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Abstract

Harmonization of local source concepts
to standard clinical terminologies is a
prerequisite for multi-center data ag-
gregation and sharing. Challenges in
automating the mapping process stem
from the idiosyncratic source encoding
schemes adopted by different health sys-
tems and the lack of large publicly avail-
able training data. In this study, we aim
to develop a scalable and generalizable
machine learning tool to facilitate stan-
dardizing laboratory observations to the
Logical Observation Identifiers Names
and Codes (LOINC). Specifically, we
leverage the contextual embedding from
pre-trained T5 models and propose a
two-stage fine-tuning strategy based on
contrastive learning to enable learning
in a few-shot setting without manual
feature engineering. Our method uti-
lizes unlabeled general LOINC ontology
and data augmentation to achieve high
accuracy on retrieving the most relevant
LOINC targets when limited amount of
labeled data are available. We further
show that our model generalizes well to
unseen targets. Taken together, our ap-
proach shows great potential to reduce
manual effort in LOINC standardiza-
tion and can be easily extended to map-
ping other terminologies.

Keywords: Large Language Model,
T5, LOINC, Contrastive Learning, Sen-
tence Embedding, Data Standardiza-
tion, Medical Entity Linking

1. Introduction

Electronic health records (EHRs) have be-
come an integral part of the digital health-
care systems in the past decade (Atasoy
et al., 2019). Efficient sharing and aggrega-
tion of EHRs across various health institu-
tions is essential for improving patient care
quality, facilitating public health surveil-
lance, and reducing healthcare costs. EHRs
encompass a rich body of clinical informa-
tion: laboratory tests, clinical observations,
physician notes, and medical history. They
are often stored in heterogeneous formats
and encoded in proprietary schemes specific
to an institution (Abhyankar et al., 2012).
Such idiosyncrasy in the source encoding has
become the major obstacle to the success
of multi-site clinical information exchange.
Therefore, tools for mapping local clinical
data to standard terminologies are crucial
for data interoperability across sites, with
machine learning-based automation playing
a key role.
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In this study, we focus on developing ma-
chine learning tools to automate the stan-
dardization of laboratory observations to the
Logical Observation Identifiers Names and
Codes (LOINC) (Stram et al., 2020). The
LOINC system is a standardized coding sys-
tem for laboratory observations where each
laboratory record is identified across six di-
mensions: component, property, time, sys-
tem, scale, and method. LOINC codes can
provide fine-grained information useful for
resolving the ambiguity often seen in lo-
cal coding systems. Such ambiguity occurs
due to a number of factors: (i) home-grown
acronyms and synonyms used by local lab-
oratories; (ii) misspelling and human errors
during the manual entry of lab results; (iii)
missing information (specimen, unit, instru-
ment, etc.) in the record. As a result, accu-
rately mapping local laboratory observations
to LOINC is an onerous, manual task that is
resource-consuming and error-prone. There
have been efforts to develop tools to auto-
mate this data harmonization process (Fi-
dahussein and Vreeman, 2014; Khan et al.,
2006; Parr et al., 2018; Kelly et al., 2021).
However, this problem remains very chal-
lenging because the current LOINC database
contains more than distinct 80,000 LOINC
codes to choose from, and idiosyncratic lo-
cal lab identifiers often do not provide suffi-
cient and coherent information to enable an
accurate mapping. The majority of existing
automated machine learning tools rely heav-
ily on hand-crafted features that are engi-
neered specifically to one data center. Such
dependency on complex manual feature en-
gineering significantly limits the scalability
and generalization of these tools to other
data sources and unseen targets.

In this work, we aim to develop a scalable
machine learning tool to automate the map-
ping from local source codes to target LOINC
codes. In particular, we leverage the seman-
tic expressiveness of embeddings from pre-

trained large language models (LLMs) and
formulate the learning problem in the con-
text of few-shot learning to enable training
with a small amount of labeled data (Wang
et al., 2020). While it is possible to use our
model as a fully automated tool, in prac-
tice, clinical personnel is often involved in
the loop to ensure accuracy. We propose pro-
viding the clinical user with a list of k most
relevant suggestions to facilitate the review
process. To this end, we focus on the top-k
prediction performance metrics in the devel-
opment and evaluation of our model. Our
contributions are as follows: (i) We propose
a model that requires minimally manual fea-
ture engineering and utilizes only free text
information in the source and target codes.
(ii) We propose a two-step fine-tuning strat-
egy in combination with data augmentation,
which improves model performance over pre-
trained LLMs using only a limited amount of
source-target pairs or just the target codes
alone. The proposed framework is therefore
easily adaptable to other standard terminolo-
gies even in the absence of source codes. (iii)
We employ a contrastive learning approach
which enables the model to generalize to un-
seen target codes without the need of retrain-
ing the model during inference.

