans is same as the set of ground-truth answer spans, and the set of predicted
supporting-fact spans is same as the set of ground-truth supporting-fact spans. We call this metric the
exact match. For a relevance classification model, we measure the usual classification metrics.

5 Experimental Results

We use CuBERT, CodeBERT, and GraphCodeBERT as encoders of the input sequences. For all of
them, checkpoints for input length 512 are available. GraphCodeBERT allows an additional 128
tokens for data-flow information. For CuBERT, a checkpoint for length of 1024 is also available. We
experiment with all of these. For span prediction, the token encodings are followed by a dropout
layer and a single-layer classifier. As a non-pre-trained baseline, we train a Transformer encoder
from scratch with input of length 1024 for span prediction. For relevance classification, we finetuned
the CuBERT model for length 512 with a dropout layer followed by two feedforward layers. We
used the AdamW optimizer [Loshchilov and Hutter, 2017] and selected learning rates through initial
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Models All Positive Negative
Transformer 66.38 22.50 97.57
CuBERT 81.76 59.77 97.38
CodeBERT 82.13 62.67 95.96
GraphCodeBERT 82.31 61.08 97.40
CuBERT-1K 86.70 72.51 96.79
Table 2: Exact-match results in the ideal setting.

Setting All Positive Negative
Prefix 72.28 36.60 93.80
Sliding window 73.03 51.91 85.75
Two-step 80.13 52.61 96.73
File-level ideal 82.47 59.60 96.26

Table 3: Exact-match results on large-size code.

experimentation. The model checkpoints were selected by the least validation loss. Appendix A
provides the complete details of our training setup.

5.1 Experimentation under an Ideal Setting with only Relevant Code

We now evaluate our models on test split examples containing only relevant code; this is the ideal
evaluation setting since the models do not have to deal with irrelevant code.

Exact-match results. Table 2 reports the exact-match metrics for all the models: Column All refers
to results on all (both positive and negative) examples, Positive and Negative refer to results only on
positive or negative examples. CuBERT and CuBERT-1K refer to the 512 and 1024 length models
respectively. The CuBERT-1K model achieves the maximum exact match of 86.70% on all examples.
We use the best performing model, CuBERT-1K, to further characterize the dataset and assess model
performance. See Appendix I for examples of successful and unsuccessful span predictions.

All the models have excellent exact-match accuracy for the negative examples; meaning that they
are successful in identifying unanswerable contexts. On the positive examples, the finetuned models
achieve accuracy in the range of 59.77–72.51%. Predicting spans for positive examples requires
accurately identifying both the beginning token and all the other tokens that form the span, whereas
for a negative example it suffices to predict that no token belongs to a span. We believe that the
relative gap in the performance of the models between positive and negative examples stems from this
difference. CuBERT and GraphCodeBERT improve upon CodeBERT over negative examples but
at the cost of reduced performance on positive examples. The significant gap between the baseline
Transformer model, which is trained from scratch, and the finetuned models shows that pre-training
provides a clear advantage on this dataset.

Query-wise analysis. We carried out query-wise analysis of the predictions of the CuBERT-1K
model. We summarize the queries with best and worst results (see Appendix G for detailed results).
Among the multi-hop queries: On positive examples, the model struggles the most on the top-2
queries (Q9 and Q7) by the average number of tokens in examples (see Table 6, Appendix F); and the
query Q12 has the highest exact match due to the simplicity of the query. On negative examples, the
query Q8 works best at the cost of positive examples; and the worst performing query Q4 has the
smallest number of negative examples (see Table 6, Appendix F).

Among the single-hop queries, there are 6 queries with fewer than 100 positive examples. Of these,
except for the query Q49, all others are among the worst performing. The queries Q36 and Q38 are
simple and are the best performing on positive examples. On negative examples, the model achieves
very high exact match (>95%) for several queries; and the query Q42 has the lowest exact match.

Effect of number of spans. Figure 4 is a Radar chart of span-wise distribution of exact match for
the CuBERT-1K model. The number of spans per example range from 0 to > 20. The number in
parentheses against a span label is the count of examples in the test split with those many spans, e.g.,
33,437 negative examples with “0-Span". The concentric circles indicate exact match in the range of
[0, 1] in steps of 0.2. The exact match of the predicted spans is shaded in light Red color. Both the
number of examples and the exact match decrease with increasing number of spans.

Ablation with respect to supporting facts. We perform an ablation study to investigate the effect
of the presence of supporting facts in the data. We finetune CuBERT-1K with only answer spans
in targets. We compare it against the CuBERT-1K model from Table 2, which is finetuned on both
answer and supporting-fact spans. We compute exact match with respect to answer spans only. While
the model finetuned without supporting facts achieves 86.96% exact match on all examples, the model
finetuned with supporting facts achieves exact match of 87.41%. Thus, training with supporting facts
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Figure 4: Span-wise distribution of exact match. Figure 5: Learning from limited examples per query.

provides additional supervision and helps with slightly improved exact match with respect to answer
spans. The full results are available in Table 4 (Appendix B).

Training on all queries versus individual queries. We investigate the effect of training a single
model for all queries (our default choice) versus training a separate model for each query. Appendix B
and Figure 6 provide the details and metrics for this experiment. The model trained on all queries
outperforms the query-specific models on 46 of 52 queries, showing significant positive transfer.

