
Synthesis-Assisted Video Prototyping From a Document
Peggy Chi

Google Research
Mountain View, CA, USA
doc2video@google.com

Tao Dong
Google

Mountain View, CA, USA
doc2video@google.com

Christian Frueh, Brian Colonna, Vivek Kwatra
Google Research

Mountain View, CA, USA
doc2video@google.com

Irfan Essa
Google Research, Georgia Institute of Technology

Atlanta, GA, USA
doc2video@google.com

...
Synthetic

Video
Preview

Source Programming Cookbook

In this tutorial, we will learn how to
Fade in images with a placeholder.
5.38s (12 words)

When displaying images using the default
Image widget, you might notice they
simply pop onto the screen as they're
loaded. This might feel visually jarring to
your users. 9.92s (28 words)

In this example, use the
transparent_image package for a simple
transparent placeholder. 6.72s (12 words)

Automatically-Generated Video Script

Text-to-
Speech

Narration

Scene 1 (Title vs. Instructor) Scene 2 (Text Overlay vs. Instructor) Scene 5 (Code vs. Instructor)
Title

2

1

3

5

4

-

Title

Code

Figure 1: Doc2Video automatically converts a structural document into a video script of a series of scenes for interactive
editing. For each scene, Doc2Video synthesizes a talking head video from text and composes a graphical layout showing the
visual supports. Users can edit text, move elements, and replay the video preview in our Editing UI. Source document: “Fade in
images with a placeholder” by Flutter is licensed under CC BY 4.0.

ABSTRACT
Video productions commonly start with a script, especially for talk-
ing head videos that feature a speaker narrating to the camera.
When the source materials come from a written document – such
as a web tutorial, it takes iterations to refine content from a text ar-
ticle to a spoken dialogue, while considering visual compositions in
each scene. We propose Doc2Video, a video prototyping approach
that converts a document to interactive scripting with a preview of
synthetic talking head videos. Our pipeline decomposes a source
document into a series of scenes, each automatically creating a
synthesized video of a virtual instructor. Designed for a specific
domain – programming cookbooks, we apply visual elements from
the source document, such as a keyword, a code snippet or a screen-
shot, in suitable layouts. Users edit narration sentences, break or
combine sections, and modify visuals to prototype a video in our
Editing UI. We evaluated our pipeline with public programming
cookbooks. Feedback from professional creators shows that our
method provided a reasonable starting point to engage them in
interactive scripting for a narrated instructional video.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545676

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).

KEYWORDS
Video creation; video prototyping; talking head videos; program-
ming cookbooks; tutorials; voiceover; creativity tools.

ACM Reference Format:
Peggy Chi, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, and Ir-
fan Essa. 2022. Synthesis-Assisted Video Prototyping From a Document. In
The 35th Annual ACM Symposium on User Interface Software and Technology
(UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM, New York,
NY, USA, ?? pages. https://doi.org/10.1145/3526113.3545676

1 INTRODUCTION
The Internet contains a vast amount of learning resources, from text
documents, mixed-media articles, to videos [18, 42]. Each format
supports learners differently: A document is easy to scan given
its visual hierarchy, whereas a video is effective for presenting
actions [11, 41] with auditory support [42]. While these tutorial
presentations could reach audiences of various learning preferences,
instructors may not necessarily have sufficient time and expertise
in production for all formats and may choose one or the other.
Prior research has shown methods to enhance existing tutorials,
including video segmentation for interactive learning [41, 43, 47],

https://docs.flutter.dev/cookbook/images/fading-in-images
https://docs.flutter.dev/cookbook/images/fading-in-images
https://doi.org/10.1145/3526113.3545676
https://doi.org/10.1145/3526113.3545676

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Peggy Chi, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, and Irfan Essa

enabling voice-based interfaces [6], and video creation from step-by-
step tutorials [9]. However, for articles that have a limited amount
of visual assets, such as a text-based programming tutorial, it can
be challenging to create an engaging instructional video.

Recent studies suggest that videos showing an instructor may
better engage viewers through dialogues and first-hand demonstra-
tions [8, 18, 42]. To produce video tutorials with a talking head view
of the instructor, it is typical to start from composing a script with
scene breakdowns: Each scene consists of narrations or dialogues
that the instructor read out in the recording phase and visual com-
ponents to be shown in the video [2, 31]. Given a text-based tutorial,
scripting requires the creator copying content from the document,
breaking into scenes, adding visuals, and iteratively refining the
dialogue while considering the timing of each segment.