2. Related work

Previous studies have proposed different ap-
proaches to automate LOINC harmoniza-
tion, considering varying numbers of source
codes and LOINC targets of interest. Most
of these approaches used either rule-based
string matching algorithms or machine learn-
ing classifiers. Both types of method rely
primarily on hand-crafted features, which
makes them difficult to apply on new data
sources. For example, Khan et al. (2006);
Fidahussein and Vreeman (2014) derived a
rich local corpus for LOINC mapping which
achieved an accuracy between 63% and 79%.
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Sun and Sun (2006) developed a lexical map-
ping tool that correctly identified 63% lo-
cal concepts on average. Parr et al. (2018);
Kelly et al. (2021) treated LOINC mapping
as a multi-class classification problem and
trained various classifiers based on a set of
hand-crafted textual and numerical features.
While both studies showed a relatively high
accuracy (ranging from 85% to 95% on var-
ious datasets), the major drawback of their
approaches is the difficulty to handle unseen
LOINC targets as the classifiers were trained
to predict only a fixed number (1,164 and
482) of LOINC codes. A more recent study
(Langton and Srihasam, 2021) proposed a
hybrid approach combining deep learning
models and word-logic methods to avoid the
need of complex feature engineering. They
trained six character-level gated recurrent
unit (GRU) classifiers to make prediction
on each of the six LOINC dimensions from
source text strings and then combined the
outputs from six classifiers with logic based
method for the final LOINC code selection.
Their approach achieved human-level perfor-
mance of 80% accuracy on 98% of source
codes. Our approach, on the other hand,
uses embeddings from pre-trained LLM to
extract features from text strings, avoid-
ing the need for manual feature engineering.
This allows our model to be more scalable
and generalizable to different data sources
compared to previous approaches. More im-
portantly, since the training data we use only
contain one or few source examples for each
LOINC target, it makes the classification set-
ting not suitable. Instead, we use a con-
trastive approach to fine-tune the embed-
dings from pre-trained LLMs given limited
amount of training data. This approach en-
ables the model to generalize to an arbitrary
number of LOINC targets at inference stage.

3. Methods

3.1. Datasets

We aggregate source and target pairs from
the open-source EHR database MIMIC-III
(Medical Information Mart for Intensive
Care) (Johnson et al., 2016). In our anal-
ysis, we focus on LOINC codes associated
with laboratory and clinical observations and
utilize only free text information associated
with source and target codes. As such,
we aggregate all local source concepts in
the “d labitems” table by grouping on the
“itemid”, “label”, “fluid”, and “loinc code”
fields. Specifically, for each source code, we
concatenate the text terms from the “la-
bel” and “fluid” (specimen) fields into a sin-
gle text string. We then convert all text
strings into lower case. This results in 579
source-target pairs with a total of 571 unique
LOINC targets, where the majority of these
pairs are one to one mapping.

3.2. Data augmentation

We apply data augmentation techniques to
create variations in both source and target
text strings to overcome data scarcity. We
leverage the rich information in the pub-
licly available LOINC table (version 2.72) 1

to augment the training data. In particu-
lar, LOINC table provides three variants of
text label for each LOINC code: long com-
mon name (LCN), display name (DN), and
short name (SN). Additionally, for a subset
of LOINC codes, the “RELATEDNAMES2”
field in the LOINC table provides common
acronyms, synonyms, and custom nomencla-
ture related to the code. As a result, we
apply character-level random deletion, word-
level random swapping, word-level random
insertion (of the related names), and word-
level acronym substitution to create varia-

1. https://loinc.org/news/
loinc-version-2-72-is-now-available/
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tions in the text representation of source and
target codes. Examples are shown in Fig-
ure 1A.