5.2 Experimentation under Pragmatic Considerations

5.2.1 Scaling to Large-Size Code

Section 5.1 evaluates models on only relevant code. However, a developer may provide large-size
code (e.g., entire files) during inference which could contain code not relevant to the query. To
evaluate this pragmatic setting, we prepare a file-level test dataset from the test split of the ETH
Py150 Open dataset. Note that the CodeQL engine may return multiple answers for a given query
on code within a file. For preparing CodeQueries, they are treated as distinct examples with their
own distinct sets of relevant code blocks. We now drop this distinction, and consider all answer and
supporting-fact spans for a query over a file together as ground truth for a single example comprising
the entire file. This dataset is substantially more challenging because of large size and more spans
per example. This file-level dataset contains 44,423 test examples, among those, 16,712 are positive
(with 9,408 being single-hop and 7,304 being multi-hop) and the remaining 27,711 are negative (with
16,710 being single-hop and 11,001 being multi-hop). Out of these, 75.33% examples have more
than 1024 tokens (the input size limit of our largest model, CuBERT-1K) and the average number of
tokens is 5407. Note that even if an example has less than 1024 tokens, it may contain code irrelevant
for the query unlike in the ideal setting of Section 5.1.

We evaluate the two-step procedure in Section 4.2 on the file-level test dataset against two heuristic
baseline procedures: (1) Prefix: Take the maximum sized prefix of the file that the model can handle
as input. (2) Sliding window: Take the maximum sized non-overlapping chunks of the file w.r.t. the
input size of the model, perform inference on them independently and combine the results. We also
consider an analog of the ideal setting at the file level, which we call (3) file-level ideal: this takes the
union of relevant code blocks for a query from a file across all ground-truth spans in it.

For the two-step procedure, we train a relevance classification model as outlined in Section 4.2 and
use it to first select a set of blocks from a file for a given query. The span prediction model is then
applied on the selected set of blocks to answer the query. We use the best performing span-prediction
model from Section 5.1 (the CuBERT-1K model) as it is without additional training.

Table 3 shows the exact match results for all the procedures. The performance of the span prediction
model in the file-level ideal setting is provided for reference. Because the model is supplied only
relevant blocks, its exact match is higher than the three procedures. However, its exact match on
positive examples is 59.60%. The average number of code tokens per example in the ideal setting of
Section 5.1 is 1297, whereas due to the file-level scope, the average number of code tokens in the
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examples of the file-level ideal setting is 1660. Thus, the increase in size of code adversely affects
the model performance. Further, the average number of ground-truth spans on positive examples go
up from 1.83 in the ideal setting of Section 5.1 to 2.57 in the file-level dataset, making the task of
achieving exact match w.r.t. all the spans more difficult.

The two-step procedure outperforms both the heuristic procedures, but is understandably inferior to
the file-level ideal setting. Relevance classification achieves accuracy, precision and recall of 96.38,
95.73 and 90.10 respectively. Thus, the classifier may include spurious code blocks (false positives)
or filter out relevant code blocks (false negatives). This, in addition to the large size of examples
and more spans, limits its exact match on positive examples to only 52.61%. The performance of all
procedures on negative examples remains, unsurprisingly, high. In sliding-window, the model sees
code selected based on number of tokens from the beginning of the file. This results in arbitrary splits,
causing the model to predict spurious spans and dragging down exact match on negative examples.

5.2.2 Learning from a Limited Number of Examples

In practice, a developer may have a limited number of labeled examples. We now assess the ability of
the CuBERT-1K model to answer the queries when trained with decreasing budget. We finetune the
model on all the queries but restrict the number of examples per query to at most 512, 256, 128 or 64.
We select an equal number of positive and negative examples within the restricted budget. Figure 5
compares models trained with the different training budgets on the entire test split of CodeQueries.
We have repeated the experiments three times for the restricted budgets and the variance is shown
in the figure. The exact match over all examples drops from 86.70% to 66.29% (mean over three
experiments) when we go from training with all available examples to 64 examples per query. This is
mainly due to the drop in performance on the positive examples. As the occurrences of the Outside
label far outnumber other labels, the models gravitate towards predicting the label O for all tokens and
find it difficult to accurately predict the spans in positive examples. This is seen in the consistently
better performance on the negative examples even with decreasing budget.

5.2.3 Robustness to Minor Syntactic Errors

Symbolic techniques, like CodeQL, build specialized representations of code for analysis and fail
in the presence of even minor syntax errors in code. We may be able to apply neural networks that
require only tokenization on such code. To validate robustness of neural models to minor errors, we
consider representative errors committed by developers, such as improper indentation, omission of
curly braces, and absence of keywords and operators, as possible code perturbations. We perform
these perturbations on the examples in the test split of CodeQueries to form perturbed examples and
evaluate the CuBERT-1K model from Section 5.1 on them without additional training.

For each example, we sample up to three lines from the code and apply a perturbation to each. To
maintain correspondence to ground truth, we do not perturb the ground truth spans. We bias sampling
towards lines in a prefix of the code, so that perturbed tokens are not pruned away when examples are
pruned to length of 1024. We discard around 3.5% examples for which we could not get perturbed
code that tokenizes within a small, fixed sampling budget. The CuBERT-1K model achieved 83.29%
exact match on all perturbed examples. The same model has achieved 86.70% exact match on the
original, error-free dataset (see Table 2). The full results are available in Table 5. We leave training
on perturbed examples [Jain et al., 2020, Allamanis et al., 2021] to future work.