We propose a video prototyping approach that automatically
converts a document to a script with a preview of synthetic talking
head videos. To demonstrate the feasibility of automation, we focus
on programming tutorials, a popular domain in online learning. We
developed Doc2Video, an end-to-end pipeline that decomposes a
source tutorial into as a series of rendered scenes. Extracted from
the input document, each scene contains narrations, which are used
to create a synthesized video of a virtual instructor, and visual
elements, such as a text title and a code snippet, in a suitable layout.
The synthesized videos are a preview to help creators observe the
instructional content both visually and auditorily. Creators can edit
sentences, break or combine scenes, and highlight keywords via our
Editing UI to prototype a video, which encourages them to focus
on the spatial and temporal composition. For the final production,
creators can possibly follow the edited script to record a footage
and replace the synthetic speaker preview.

We evaluated Doc2Video with 65 open-sourced programming
cookbooks, which are tutorials in shorter lengths, each on a spe-
cific programming concept. Doc2Video generated a script for each
cookbook, resulting in a total of 1,706 scenes that contain 1,301
talking head videos, 1,775 narration sentences, 488 code blocks,

and 565 text highlights. We conducted an informal study with six
professional creators to understand their existing practices and
experiment our results. Feedback suggested that Doc2Video effec-
tively jump started the creation process by providing a rough cut
and previews with editing supports. Specifically, our work makes
the following contributions:

• An automatic video prototyping approach supported by synthetic
speaker videos based on a document input.

• Computational techniques to convert a structural document to a
series of scenes, each showing a key message and a synthesized
talking head video in a graphical layout.

• A set of editing methods for document-based video prototyping.
• An evaluation of automatically created videos from public cook-
books in an Editing UI reviewed by professional creators.

2 RELATEDWORK
Bootstrapping Video Production. Video production involves
multiple stages, from planning, scripting, recording, to editing. We
focus on scripting and editing automation: Recent work enables con-
tent generation from text sentences using stock footage [28], app ex-
ecution [48], and synthetic media of scenes [44] or faces [15, 37, 38].
These approaches allow users to focus on scripting or writing.
For documents with a hierarchy and multimedia assets, there are
methods to organize materials for video composition [9, 10, 24].
Live performances also drive video synthesis that go beyond text
and a structural input [21, 36, 45]. Computer Vision techniques
have automated video editing for specific domains. By analyzing
dialogues and subjects, tools can place cuts [3, 27] or create a story-
line [4, 20, 40]. When the footage contains a dynamic environment,
human editors can guide a system on editing by providing abstract
labels for physical activities [12, 39] or audio stories [35]. Our work
shares the same vision to bootstrap video creation by making auto-
matic edits from user input – a document. We adopt state-of-the-art

Ta
lk

in
g

H
ea

d

Side-by-side with code

a

b

Picture-in-picture on codeFull screen

Te
xt

 T
itl

e

Side-by-side with a head shot Text OverlayFull screen

Figure 2: Example placements of a talking head video and text titles in programming tutorials. Sources: (a) “Paging: Displaying
data and its loading state - MAD Skills” by Android Developers; “Type Promotion | Decoding Flutter” by Flutter; “Training an
AI to create poetry (NLP Zero to Hero - Part 6)” by TensorFlow; (b) “Creating the future of spreadsheets with Flutter” by Flutter;
“Training an AI to create poetry (NLP Zero to Hero - Part 6)” by TensorFlow; “BuildContext?! | Decoding Flutter” by Flutter.

https://youtu.be/OHH_FPbrjtA
https://youtu.be/OHH_FPbrjtA
https://youtu.be/2Cl0C-9dK48
https://youtu.be/ZMudJXhsUpY
https://youtu.be/ZMudJXhsUpY
https://youtu.be/OEdQXBUPYOE
https://youtu.be/ZMudJXhsUpY
https://youtu.be/rIaaH87z1-g