3.3. Contrastive learning

Even after data augmentation, each target
class only has a few training examples. Fur-
thermore, our training data only cover a very
small percentage of LOINC codes. Moti-
vated by the recent success of constrastive
learning in few-shot settings (Chen et al.,
2020; Wang et al., 2020; Geng et al., 2019),
we propose fine-tuning the embeddings from
a pre-trained LLM with a contrastive loss
function to learn discriminative latent rep-
resentations of the textual information in
source and target codes, with the goal of re-
ducing within-class variance while increasing
between-class separability. Different from
a multi-class classification setup, the con-
strastive approach enables the model to be
trained in both supervised and unsupervised
settings, which makes the learning possible
with target codes alone. Specifically, in or-
der to give our model the capability to handle
variants of source/target inputs (acronyms,
synonyms, and misspelling), we choose a
triplet loss function (Schroff et al., 2015) de-
fined as:

L = max
(
0,D2

fθ(xa,xp)
−D2

fθ(xa,xn)
+ α

)
where xa is an anchor sample, xp is a pos-
itive sample in the same class as xa, xn is
a negative sample in a different class from
the anchor. D represents a distance met-
ric (cosine distance) and fθ is the trained
LLM encoder. α is a margin hyperparame-
ter. Triplet loss function aims at minimizing
the distance between the positive sample and
the anchor while pushing away the negative
sample from the anchor. For example, if we
sample a triplet using the long common name
of one LOINC code as the anchor, the short
name of the same code as the positive sam-
ple, and the long common name of a different

LOINC code as the negative sample, the loss
function then encourages the model to em-
bed the long name and abbreviation of the
same code closer in the latent space. Note
that both source and target codes can be se-
lected to form a triplet based on their class
assignment.
Since previous work (Schroff et al., 2015;

Hermans et al., 2017; Robinson et al., 2020;
Sikaroudi et al., 2020) has shown that the
sampling strategy of selecting triplets signif-
icantly impacts the model performance, we
employ the online batch-based hard triplets
mining with a large batch size to achieve high
training efficiency as suggested by Schroff
et al. (2015). In particular, we compare the
model performance of two mining strategies2:
hard negative mining and semi-hard negative
mining. In each iteration, all possible triplets
among samples in a mini-batch are evaluated
but only valid triplets contribute to the loss
depending on the specific sampling strategy.
Batch-wise online triplets mining offers some
regularization effect since samples are ran-
domly selected within each mini-batch.

3.4. Model architecture

Our model uses a Text-to-Text Transfer
Transformer (T5) encoder as the back-
bone, which takes the raw text string of
source/target codes as input. T5 is a fam-
ily of encoder-decoder transformer models
pre-trained in a multi-task setting. A T5
model can scale up to billions of parameters
and achieve state-of-the-art performance in a
wide range of NLP tasks (Raffel et al., 2020).
As shown in Figure 1B, our model uses only
the encoder part of T5 to convert a raw input
text string to a 768-dimensional embedding
vector. The T5 contextual embedding vector
is then projected down to a low-dimensional

2. https://github.com/
tensorflow/addons/blob/

b2dafcfa74c5de268b8a5c53813bc0b89cadf386/

tensorflow_addons/losses/triplet.py
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space (D = 128) to obtain the final em-
bedding vector via a fully-connected layer,
which is L2-normalized before feeding into
the triplet loss function.

The T5 encoder is initialized with pre-
trained Sentence-T5 (ST5) model check-
points. ST5 is a collection of encoder-
only T5-style models pre-trained with a
contrastive approach similar to Sentence-
BERT/RoBERTa (Reimers and Gurevych,
2019). Ni et al. (2022) showed that
ST5 achieves new state-of-the-art perfor-
mance on sentence transfer tasks and out-
performs Sentence-BERT/RoBERTa across
multiple semantic textual similarity (STS)
tasks which are of similar task type as the
LOINC standardization task. In addition,
empirical results have shown that scaling
up ST5 from millions to billions of param-
eters produces consistent further improve-
ments (Ni et al., 2022). For these reasons, we
choose to fine-tune the ST5 encoder for our
task. A variety of model checkpoints with
varying model sizes are available on Tensor-
Flow Hub.3 We choose the ST5-base model
which employs a 12-layer transformer archi-
tecture.

To fine-tune the model, model weights of
the T5 backbone are kept fixed and only pa-
rameters of the add-on fully-connected layer
are updated. This design decision aims to
avoid over-fitting during the fine-tuning as
only limited amount of training data are
available and also allow the fine-tuning to
finish within a reasonable time without con-
suming excessive computational resources.