6 Conclusions and Future Work

We presented the CodeQueries dataset which tests the ability of neural models for code understanding
on the proposed problem of answering semantic queries over code. It requires the models to perform
single- or multi-hop reasoning. Despite a diverse set of 52 queries requiring varied program analyses,
the proposed models perform reasonably well if relevant code is given. At the same time, our
evaluation under pragmatic considerations indicates that scalability to entire files and learning from a
limited number of examples have much room for improvement. We plan to explore models with the
ability to handle larger contexts (e.g., [Dai et al., 2019]), better training of relevance classifier and
span-prediction inspired pre-training objectives (e.g., [Joshi et al., 2020, Ram et al., 2021]) in the
future. We could also add many more semantic queries and programming languages to our dataset.
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Our work can make it easier for regular developers, without the time or expertise to write the formal
queries, to formulate semantic queries through examples. If this line of work succeeds, it may reduce
the demand for experts involved in developing the symbolic program analysis techniques.
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A Training Setup

This section documents the setup used for training the models discussed in Section 5. The pre-trained
encoder models come with different input size restrictions. For CuBERT and CodeBERT, checkpoints
are available for input length of 512. For CuBERT, a checkpoint for input length of 1024 is also
available. The GraphCodeBERT model allocates input length of 512 for code tokens and 128 for
data-flow graph nodes. We use all these available checkpoints for experimentation. We omit the
architectural details of these pre-trained models and refer the reader to the respective papers for the
details. The inputs are pruned or padded after tokenization using the respective subword vocabularies.
As a non-pre-trained baseline, we train a Transformer encoder with input length of 1024 from scratch.
We tried 3-6 layers, 8 or 16 attention heads, and 512 or 1024 as the embedding dimension. The best
performing model has a hidden dimension of 512, 2048 as dimension of hidden layer of feed-forward
layer, 8 attention heads and 3 encoder layers. We used the CuBERT vocabulary for this Transformer
encoder but trained the token embeddings from scratch with dimension of 512.

For span prediction, the token encodings from the final hidden layer of an encoder are passed
through a dropout layer with dropout probability 0.1 followed by a classification layer. We initially
experimented with up to 10 epochs and learning rates in the order of e-5 and e-6 for these models.
We observed that the models reached minimum validation loss with the following configurations and
used them: Finetuning is performed for 5 epochs for the 512-length models and for 3 epochs for the
1024-length models. The learning rate of 3e-5 is used for CuBERT and CodeBERT, and 5e-5 is used
for GraphCodeBERT. The non-pre-trained baseline Transformer model is trained for 40 epochs with
the learning rate of 3e-5. The checkpoints are selected by least validation loss. Based on the memory
constraints, we used batch sizes of 4 and 16 for sequence lengths 1024 and 512 respectively. All the
models are trained by minimizing the cross-entropy loss using the AdamW optimizer [Loshchilov

12

https://github.com/tree-sitter/tree-sitter
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903


and Hutter, 2017] and linear scheduling without any warmup. We finetuned the CuBERT 1024 model
on specialized datasets for ablation of supporting facts and query-specific models (Section 5.1) and
under limited number of per-query examples (Section 5.2.2). We used the same hyper-parameters for
these experiments as stated for the CuBERT 1024 model above.

For the relevance classification model, we finetuned the pre-trained CuBERT model with input length
limit of 512. The pooled output is passed through a dropout layer with dropout probability of 0.1 and
a 2 layer classifier with hidden-dimension of 2048. We finetuned it for 5 epochs with learning rate of
3e-6 and weighted crossentropy (with weights 1/2 for irrelevant/relevant class) as loss function. The
best checkpoint is decided based on least validation loss.

All experiments are performed on a 64 bit Debian system with an NVIDIA Tesla A100 GPU having
40GB GPU memory and 85GB RAM.

B Additional Results

Answer Match
Models All Positive Negative
CuBERT-1K - trained without supporting facts 86.96 73.67 96.41
CuBERT-1K - original, trained with supporting facts 87.41 73.76 97.11

Table 4: Results of ablation with respect to supporting facts. “Answer Match" is exact match but
based only on answer span predictions.

Training on all queries versus individual queries. For queries with small number of examples,
predicting both answer and supporting facts is harder than predicting only the answer spans. We
therefore train and evaluate the models for answer span prediction.

We finetune the CuBERT-1K model for each of the 52 queries separately, i.e, we group the training
examples by queries and train 52 models (one model on each of these groups). We call these models
query-specific models. We finetune a single model, called the multi-query model, on the training
examples of all queries. We group the test examples by queries and compare the performance of the
52 query-specific models, against the multi-query model, on their respective test examples.

Figure 6 shows the performance of these models. The queries are arranged on X-axis in the decreasing
order of the number of training examples. As the number of training examples decreases, the
performance of the multi-query model is much better than the performance of the query-specific
models. The average number of training examples when the multi-query model is better performing
than the query-specific models is 434, and the least number of training examples in a query where
a query-specific model is better performing than the multi-query model is 842. This indicates that
training on multiple queries increases the model performance as compared to training on individual
queries. The number of queries among the 52 queries where the multi-query model performs better
than the query-specific models is 46 (these queries are marked by x) as compared to 6 queries where
training individually is better (these queries are marked by •). This shows that multi-query learning
is better performing and also convenient as a single model can answer several queries, i.e, a single
model is effectively performing several program analysis tasks.