Synthesis-Assisted Video Prototyping From a Document UIST ’22, October 29-November 2, 2022, Bend, OR, USA

synthesis techniques but focus on script creation, where each scene
is composed differently based on the source content.
Document Editing andConversion. Editing a document is an es-
sential activity, especially for knowledge workers. Recent research
has proposed methods to enhance editing workflows for profes-
sionals, including patent documents [13] and scientific writing [16].
To enable readers to consume document content in a non-static
format, researchers introduce automatic methods that present a
document as a voiceover [1, 19], a slideshow [7, 28, 46, 49], or an
edited video [9, 10, 24]. We build our work on top of prior art to or-
ganize hierarchical information in a document. We further include
talking head videos for the presentation, which is a popular format
in education. The conversion output is used to support the video
prototyping process with editing capabilities.
Video Navigation as Documents.We are inspired by prior work
that presents video content in a document or table format, such as
movie scenes [33], dialogue conversations [30], and tutorials for
software applications [5, 32, 47] or physical tasks [41, 43]. By orga-
nizing continuous content in a hierarchical view, viewers can take
advantage of the visualization for viewing and editing. Similarly,
we present our generated video scenes in a script by sections that
are aligned with the source document. Creators can review and
edit individual components, while maintaining the overall video
structure for navigation and comparison.

3 WHAT GOES TO A PROGRAMMING VIDEO?
To design an automatic approach that converts a structural docu-
ment to a video script with talking head videos, we focus on pro-
gramming tutorials as a proof of concept given that the structure
and the average length of a cookbook are suitable for conversion to
a relatively short video, and the input document includes consistent
annotations of key knowledge that viewers intend to learn, such as
function names or code snippets.

Nowadays, programming learners have easy access to online
web tutorials, which include descriptions and code samples, and
standalone videos that are commonly led by an instructor to walk
through a concept, often with code snippets or a coding demon-
stration. Researchers have introduced novel methods that enhance
viewing experiences of programming videos [25]. However, it re-
mains critical for instructors to create quality educational videos.
Studies have suggested several video production practices to en-
gage learners, including showing an instructor’s talking head view
with a faster pace of dialogues [8, 18, 29]. These require scripting
and editing expertise in video production.

To gain insight from existing editing practices of programming
video tutorials, we analyzed 40 public videos from eight popular
YouTube channels for different programming platforms (including
Android, TensorFlow, Flutter, and others.) We selected videos with
over 5,000 views that matched the following criteria: (1) focused on
a specific topic of programming concepts, (2) showed an instructor’s
talking head and some amount of code, (3) had a total duration under
10 minutes, and (4) contained a certain degree of edits and scene
changes. We filtered videos of uncut live coding or long lectures. We
recruited four paid raters to annotate video frames with head shots,
code, IDE, screens, text titles, and animation. The average length of
the annotated videos was 4 minute and 52 seconds long.

We observed patterns based on the labels and identified com-
mon content structures and visual presentations. A video typically
starts from a title and a transition to the talking head shot of an
instructor, who gives an introduction on what the audience will
learn from the tutorial. The video then quickly moves to instruc-
tional content, supported by visual materials such as code snippets
with highlights, diagrams, screens, and animations. Throughout
the video, instructor’s head shots often switch between full screen,
side-by-side (commonly taking 1/3 of the video frame), or a picture-
in-picture view (commonly overlaid on a long code snippet, an IDE,
or a full screencast) as shown in Figure 2a. Text titles and overlays
are used to highlight a keyword or a concept, as shown in Figure 2b.
All videos end with an outro, pointing the audience to code samples
(e.g., GitHub links), documentations, or other video series.

These editing practices inspired us to extract critical components
from a source document to an instructional video, such as titles,
code snippets, and screenshots. Our goal is to combine these doc-
ument elements with a talking head video presented in graphical
layouts with scene changes. Since the tutorial content greatly varies,
we should present the previews of rough cut decisions for creators
to iterate toward the final video script.

4 VIDEO PROTOTYPINGWITH DOC2VIDEO
To support creators prototyping videos from available materials
such as a programming cookbook, we introduce Doc2Video, an au-
tomatic approach that converts a structural document to interactive
scripting with synthetic video previews (see Figure 3). Doc2Video
decomposes a Markdown-formatted source document based on sec-
tions, including titles, paragraphs, code snippets, and screenshots
(see Figure 3a). It annotates detailed text elements, such as API
classes, functions, and links. It organizes the content into a script
of a list of scenes by turning descriptive sentences into narrations
(see Figure 3b) and visually presenting critical elements in a scene
(see Figure 3c) with an estimated total duration of the output video.