3.5. Two-stage fine-tuning strategy

To optimize the model performance with
very limited training data, we propose a two-
stage fine-tuning strategy:

3. https://tfhub.dev/google/collections/
sentence-t5/1

(1) In the first stage, model fine-tuning is
done only with the target codes—all LOINC
codes in the LOINC catalog. In particular,
we extract a total of 78,209 LOINC codes
in the laboratory and clinical categories as
an auxiliary training dataset. For the ma-
jority of codes, we obtain three variants of
their text labels. Prior to training, we ap-
ply the data augmentation proposed in Sec-
tion 3.2 on this LOINC target-only auxil-
iary dataset. The goal of this stage is to
fine-tune the model to distinguish among dis-
tinct LOINC targets. Since this target-only
auxiliary dataset is relatively large and con-
tains a rich amount of information on the tar-
gets, the model will gain contextual knowl-
edge about the LOINC ontology, which could
boost the performance on the actual source-
to-target mapping task.

(2) In the second stage, we further fine-
tune the model on the source-target pairs
from MIMIC-III. Similarly, we generate a
large number of augmented samples for each
source/target code and add dropout layer
before the fully-connected layer to mitigate
over-fitting. This second stage fine-tuning
aims to enable the model to learn the specific
data distribution unique to the source-target
pairs and to jointly embed source and target
codes in the same feature space.

3.6. Training and evaluation

The objective of training is to minimize the
triplet loss function. It is different from the
task during inference, which is to retrieve
the most relevant LOINC candidates for each
source code. As this work aims at reducing
the manual effort in the data harmonization
process, it is important to have the correct
target ranked as highly as possible among all
targets of interest. Thus, to evaluate model
performance, we first computed the embed-
dings for the test source code and all LOINC
targets of interest (571 codes), and then used
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Figure 1: Data augmentation and model architecture. (A) Example of a source code and
the corresponding LOINC target. LCN: long common name; DN: display name;
SN: short name. A series of data augmentation steps are applied to both source
and target strings during training. (B) Diagram of the two-stage fine-tuning and
inference. The first stage uses all 78,209 LOINC targets without source codes as
the auxiliary training data. The second stage uses a small number of source and
LOINC pairs from a specific data source to fine-tune the model.

the cosine similarity to select the top k clos-
est LOINC targets to the source. In particu-
lar, we calculated the top-k accuracy as the
performance metric, which is defined as the
percentage of samples whose correct target is
in the top k model predictions.

Fine-tuning experiments were performed
for the following purposes: (1) to compare
T5 embeddings with other baseline embed-
ding models; (2) to evaluate the gain in per-
formance by the first stage fine-tuning utiliz-
ing only LOINC targets; (3) to test the per-
formance improvement from the second stage
fine-tuning on a specific dataset with source-
target pairs; (4) to assess how well our model
generalizes to variations in source represen-

tations and unseen targets not used during
training. We implemented our model with
TensorFlow Abadi et al. (2016) and trained
on NVIDIA Tesla V100 GPU with 16 GB
memory. All models were trained with Adam
optimizer and a batch size of 900. The mar-
gin parameter α was set to 0.8 in all experi-
ments.

First stage training and evaluation In
this stage, we randomly shuffled the target-
only dataset into training (80%) set, valida-
tion (20%) set. We trained the model using
a learning rate of 1 × 10−4 for 30 epochs to
avoid over-fitting. Since no source codes were
used in this stage, the performance metrics
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were evaluated on all source-target pairs in
MIMIC-III.

Second stage training and evaluation
In this stage, we trained the model on aug-
mented source-target pairs using 5-fold cross-
validation scheme with a smaller learning
rate of 1 × 10−5. Within each fold, 20% of
data were held out as test set, we further split
the training data into training (80%) set and
validation (10%) set for convergence mon-
itoring. We aimed to distinguish between
two types of generalizability: performance
on the same LOINC targets with different
source encoding (Type-1) and performance
on unseen new LOINC targets (Type-2). To
this end, the performance metrics were com-
puted for the held-out test set before and af-
ter data augmentation. The augmentation
techniques create random deletion, insertion,
and substitution on test samples to mimic
the heterogeneity one would observe in real-
world applications, which in turn increases
the size of the test set approximately 100
times. We reported model performance on
the augmented test set in order to assess the
robustness of our model against variations in
source representations for the same LOINC
targets (Type-1). Moreover, to demonstrate
the generalizability (Type-2) of our model
on unseen targets, we expanded the target
set of interest by adding the top 2,000 most
common LOINC codes, resulting in a to-
tal of 2,313 unique target codes to select
from. Note that the additional LOINC tar-
gets which are not in MIMIC-III were not
included in the second stage fine-tuning pro-
cess.