Test Data All Positive Negative

Perturbed 83.29 67.16 94.59
Original 86.70 72.51 96.79

Table 5: Results of robustness to minor syntax errors. These are exact-match results of span prediction
with the CuBERT-1K model on the perturbed test dataset (top) and the original unperturbed dataset
(bottom, same as in Table 2).

C Single-hop and Multi-hop Examples

13



Figure 6: Comparison of training on all queries versus individual queries. The Orange bar plot
shows the exact match (scaled to [0,1]) of the multi-query model (trained on all queries) on the
test splits of the 52 queries arranged on X-axis in the decreasing order of the number of training
examples. The line plot shows the exact match of the 52 query-specific models on their test sets. As
seen, the multi-query model outperforms the query-specific models on 46 of 52 queries, showing
significant positive transfer across queries. In the line plot, the 6 queries on which the query-specific
models perform better than the multi-query model are marked by • and the 46 queries on which the
multi-query model performs better are marked by x.

1 def test_open_zipped(self):
2 zf = self._make_zip_file()
3 with ignore_warnings():
4 assert len(fits.open(self._make_zip_file())) == 5
5 with ignore_warnings():
6 assert len(fits.open(zipfile.ZipFile(zf))) == 5
7

Answer span 1

Answer span 2

Figure 7: A positive example with multiple answer spans for the single-hop query “An assert
statement has a side-effect.”

Figure 75 shows a positive example for the single-hop query “An assert statement has a side-
effect”. This query aims to find assert statements that can potentially cause side-effects. It can be
answered by finding assert statements and analyzing them to find potential side-effects, for example,
the presence of function calls. In Figure 7, both the assert statements call fits.open which has
side-effects and are identified as the ground truth answer spans.

5Part of spacetelescope/PyFITS/pyfits/tests/test_core.py file in the ETH Py150 Open dataset.
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1 class Type(object):
2 def __eq__(self, other):
3 return self.__class__ == other.__class__
4

5 def from_str(self, s):
6 raise NotImplementedError
7

8 class Choice(Type):
9 def __init__(self, *options):

10 self._options = options
11

12

13 def from_str(self, s):
14 if s in self._options:
15 return s
16 raise ValueError("Unexpected value %s: must be one of %s" %
17 (s, ", ".join(self._options)))
18

Block 1

Block 2

Answer span

Supporting fact 1

Supporting fact 2

Block 3

Block 4

Figure 8: A positive example with one answer span and two supporting-fact spans for the multi-hop
query “__eq__ not overridden when adding attributes”.

1 def test_tbstyle_short(testdir):
2 p = testdir.makepyfile("""
3 def pytest_funcarg__arg(request):
4 return 42
5 def test_opt(arg):
6 x = 0
7 assert x
8 """)
9 result = testdir.runpytest("--tb=short")

10 s = result.stdout.str()
11 assert ’arg = 42’ not in s
12 assert ’x = 0’ not in s
13 result.stdout.fnmatch_lines([
14 "*%s:5*" % p.basename,
15 " assert x",
16 "E assert*",
17 ])
18 result = testdir.runpytest()
19 s = result.stdout.str()
20 assert ’x = 0’ in s
21 assert ’assert x’ in s

Figure 9: A negative example with multiple plausible, but no actual, answers for the single-hop
query “An assert statement has a side-effect.” It has four assert statements but none of them has a
side-effect.

Figure 86 shows a positive example for the multi-hop query “__eq__ not overridden when adding
attributes”. If a subclass adds attributes that are not present in its superclasses, it should override
the __eq__ method. Otherwise, the equality function might not work properly. More than one code
block is needed to find answers to this query. This example requires analyzing code blocks from
the subclass and its superclass. Figure 8 shows the answer span and the supporting-fact spans. The
declaration of the Choice class is the answer span in this example. The highlighted supporting facts
from different code blocks indicate that this class has added an attribute (_options) which is absent
in its superclass (class Type), and the superclass has defined the __eq__ method, which should

6Part of rllab/rllab/rllab/envs/box2d/parser/xml_attr_types.py file in the ETH Py150 Open
dataset.
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1 class TagNode(Node):
2 def __init__(self, name):
3 self.name = name
4

5 def __eq__(self, other):
6 return (self.__class__ == other.__class__ and
7 self.name == other.name)
8

9 def __repr__(self):
10 return ’<TagNode: %s>’ % self.name
11

12 class RegexTagNode(TagNode):
13 def __init__(self, name, regex):
14 self.name = name
15 self.regex = regex
16

17 def __eq__(self, other):
18 return (self.__class__ == other.__class__ and
19 self.name == other.name and
20 self.regex == other.regex)
21

22 def __repr__(self):
23 return ’<RegexTagNode %s: %s>’ % (self.name, self.regex)
24

Figure 10: A negative example with a plausible, but not actual, answer for the multi-hop query
“__eq__ not overridden when adding attributes”. The subclass RegexTagNode adds a new attribute
regex not present in its base class TagNode but also overrides the __eq__ method.

be overridden. Code blocks like __init__ methods from the superclass and subclass may indicate
declaration of additional attributes in the subclass. __eq__ methods are also helpful in answering this
query, as they indicate if __eq__ method needs to be overridden. Apart from these, other code in the
superclass and subclass may also indicate the presence of additional attributes, hence all code from
the superclass and subclass is relevant.