Synthetic videos and duration: For each scene, Doc2Video
converts each of its narration sentences into a Text-to-Speech (TTS)
audio segment. It concatenates the audios to synthesize a lip-sync
talking head video of a virtual instructor. For example, in the first
scene, Doc2Video adds a sentence, “In this tutorial, we will learn
how to”, to the cookbook’s title, “Fade in images with a placeholder”,
as a total of 5.38 seconds in duration.

Video composition: In the preview, Doc2Video presents the
automatically composed scenes. For example, the first scene in
Figure 3c shows the tutorial title and the synthetic speaker view
side-by-side, where the virtual instructor reads the narration with
a continuous head motion and the lip synced. This enables users
to preview how a final video would look and sound like with time
estimation. The script view highlights text components that are
visually seen in the video in yellow (see the first scene in Figure 3b
for example.) This aims to help an instructor emphasize a keyword
with a sense of timing, when they later follow this script and record
a talking head video footage of themselves.

Narration and graphics editing: Users can modify both audio
(narration) and visuals (text, images, layouts) in our UI. Removing
or editing a sentence triggers a change in both duration and video
playback (see Figure 3-1). Users can also remove a text highlight

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Peggy Chi, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, and Irfan Essa

a

2

Estimated total duration
b c

1

S
ce

ne
 1

S
ce

ne
 2

S
ce

ne
 3

Layout change

3

Side by side layout Text title layout

Effect after sentence removal

Scene merge

Dragging a code block

Dragging to the target scene

Scenes merged, resulting a layout change

Figure 3: Doc2Video presents the automatically-generated script in an Editing UI. Each row represents a scene, which includes
(a) source components from the input document, (b) narrations and estimated duration from a Text-to-Speech engine, and (c)
a video preview that shows visual elements and a synthesized talking head video in a graphical layout. Users can modify the
script by (1) editing or removing a narration sentence or a text highlight, (2) changing the layout, and (3) merging or removing
scenes. Source document: “Fade in images with a placeholder” by Flutter is licensed under CC BY 4.0.

or switch between the layout options that Doc2Video pre-selects,
from a full-screen text, a full-screen head shot (optionally with text
overlay), to side-by-side presentations (see Figure 3-2).

Scene combination, breakdown, or removal: Doc2Video vi-
sualizes the source document, narration, and preview in a multi-
column presentation, where each row shows a scene. This helps
users see the correspondence and focus on one scene at a time.
Doc2Video automatically combines consecutive components of the
same topic into a scene, e.g., a code snippet with a screenshot. Users
can combine or separate scenes by dragging and dropping elements,
such as replacing a text highlight with a relevant code snippet (see
Figure 3-3). For content that is not ideal for a video (e.g., long sample
code), user can hide the rows.

5 AUTOMATIC SCRIPTING AND RENDERING
To provide an automatically generated video script from a document
for video creation, Doc2Video consists of four main components
(see Figure 4): (1) a Document Parser that acquires the doc structure
and content annotations, (2) a Script Planner that converts a docu-
ment to a list of video scenes with both narrations and graphical
layouts, (3) a Video Synthesizer that renders lip-sync talking head
videos, and (4) an Interactive UI that renders previews and supports
editing. Below we discuss the detailed techniques.

5.1 Document Parser
Given a source document formatted in theMarkdown language [17],
Doc2Video parses and extracts the content into a hierarchical tree.

The first level of the tree captures the major sections, where the un-
derlying nodes represent detailed components, such as a title (e.g.,
In-Memory), a paragraph, a code block (e.g., lines wrapped by ```),
and a screenshot (e.g., an image node to images.gif). Our parser
annotates links and names to API classes or functions in each sen-
tence. For example, the word “FadeInImage” in “`FadeInImage`works
with images of (...)” refers to an API function and is labeled.

5.2 Script Planner
Doc2Video’s Script Planner converts the annotated hierarchical
document into a video script, which consists of a linear list of video
scenes. Each scene contains both or one of text narration and visual
components. To support input documents of various lengths and
levels, we represent the content as a graph and refine through the
following process (see Figure 5).

Scene creation: For each document node, such as a title, a para-
graph, or a code block, Doc2Video creates a scene that contains the
node content. It turns a text title or a paragraph into narration 𝑁 ,
and a code block or an image to its visual components 𝑉 . Either 𝑁
or 𝑉 can be empty. The scenes are organized by top-level sections
based on the source document.