4. Results

4.1. Performance of pre-trained LLMs

We first showed off-the-shelf performance of
pre-trained language models together with
the TF-IDF baseline model. Table 1 shows

the performance metrics calculated from dif-
ferent models on MIMIC-III source-target
pairs. Interestingly, sentence embeddings
computed from BERT (mean pooling of out-
put tokens) and universal sentence encoder
(USE) (Cer et al., 2018) perform worse
than TF-IDF (frequency-weighted bag-of-
words model). This is probably due to the
anisotropy phenomenon of contextual em-
beddings from pre-trained language models,
where the direction of vectors in the se-
mantic space is not uniformly distributed
(Ethayarajh, 2019; Gao et al., 2021). This
phenomenon has been shown to cause the
collapse of embeddings that prevents the
model from performing well on distance-
related metrics (Ni et al., 2022). This
problem can be much alleviated by ap-
plying contrastive learning to sentence em-
beddings, which may explain why STSB-
BERT/RoBERTa and ST5 yield much better
performance. Table 1 presents the perfor-
mance of two ST5 models of different model
size. Overall, model performance increases
as the model size increases. ST5-base yields
similar performance as STSB-BERT4 but
outperforms STSB-RoBERTa5 on our task.
Notably, using embeddings from pre-trained
LLMs yields decent performance even with-
out any fine-tuning.

4.2. Performance of the first stage
fine-tuning

Table 2 shows the comparison of model per-
formance after the first stage of fine-tuning
using only the target corpus. Training with
general LOINC ontology boosts the model
performance on the downstream mapping
task. As shown in Table 2, fine-tuning with
both hard negative and semi-hard negative
mining strategies leads to performance in-

4. https://huggingface.co/
sentence-transformers/stsb-bert-base

5. https://huggingface.co/
sentence-transformers/stsb-roberta-base
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Table 1: Performance of different pre-trained language models on MIMIC-III dataset. Only
TF-IDF baseline requires training process.

Model # Parameters Top-1 accuracy Top-3 accuracy Top-5 accuracy

TF-IDF N/A 58.38% 69.43% 77.03%
USE 256M 25.04% 33.51% 40.93%
BERT 110M 36.78% 48.70% 55.44%

STSB-RoBERTa 110M 50.59% 65.63% 71.50%
STSB-BERT 110M 57.69% 71.68% 76.68%
ST5-base 110M 54.06% 71.68% 77.72%
ST5-large 335M 60.00% 81.00% 85.66%

crease over the pre-trained model and TF-
IDF baseline performance, especially with re-
spect to the top-1 and top-3 accuracy. More-
over, we observed a significant performance
increase after fine-tuning with the semi-hard
negative mining strategy. Overall, the semi-
hard negative mining strategy seems to per-
form better than the hard negative mining
strategy. We argue this may be because the
negative mining strategy focuses on less hard
negatives and therefore more negative sam-
ples contribute to the loss during training.
This may lead to better generalizability of
the learned embeddings especially given a
large number of target codes used in this
stage. These results demonstrate the effec-
tiveness of our contrastive approach in learn-
ing discriminative embeddings with only tar-
get terminology in the absence of source
codes.