D Positive and Negative Queries

By evaluating the original CodeQL queries, we obtain positive results that provide answers to the
queries. We call these queries positive queries. To obtain negative results, we modify the positive
queries to identify spans that are plausible, but not actual, answers with respect to the positive queries.
We call these modified queries as negative queries.

We refer the reader to the query definition of the “An assert statement has a side-effect” query7,
which is a single-hop query. It defines a predicate func_with_side_effects to check if a given
expression contains a function and another predicate call_with_side_effect to check if a given
expression contains a call which can have a side-effect on the functionality of the rest of the code. The
predicate probable_side_effect uses func_with_side_effects and call_with_side_effect to
check if a given expression has a side-effect. The CodeQL queries have syntax similar to SQL and
use the select and where clauses. The predicates are used in these queries to identify appropriate
answer spans. In this case, the where clause checks if an assert statement has an expression e that
has a probable side-effect probable_side_effect(e). As discussed earlier, Figure 7 is a positive
example for this query.

To obtain the corresponding negative query, we simply change the where clause to use not
probable_side_effect(e) while keeping everything else the same. When evaluated, it gives us
plausible yet incorrect answers with respect to the original, positive query since the answer does

7https://github.com/github/codeql/blob/main/python/ql/src/Statements/
SideEffectInAssert.ql
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contain an assert but it does not have a side-effect. Figure 98 shows a negative example we get by
evaluating the negative query.

We now refer the reader to the query definition of the “__eq__ not overridden when adding attributes”
query9, which is a multi-hop query. It defines a predicate class_stores_to_attribute to check
which attributes are declared by a class. The predicate should_override_eq checks that a given
class does not declare __eq__ method but its superclass declares __eq__ method. The where clause
selects class definitions of classes which declare additional attributes, have superclasses which declare
the __eq__ method, but the class itself does not declare the __eq__ method.

To obtain the corresponding negative query, we define a predicate
should_override_eq_and_does_override_eq to check that both the given class and its su-
perclass declare the __eq__ method. The definition of this predicate is similar to that
of should_override_eq except that instead of not cls.declaresAttribute("__eq__")
we use cls.declaresAttribute("__eq__"), that is, we remove not in the first
conjunct of should_override_eq. The where clause in the negative query uses
should_override_eq_and_does_override_eq to select the class definition of a class which
declares additional attributes, has superclasses which declares the __eq__ method and the class itself
does declare the __eq__ method. Figure 10 10 shows a negative example we get by evaluating the
negative query.

E Details about Deriving Labeled Examples

We explain the procedure to derive labeled examples starting from the results returned by the CodeQL
engine. Given the answer and supporting-fact spans of a single-hop query, we select the method to
which the spans belong as the code to be queried upon. The locations of the spans within the method
are treated as the ground truth. A class may contain class-level statements that do not fall within
any method, e.g., declarations of class variables. If the spans fall within class-level statements, we
collate all the class-level statements together as the code to be queried. Similarly, a file may contain
file-level statements that do not fall within any class or method, e.g., the import statements. We
collate the file-level statements together to form an example for a single-hop query if the spans fall
within file-level statements. We generically refer to the statements of a method (including the method
declaration), the class-level statements within a class (including the class declaration), or the file-level
statements within a file as a code block. Single-hop queries involve analyzing single code blocks in
isolation.

A multi-hop query analyzes multiple code blocks to produce an answer. However, the result returned
by the CodeQL engine does not explicitly identify which code blocks were required for the analysis.
We therefore inspect the CodeQL query definitions to identify the steps used by the query to select
code blocks for analysis. For example, the conflicting-attributes query selects a class and all its
superclass(es). Another query may analyze code within only a single class. Given the locations of
answer and supporting-fact spans within code for a query, we programmatically obtain the set of
code blocks needed for arriving at the same results for the given query. We implement this procedure
using the tree-sitter parsing library [tree-sitter project, 2021]. An example for a multi-hop query
consists of a set of code blocks and the ground truth spans.

As discussed in Section 3, we write negative queries to obtain negative examples. The procedure
to derive negative examples from the results of negative queries is the same as described above.
However, the spans identified in the results of negative queries are plausible, but not actual, answers
for the corresponding original queries. Therefore, the resulting examples are labeled with an empty
set of spans as ground truth, meaning that a model should not return any spans on the corresponding
code with respect to the original (positive) query.

8Part of pytest-dev/pytest/testing/test_terminal.py file in the ETH Py150 Open dataset.
9https://github.com/github/codeql/blob/main/python/ql/src/Classes/

DefineEqualsWhenAddingAttributes.ql
10Part of codysoyland/surlex/src/surlex/grammar.py file in the ETH Py150 Open dataset.
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F Query-wise Dataset Statistics

We report the query-wise statistics for multi-hop queries, aggregated across all splits, in Table 6.
We report the statistics for All Examples, Positive examples and Negative examples. Count gives
the number of examples. We sort all the tables from here on by the descending order of count of
all examples. Under all examples, we give the average length of the input sequences in terms of
sub-tokens. Here, the sub-tokenization is performed using the CuBERT vocabulary. For positive
examples, we report the average number of answer (abbreviated as Ans.) spans and supporting fact
(abbreviated as SF) spans. The column Avg. Spans after Pruning is the average number of spans
(both answer and supporting fact spans combined) after the sub-tokenized sequence is pruned to the
length of 1024 for the CuBERT-1K model. Note that the number of answer or supporting fact spans is
zero for negative examples and are hence omitted. We highlight the minimum and maximum values
per column in bold face.