Narration refinement: Considering that text in a written doc-
ument is typically in a non-dialogue format, prior work suggested
removing supplementary content and adding transition words for
concise narration [9]. Doc2Video processes all narration sentences
in 𝑁 by removing parentheses and itemized lists (which can be
added back by creators via our Editing UI.) It enhances targeted

https://docs.flutter.dev/cookbook/images/fading-in-images

Synthesis-Assisted Video Prototyping From a Document UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Source
Document

Refinement

Script Planner

text

code, image

Narrations

Visual Components & Layouts

Document Parser

Hierarchy

Node types

Video Synthesizer
Text-to-
Speech

Synthesized
Talking Head
Video

Interactive UI

Playback

Edit

Figure 4: Doc2Video’s pipeline consists of a Document Parser that retrieves the input document hierarchy and annotates the
nodes, a Script Planner that converts the document into scenes with narrations and visual components, a Video Synthesizer
that generates Text-to-Speech audios and talking head videos from narrations, and an Interactive UI for live composition,
playback, and editing.

Input Document
SectionI

narrationN

visual component
V

Scene

N VScene

VScene

N VScene

section title

paragraph

code block

paragraph

Initial Script Refined Script Graphical Layout

N’ VScene

N V’Scene

N VScene

Figure 5: Doc2Video’s Script Planner creates scenes based on
the document content, where text serves as narrations and
key assets are visual components. It combines consecutive
scenes in a section that address the same concept and applies
a suitable graphical layout.

elements using text templates, including titles of the document and
sections. For example, an introductory sentence “In this tutorial, we
will learn how to” is added to the tutorial title to provide viewers
context as an opening. This results a refined narration list 𝑁 ′.

Text overlay: It is common that creators visually overlay or
highlight keywords that match their voiceover to emphasize the
key message (see Figure 2b right for example.) Doc2Video identifies
API names in 𝑁 ′ as keywords and adds to the visual component list
as𝑉 ′, sorted by the ordering appeared in 𝑁 ′. Take the last example
in Section 5.1, FadeInImage will therefore be visually highlighted.

Scene combination: To make a video concise and avoid long
narration pauses, Doc2Video iterates through the scene list to con-
dense the content. It combines consecutive scenes that have the
same highlighted elements in 𝑉 ′ (e.g., two paragraph sections de-
scribing the same API concept) or lack of narration where 𝑁 ′ = {}.

Layout placement: Finally, for each scene, the planner pre-
selects a suitable graphical layout to compose the visual components
in 𝑉 ′ with a talking head video if narration is available (𝑁 ′ ≠ {}).
For example, for 𝑉 ′ = {𝑡𝑖𝑡𝑙𝑒} and 𝑁 ′ ≠ {}, it selects a side-by-
side layout to place a text title next to the head shot. For another
example where 𝑉 ′ = {ℎ𝑖𝑔ℎ𝑙𝑖𝑔ℎ𝑡} and 𝑁 ′ ≠ {}, it selects the full
head shot layout to overlay the keyword on the talking head video.

5.3 Talking Head Video Synthesizer
For a scene that has narrations of unrestricted length, Doc2Video
renders a lip-sync talking head video. We rely on recent techniques
that animate 3D talking faces from audio, named LipSync3D [26].
Given an audio input, such as a human-narrated voiceover record-
ing or a TTS output from text, LipSync3D extracts its audio speech
signals, generates and inserts a textured 3D face mesh to a target
subject. We are interested to generate videos of both animated and
photorealistic characters that LipSync3D supports. For an animated
subject, we predefined a continuous path of the head pose that
starts at the video center, slightly moves around, and backs to the
center at the end of the audio input. For a photorealistic subject,
we pre-processed available video footage of the subject to select
a small set of video segments at various lengths. We specifically
chose segments where the subject had limited facial expression and
head movements for our instructional context.

For each narration sentence of 𝑁 ′ in a scene, we generate a TTS
audio file from the text and obtain its duration. The information
will be used to label the exact start and end times of the sentence
in the output video. Then, we concatenate audio segments of all
sentences and attach to a base video (trimmed to the end of the
audio length) to perform the lip-sync pipeline. We then present the
lip adjusted video of a scene in the UI.