4.3. Performance of the second stage
fine-tuning

Next, we evaluated the model performance
further fine-tuned with source-target pairs.
Performance was evaluated using varying
sizes of target set. Table 3 presents the per-
formance metrics obtained from 5-fold cross-
validation on both the raw test set and the
augmented test set. Fine-tuning with both

source and target codes further improves
the model performance across all measures
compared to the starting point performance
from the first stage fine-tuning. Overall, the
hard negative mining strategy outperforms
the semi-hard negative mining strategy prob-
ably because the hard negative mining allows
the model to focus on the most difficult neg-
atives in a batch and these negatives may
have higher impact on model performance
in this stage when the training data size is
much smaller. When the model was evalu-
ated on the augmented test samples, it shows
only small decrease in performance, which
indicates the good robustness of our model
against the variability in source representa-
tions. It is also reasonable that when we
expanded the target set to include unseen
targets, the model performance decreases as
the task gets more difficult. The impact
of expanded target set is more prominent
on the top-1 accuracy than the top-5 accu-
racy. When compared to the baseline TF-
IDF and pre-trained ST5 models, however,
we still observed a gain in performance even
after expanding the target set from 571 to
2,313. Taken together, these results suggest
that our two-stage fine-tuning strategy en-
ables the model to achieve improved perfor-
mance not only over pre-trained and baseline
models but also across two types of general-
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Table 2: Performance improvement after first stage fine-tuning of a ST5-base model using
only the target corpus. Performance is evaluated on MIMIC-III source-target pairs
whose source codes are not used during training. Results of two online triplets
mining strategies are presented.

Method Top-1 accuracy Top-3 accuracy Top-5 accuracy

No training 54.06% 71.68% 77.72%
Hard negative mining 62.35% 77.55% 84.28%

Semi-hard negative mining 68.05% 81.69% 89.12%

izability (variations in source representations
and unseen targets). In addition, to support
the necessity of our proposed first stage fine-
tuning, the model performance of excluding
the first stage fine-tuning is also provided in
Table 4 where one can see that fine-tuning
without the first stage leads to lower model
performance compared with fine-tuning with
both stages.

5. Discussion and future direction

We propose a contrastive learning framework
for LOINC standardization by fine-tuning
pre-trained T5 embeddings. Collectively, the
experiment results demonstrate that the pro-
posed approach can retrieve the most rel-
evant LOINC targets for local laboratory
source codes with a high accuracy. Using
a pre-trained ST5 encoder as the feature ex-
tractor, our model takes raw free texts as in-
put, which avoids the need for complex man-
ual feature engineering and therefore can be
easily generalizable. Since real-world labeled
data is often difficult to acquire, we propose
a two-stage fine-tuning strategy that lever-
ages the abundance of unlabeled data in the
general LOINC ontology. We show that uti-
lizing only the target corpus leads to consis-
tent performance increase in the downstream
task. Furthermore, the model fine-tuned on
source and target pairs generalizes well in

terms of the heterogeneity in source repre-
sentations and unseen targets. To summa-
rize, our model shows great potential to be
deployed as an automated mapping tool to
reduce the manual labeling effort and im-
prove the quality of existing mapping. The
proposed contrastive representation learning
framework provides the model with the flex-
ibility to be easily extended to not only ar-
bitrary number of new targets but also other
medical ontologies.

It is noteworthy that our study used a
high-quality research dataset whose data dis-
tribution may be very different from the
real-world datasets, which are mostly pro-
prietary and not accessible to the public.
Source codes of the same target often exhibit
a high level of heterogeneity in real-world
applications. In MIMIC-III, however, most
of LONIC targets are paired with only one
or few representations of source terms. The
small size of labeled data poses a great chal-
lenge for training large-scale LLMs. As a re-
sult, we chose not to fine-tune the entire LLM
but instead we only adjusted the weights
of the projection layer during training. We
chose pre-trained ST5-base as the backbone
of our model due to its good performance and
moderate model size. While scaling up the
model size shows increased task performance,
it also demands much more computing re-
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Table 3: Cross-validation performance after the second stage fine-tuning of a ST5-base
model using source-target pairs. Two types of generalization performance are
evaluated using the augmented test samples and expanded target set. Results
are averaged across 5 folds and reported for two online triplets mining strategies,
respectively.

Test set without augmentation

Target size Method Top-1 accuracy Top-3 accuracy Top-5 accuracy

571
Hard 63.70± 4.83% 81.70± 3.26% 88.26± 3.20%

Semi-hard 58.03± 7.29% 79.28± 3.21% 85.26± 2.55%

2313
Hard 49.92± 6.06% 73.93± 1.94% 80.84± 3.31%

Semi-hard 45.43± 7.66% 69.09± 4.55% 78.75± 2.75%

Test set with augmentation

Target size Method Top-1 accuracy Top-3 accuracy Top-5 accuracy

571
Hard 65.53± 1.85% 81.26± 1.45% 86.52± 1.35%

Semi-hard 64.62± 1.79% 80.51± 1.26% 86.17± 1.09%

2313
Hard 56.95± 1.49% 73.94± 1.67% 79.98± 1.75%

Semi-hard 56.38± 1.69% 73.08± 1.35% 79.58± 1.46%

Table 4: Model performance with and without the first stage fine-tuning. Results are av-
eraged across 5 folds and reported for the hard negative mining strategy. The
first stage fine-tuning using only the target corpus improves the downstream task
performance, compared to directly fine-tuning the model on source-target pairs.