Table 6: Query-wise statistics for the multi-hop queries.

Index Query Name All Examples Positive Negative

Count Avg.
Length Count

Avg.
Ans.

Spans

Avg.
SF

Spans

Avg.
Spans

after
Pruning

Count

Q1 Unused import 48,555 3220.68 19,178 2.10 0 2.04 29,377
Q2 Missing call to

__init__ during
object initialization

1,540 287.18 770 1.00 2.02 2.98 770

Q3 Use of the return value
of a procedure

1,013 1078.05 432 1.44 1.04 1.98 581

Q4 __eq__ not overrid-
den when adding at-
tributes

857 1837.72 778 1.00 3.87 3.29 79

Q5 Wrong number of ar-
guments in a call

794 872.75 355 1.28 1.04 2.08 439

Q6 Comparison using is
when operands sup-
port __eq__

540 1063.45 230 1.52 0 1.21 310

Q7 Signature mismatch in
overriding method

531 3610.39 247 1.32 1.22 1.40 284

Q8 Non-callable called 422 1867.71 162 1.65 1.44 2.36 260
Q9 __init__ method

calls overridden
method

393 5457.02 193 1.29 4.23 2.81 200

Q10 Conflicting attributes
in base classes

364 2757.73 182 1.07 3.05 1.75 182

Q11 __iter__ method re-
turns a non-iterator

329 213.20 209 1.00 1.08 2.08 120

Q12 Flask app is run in de-
bug mode

243 343.55 123 1.00 0 0.98 120

Q13 Inconsistent equality
and hashing

241 1657.24 121 1.00 1.00 1.78 120

Q14 Wrong number of ar-
guments in a class in-
stantiation

212 1317.06 99 1.21 0.91 1.84 113

Q15 Incomplete ordering 174 2252.13 87 1.00 1.31 2.05 87
Aggregate 56,208 2985.95 23,166 1.94 0.34 2.10 33,042

Table 7 gives the query-wise statistics for single-hop queries aggregated across all splits. The column
headings have the same meaning as those of Table 6. We highlight the minimum and maximum
values per column in bold face.
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Table 7: Query-wise statistics for the single-hop queries.

Index Query Name All Examples Positive Negative

Count Avg.
Length Count

Avg.
Ans.

Spans

Avg.
SF

Spans

Avg.
Spans

after
Pruning

Count

Q16 Unused local variable 34,202 464.42 14,326 1.43 0 1.36 19,876
Q17 Except block handles

BaseException
22,596 561.92 10,377 1.27 0 1.16 12,219

Q18 Imprecise assert 16,311 306.26 6,060 2.05 0 2.00 10,251
Q19 Variable defined multi-

ple times
10,300 758.36 3,694 1.82 3.49 3.51 6,606

Q20 Testing equality to
None

5,454 573.88 2,354 1.36 0 1.24 3,100

Q21 Unreachable code 4,612 790.50 2,098 1.20 0 1.06 2,514
Q22 First parameter of a

method is not named
self

4,088 177.55 2,044 1.00 0 1.00 2,044

Q23 Unnecessary pass 2,517 388 1,114 1.26 0 1.14 1,403
Q24 Module is imported

with import and
import from

1,959 605.6 953 1.06 0 1.03 1,006

Q25 Module is imported
more than once

1,051 899.96 489 1.17 1.20 1.98 562

Q26 Comparison of con-
stants

909 795.2 78 10.73 0 9.50 831

Q27 Implicit string con-
catenation in a list

871 1819.25 319 1.75 0 1.43 552

Q28 Suspicious unused
loop iteration variable

823 713.69 387 1.12 0 1.02 436

Q29 Duplicate key in dict
literal

715 2588.83 150 3.99 3.82 2.09 565

Q30 Unnecessary else
clause in loop

676 576.45 338 1.02 0 1.01 338

Q31 First argument to su-
per() is not enclosing
class

657 180.22 326 1.02 0 1.01 331

Q32 Redundant assignment 597 1045.49 260 1.30 0 1.24 337
Q33 An assert statement

has a side-effect
537 458.88 206 1.65 0 1.59 331

Q34 Nested loops with
same variable

520 920.02 241 1.16 1.05 1.90 279

Q35 Import of deprecated
module

515 709.62 243 1.12 0 1.05 272

Q36 NotImplemented is
not an Exception

476 138.42 237 1.01 0 1.01 239

Q37 Redundant compari-
son

463 908.08 188 1.47 1.30 2.52 275

Q38 Deprecated slice
method

439 117.18 215 1.04 0 1.04 224

Q39 Constant in condi-
tional expression or
statement

423 610.60 164 1.58 0 1.34 259

Q40 Comparison of identi-
cal values

415 707.73 164 1.53 0 1.47 251

Q41 import ⋆ may pol-
lute namespace

397 1536.95 197 1.02 0 0.99 200

Q42 Unnecessary delete
statement in function

382 582.99 199 1.00 1.00 1.92 183

Q43 Illegal raise 374 553.21 173 1.16 0 1.1 201
Q44 Insecure temporary

file
287 440.16 139 1.09 0 1.07 148

Q45 Modification of pa-
rameter with default

238 827.17 96 1.48 1.02 2.26 142
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Index Query Name All Examples Positive Negative

Count Avg.
Length Count

Avg.
Ans.