5.4 Interactive Composition and Editing
Based on the created script, Doc2Video composes a video preview
live in the UI for interactive playback and editing. This enables users
to see how a graphical layout changes the visuals upon selection,
where our UI places the elements dynamically. For another example,
when users remove a sentence, our UI skips the corresponding video
segment for playback.When users drag to combine document nodes
(e.g., to replace a text overlaywith a code block), Doc2Video attaches
the nodes to the target scene and re-selects a layout (e.g., from a
full head shot to a side-by-side view.)

5.5 Implementation
We implemented the back-end offline pipeline in C++. Our Docu-
ment Parser is similar to open-sourced tools [23] that output the
document tree hierarchy and sentence breakdowns with labels
(e.g., code blocks, links, and images.) We developed the Script Plan-
ner and implemented the talking head synthesis pipeline based
on recent research [26]. We synthesize narrations using Google’s
Text-to-Speech API [22] and save audio output as MP3 files, which
are used to create lip-sync videos in the MP4 format. We trained

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Peggy Chi, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, and Irfan Essa

the synthesis model on a set of characters, including animated char-
acters (such as the polar bear shown in the figures in this paper)
and real-world video footage of two speakers under permission.

The front-end Web UI composes text elements (e.g., a code snip-
pet or a title), the output MP4 videos, and images (e.g., URLs to
JPEGs or GIFs from the source document) in real-time. We position
elements in pre-defined graphical layouts of 16:9 aspect ratio via
Cascading Style Sheets (CSS). We develop the playback control
engine in JavaScript to allow interactive editing, anchoring videos,
and re-rendering video previews with layouts. For narration editing
that goes beyond a sentence removal, our current implementation
does not support real-time video rendering, although it’s feasible
for animated characters. Instead, we present a change in word count
and estimated duration. We leave this specific real-time feature for
future work.

6 RESULTS
To examine the quality of the created scripts and synthesized
video previews, we performed Doc2Video’s end-to-end pipeline
on 65 open-sourced programming cookbooks from an open source
repository [14]. The cookbooks cover 15 topics written by more
than 10 authors since year 2018 based on the commit history. Our
analysis shows that on average, a cookbook contains 395.5 words
([min, max]=[65, 1,003]) of 27.3 sentences ([min, max]=[7, 59]),
excluding code blocks. Each cookbook contains 7.5 code blocks
([min, max]=[3, 17]) and 20.6 occurrences to API references ([min,
max]=[1, 62]). Eight cookbooks show one to two GIF images that
demonstrate the execution results, such as a fade-in effect. The
repository does not have or link to videos.

We were able to generate both output scripts and TTS-added
synthesized lip-sync talking head videos of an animated character
for all cookbooks. Table 1 shows the output analysis. Our pipeline
generated a total of 1,706 scenes that contained 1,301 videos (of 720
by 650 pixels), 488 code blocks, 410 text titles, and 565 keywords.
On average, a cookbook has 26.25 scenes supported by 20 talking
head videos, composed as a 162-second output video.

Figure 6 shows example outputs from our pipeline. We observed
that Doc2Video was able to effectively break down a document into
scenes. The graphical layouts make it easy to visually differentiate
the content. Take Figure 6a for example. Step 1’s title in Scene 3
has a larger font size, followed by the text highlight of the Scaffold
concept in Scene 4 and a code snippet next to the head shot in Scene
5. Step 2 has a similar structure with visual consistency. Ideally, the
line of code changed in Scene 7 (compared with Scene 5) should be
highlighted to better guide viewers through the progression, which
is beyond our current scope.

We found that TTS narration effectively illustrates the content.
The animated lip-sync talking head videos appear engaging. The
moving head pose, the motion of eye blinks, and the lip synced to
the voiceover all support the preview (see Figure 6c). To develop
synthetic characters responsibly, we suggest that it is important to
avoid reinforcing unfair biases or harmful stereotypes.

We believe that editing is critical for prototyping. The source
cookbook of Figure 6b shows a GIF screenshot of the scrolling
parallel effect. By dragging the component into the title scene and

playing back the voiceover that is unchanged, creators can imme-
diately preview and compare the presentations. We observed that
the formatting and writings styles from this repository had a cer-
tain degree of variety. Some cookbooks are relatively short with
10 nodes, while some are long with code progression. A complete
code sample of 50 lines may not be suitable to be shown in a video.
It’s essential to allow users to edit, refine, and iterate.