Test set with augmentation

Target size Method Top-1 accuracy Top-3 accuracy Top-5 accuracy

571
stage1+stage2 65.53± 1.85% 81.26± 1.45% 86.52± 1.35%
stage2 only 59.81± 1.26% 75.86± 1.13% 81.50± 1.16%

2313
stage1+stage2 56.95± 1.49% 73.94± 1.67% 79.98± 1.75%
stage2 only 50.89± 1.07% 67.41± 0.93% 73.73± 0.92%
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sources (infrastructure with TPU support).
To further overcome data scarcity, we ap-
plied data augmentations designed to create
variations in source/target representations
that mimic the real-world scenario. The
triplet loss function was chosen to encour-
age these variants of same target/source to
cluster together in the latent feature space.
We also experimented with two online batch-
wise triplet mining strategies together with
an offline global triplet mining. Our find-
ings are consistent with Schroff et al. (2015)
where semi-hard negative mining performs
the best with large data size. However, hard
negative mining shows more advantage with
small data size in our analysis. Offline min-
ing using global hard negatives is the least
efficient and easily leads to over-fitting.

It is arguable that using a language model
pre-trained on clinical text, for example,
SapBERT model (Liu et al., 2021), might
be more beneficial for the LOINC mapping
task, compared to the ST5 model which is
pre-trained on general domain text. Without
any fine-tuning, SapBERT outperforms ST5-
base on MIMIC-III, with a top-1 accuracy of
65.98%, a top-3 accuracy of 79.10%, and a
top-5 accuracy of 83.25%. However, after the
first stage fine-tuning, ST5 outperforms Sap-
BERT after gaining domain-specific knowl-
edge. These results substantiate the effec-
tiveness of fine-tuning directly on LOINC on-
tology.

There are a number of limitations of this
work. First, we did not fine-tune the T5
backbone during training. It is possible that
adjusting feature representations of all layers
of T5 model will yield further performance
gain, especially in the first stage training
with the rich target corpus. We will leave
this as future work. Second, our model only
used raw free text from the source codes as
input. We observed that it was difficult for
the model to distinguish between the qual-
itative and quantitative properties of two

similar LOINC codes (e.g., “Erythrocytes
[#/volume] in Urine by Test strip” vs. “Ery-
throcytes [Presence] in Urine”). Therefore,
future work will explore adding other con-
textual attributes of the source codes, such
as measurement value and unit, to increase
the specificity of LOINC mapping. Third, al-
though our model has the capability to gen-
eralize to an arbitrary number of targets,
we only focused on predicting a subset of
targets specific to a dataset in the perfor-
mance evaluation and experimented with ex-
panding the target set to include the top
2,000 most frequent LOINC codes. While
increasing the number of targets improves
the LOINC coverage, it also makes the task
more difficult and decreases the model per-
formance. The number of targets should be
a design choice specific to each application.
Lastly, the utility of our model to determine
non-mappable source codes (codes with no
LOINC target) is not assessed in this study.
Since there are a large number of unlabelled
source terms in our dataset, addressing this
problem will require intensive manual efforts
to separate non-mappable codes (true neg-
atives) from codes that haven’t been har-
monized (false negatives). Moreover, we ob-
served that a small number of source terms
lack essential information to allow for accu-
rate mapping. In future work, we will per-
form comprehensive human-in-the-loop stud-
ies including manual validation of the model
prediction and human-assigned label to bet-
ter understand the validity of our model. It
is also noteworthy that while we evaluated
the model on augmented samples which sim-
ulate the real-world data to make our anal-
ysis more rigorous, this approach may still
lead to over-estimated model performance as
the level of heterogeneity in real-world data
can be much higher. Nevertheless, even with
limited labeled data, our proposed learning
framework still demonstrates a great poten-
tial for real application use.
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