Spans

Avg.
SF

Spans

Avg.
Spans

after
Pruning

Count

Q46 Should use a with
statement

228 368.79 113 1.02 0 1.00 115

Q47 Special method has in-
correct signature

222 101.90 111 1.00 0 1.00 111

Q48 Non-standard excep-
tion raised in special
method

205 174.25 102 1.01 0 1.01 103

Q49 Use of global at
module level

193 606.58 72 1.69 0 1.44 121

Q50 Modification of dictio-
nary returned by lo-
cals()

173 776.82 73 1.34 0 1.18 100

Q51 Incomplete URL sub-
string sanitization

168 826.67 70 1.43 0 1.31 98

Q52 Unguarded next in
generator

145 512.22 67 1.22 0 1.21 78

Aggregate 115,138 538.71 48,437 1.46 0.31 1.53 66,701

G Query-wise Results

We now present query-wise exact match results for all, positive and negative examples. Tables 8
and 9 give results for the multi-hop and single-hop queries for the CuBERT-1K model. The average
performance on the single-hop queries is better than the multi-hop queries due to the complexity of
analysis inherent in multi-hop reasoning.

Table 8: Query-wise results for the multi-hop queries.

Exact Match

Index Query Name All
Examples

Positive Negative

Q1 Unused import 78.30 52.10 95.35
Q2 Missing call to __init__ during object initializa-

tion
88.06 85.45 90.67

Q3 Use of the return value of a procedure 75.32 50.34 96.49
Q4 __eq__ not overridden when adding attributes 56.18 63.90 11.90
Q5 Wrong number of arguments in a call 48.97 14.81 76.30
Q6 Comparison using is when operands support

__eq__
82.11 64.63 95.37

Q7 Signature mismatch in overriding method 51.58 2.97 92.50
Q8 Non-callable called 59.21 8.82 100.00
Q9 __init__ method calls overridden method 34.27 2.82 65.28

Q10 Conflicting attributes in base classes 47.46 16.95 77.97
Q11 __iter__ method returns a non-iterator 79.25 96.77 54.55
Q12 Flask app is run in debug mode 97.47 97.50 97.44
Q13 Inconsistent equality and hashing 64.06 71.88 56.25
Q14 Wrong number of arguments in a class instantiation 48.61 23.53 71.05
Q15 Incomplete ordering 63.79 48.28 79.31

Aggregate 76.82 52.19 94.01

Table 9: Query-wise results for the single-hop queries.

Exact Match

Index Query Name All
Examples

Positive Negative

Q16 Unused local variable 91.78 82.90 98.34
Q17 Except block handles BaseException 96.56 92.71 99.82
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Exact Match

Index Query Name All
Examples

Positive Negative

Q18 Imprecise assert 98.64 96.25 99.95
Q19 Variable defined multiple times 78.56 50.13 95.44
Q20 Testing equality to None 97.31 93.82 100.00
Q21 Unreachable code 78.07 56.04 96.68
Q22 First parameter of a method is not named self 99.93 99.86 100.00
Q23 Unnecessary pass 95.79 91.28 99.39
Q24 Module is imported with import and import

from
79.85 67.67 91.24

Q25 Module is imported more than once 72.18 50.58 91.62
Q26 Comparison of constants 93.79 42.86 95.84
Q27 Implicit string concatenation in a list 83.17 62.60 98.31
Q28 Suspicious unused loop iteration variable 86.79 79.38 93.04
Q29 Duplicate key in dict literal 59.69 10.71 97.26
Q30 Unnecessary else clause in loop 86.92 74.53 99.07
Q31 First argument to super() is not enclosing class 95.65 92.98 98.28
Q32 Redundant assignment 91.24 83.53 97.25
Q33 An assert statement has a side-effect 84.52 62.90 98.92
Q34 Nested loops with same variable 53.53 31.71 73.86
Q35 Import of deprecated module 72.63 42.05 99.02
Q36 NotImplemented is not an Exception 100.00 100.00 100.00
Q37 Redundant comparison 56.91 12.99 89.42
Q38 Deprecated slice method 100.00 100.00 100.00
Q39 Constant in conditional expression or statement 88.31 67.92 99.01
Q40 Comparison of identical values 83.46 58.00 98.80
Q41 import ⋆ may pollute namespace 93.02 87.50 98.46
Q42 Unnecessary delete statement in function 72.63 77.55 67.39
Q43 Illegal raise 86.73 85.11 88.24
Q44 Insecure temporary file 95.65 90.91 100.00
Q45 Modification of parameter with default 60.00 9.09 92.31
Q46 Should use a with statement 95.00 92.50 97.50
Q47 Special method has incorrect signature 82.43 78.38 86.49
Q48 Non-standard exception raised in special method 95.31 96.88 93.75
Q49 Use of global at module level 92.06 79.17 100.00
Q50 Modification of dictionary returned by locals() 75.86 47.83 94.29
Q51 Incomplete URL substring sanitization 76.71 39.29 100.00
Q52 Unguarded next in generator 42.86 13.04 69.23

Aggregate 91.55 82.34 98.16

H Statistics of Syntactic Patterns of Spans

In our dataset, the answer and supporting-fact spans cover various types of programming language
constructs. Hence, in Table 10, we tabulate the number of spans in terms of syntactic patterns of
Python constructs in decreasing order of their frequency in the combined data of all three splits. To
find the pattern of a span, we have used tree-sitter tree-sitter project [2021] to get the closest
ancestor node which encloses the tokens appearing in the span. Two special entries in the table are
block and module. A block node can represent any block of code, i.e., a block of code, a function, a
class. Sometimes the closest ancestor node is the root node of the source code, for those cases module
node is used as a representative node.

Table 10: Statistics of syntactic patterns of spans.

Syntactic Pattern Count Syntactic Pattern Count Syntactic Pattern Count
import statement 43,013 raise statement 375 module 56
assignment 32,422 function parameters 373 dictionary keys 47
call 15,978 assert statement 368 break statement 43
except clause 13,269 delete statement 358 while statement 43
function definition 8,937 if statement 243 argument list 34
non-boolean binary
operator

5,319 sequence expressions 192 with statement 26
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Span Type Count Span Type Count Span Type Count
class attributes 2,844 identifier 186 parenthesized expres-

sion
14

class definition 2,882 decorator 138 boolean operator 13
block 2,331 print statement 126 elif clause 12
pass statement 1,451 global statement 125 expression list 12
string literal 1,279 list comprehension 101 lambda 11
for statement 1,164 subscript 72 conditional expression 8
concatenated string 558 not operator 71 yield 5
return statement 395 try statement 65 continue statement 3

Aggregate 134,962

I Examples of Successful and Unsuccessful Span Predictions

In this section, we present examples of both successful and unsuccessful predictions of the CuBERT-
1K model for the query “An assert statement has a side-effect.”. Figure 9 is a negative example
where there are four assert statements, but none of them cause a side-effect. The model does not
predict any answer spans as the assert statements are simple enough to deduce absence of side-effect.
This is a case of successful prediction on a negative example (true negative). Figure 1111. shows a
negative example for which the model is unsuccessful (false positive). It incorrectly predicts Line 24
as an answer span, possibly because of the peculiar numerical expressions in the code.

Figure 1212 is a positive example where the model successfully predicted the answer span (true
positive). The presence of the open method might have helped the model to identify the side-effect.
Figure 1313 shows a positive example where the model fails to predict the correct span (false negative).
The complex, multi-line expression in the statement might have made it difficult for the model to
predict the correct answer span.

11Part of fredrik-johansson/mpmath/mpmath/tests/test_elliptic.py file in the ETH Py150 Open
dataset

12Part of kvesteri/flask-storage/tests/test_mock.py file in the ETH Py150 Open dataset.
13Part of getsentry/raven-python/tests/functional/tests.py file in the ETH Py150 Open dataset.
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1 def test_jtheta_issue_79():
2 # near the circle of covergence q = 1 the convergence slows
3 # down; for q > Q_LIM the theta functions raise ValueError
4 mp.dps = 30
5 mp.dps += 30
6 q = mpf(6)/10 - one/10**6 - mpf(8)/10 * j
7 mp.dps -= 30
8 # Mathematica run first
9 # N[EllipticTheta[3, 1, 6/10 - 10^-6 - 8/10*I], 2000]

10 # then it works:
11 # N[EllipticTheta[3, 1, 6/10 - 10^-6 - 8/10*I], 30]
12 res = mpf(’32.0031009628901652627099524264’) + \
13 mpf(’16.6153027998236087899308935624’) * j
14 result = jtheta(3, 1, q)
15 # check that for abs(q) > Q_LIM a ValueError exception is raised
16 mp.dps += 30
17 q = mpf(6)/10 - one/10**7 - mpf(8)/10 * j
18 mp.dps -= 30
19 try:
20 result = jtheta(3, 1, q)
21 except ValueError:
22 pass
23 else:
24 assert(False)
25

26 # bug reported in issue 79
27 mp.dps = 100
28 ...

Figure 11: A negative example for the query “An assert statement has a side-effect.”. It has no assert
statement which has a side-effect, but the model incorrectly predicts Line 24 as an answer span.

1 def test_reads_file_object_and_saves_in_dict(self):
2 storage = MockStorage()
3 io = StringIO()
4 io.write(’file contents’)
5 storage.save(’key’, io)
6 assert storage.open(’key’).read() == ’file contents’

Figure 12: A positive example for the query “An assert statement has a side-effect.” where the
model predicts the ground-truth span (highlighted in Red) successfully.

1 def test_absolute_import(self):
2 string = ’from __future__ import absolute_import’
3 kwargs = {
4 ’stdout’: open(’/dev/null’, ’a’),
5 ’stderr’: open(’/dev/null’, ’a’),
6 }
7 for filename in find_files(ROOT, ’*.py’):
8 assert not call([’grep’, string, filename], **kwargs), \
9 "Missing %r in %s" % (string, filename[len(ROOT) - 5:])

Figure 13: A positive example for the query “An assert statement has a side-effect.” where the
model fails to predict the ground-truth span (highlighted in Red).

23


	Introduction
	Related Work
	Dataset Preparation
	Modeling and Metrics
	Span Prediction Model
	Two-step Procedure of Relevance Classification and Span Prediction
	Evaluation Metrics

	Experimental Results
	Experimentation under an Ideal Setting with only Relevant Code
	Experimentation under Pragmatic Considerations
	Scaling to Large-Size Code
	Learning from a Limited Number of Examples
	Robustness to Minor Syntactic Errors


	Conclusions and Future Work
	Training Setup
	Additional Results
	Single-hop and Multi-hop Examples
	Positive and Negative Queries
	Details about Deriving Labeled Examples
	Query-wise Dataset Statistics
	Query-wise Results
	Statistics of Syntactic Patterns of Spans
	Examples of Successful and Unsuccessful Span Predictions