7 USER EVALUATION
We conducted an informal user study to understand how the scripts
and videos generated by Doc2Video could support the video cre-
ation process. In addition, we were interested in learning existing
workflows and whether Doc2Video met creators’ expectations.

7.1 Study Design
We invited six professional creators via internal listservs of over
100 recipients in our organization. The participants, including one
female and five males, were specialized in Developer Education
for three different public programming platforms. They had each
created 5.6 documents and 22 YouTube videos on average in the past
three months prior to the study. Their average work experiences
in developer programs and video production was 9.5 years, ranged
from 1.5 to 17 years. We did not record age information.

We selected three programming cookbooks (each reviewed by
two participants) that contained similar compositions with 3-4
headings, 10-15 subsections, 2-3 code blocks, and 1-2 images from
our dataset. Each study session began by asking the participant to
review one source cookbook served on the original host site. We
asked participants to verbally describe their common workflow if
they were to create a video tutorial based on that cookbook.

Next, we presented our Editing UI that showed the generated
script from the cookbook participants read. We walked through
the automatically-generated results, video playback, and editing
capabilities (which included sentence and highlight removal, text
editing, and scene combination.) We then had participants open
the same UI to review the output and experiment the features we
introduced. Finally, we discussed their editing decisions and asked
questions regarding the output quality, editing capabilities, and
overall feedback. Each participant received a gift card or donation
credit for their participation in a 60-minute remote session.

7.2 Understanding Existing Workflows
All participants had similar practices: They would start with a script
in Google Docs with a table of two columns, one for the narration,
the other for the video presentation, which would specify titles,
code, screenshots, animations and the rough layouts. They would
copy and paste content from a document or the code editor into
the table, edit and highlight, and annotate timing. One participant
shared three example scripts for references. Each included a list of
two-column tables, separated by sections of different titles. Each
row represented one scene, such as a code snippet (may include
code highlights with time labels), a screenshot, or a diagram.

Participants had a common structure of a video, which began
with an introduction (that included their name, the problem, and
what the audience would learn from the video), main content with
code snippets or a demo, and an outro (to point out the links in

Synthesis-Assisted Video Prototyping From a Document UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Table 1: Output analysis of our pipeline on a test dataset of 65 open-sourced programming cookbooks.

Source Narration Visual Components Layout Synthetic Video

chapter

scene
(merged)

scene
(before)

sentence

word count
API
words

word
per

second
titles # code

blocks

highlights

images
head
shot

side-
by-side

text
only

total
duration
(second)

videos

video
length

(second)total shortest
sentence

longest
sentence

ave 7.00 26.25 26.78 27.31 395.46 1.91 39.82 20.60 0.42 6.31 7.5 8.69 0.28 13.71 6.31 7.45 162.10 20.02 8.10
min 3.00 7.00 7.00 7.00 65.00 1.00 13.00 1.00 0.36 2.00 3 1.00 0.00 2.00 2.00 3 31.95 5.00 1.99
max 12.00 59.00 59.00 59.00 1,003.00 5.00 77.00 62.00 0.53 13.00 17 23.00 2.00 37.00 13.00 17 385.75 42.00 41.80
total 455 1706 1741 1775 25705 - - 1339 27.29 410 488 565 18 891 410 484 10536.18 1301 348.57

1. Create a Scaffold

c

To add a drawer to the app, wrap it in a Scaf-
fold widget. The Scaffold widget provides a
consistent visual structure to apps that follow
the Material Design Guidelines. It also sup-
ports special Material Design components,
such as Drawers, AppBars, and SnackBars.

In this example, create a Scaffold with
a drawer:

2. Add a drawer Now add a drawer to the Scaffold. A drawer
can be any widget, but it’s often best to use
the Drawer widget from the material library,
which adheres to the Material Design spec.

a

b

Scene 1 (before merge) Scene 1 (after merge) Next, add (...) your widget.RecipeParallax

00’00 00’48 01’02 02’05 02’53 03’13 03’42 03’58 04’05

Scene 3 Scene 4 Scene 5 Scene 6 Scene 7

Figure 6: Sample output from Doc2Video’s automatically-generated results of 65 programming cookbooks: (a) Scenes with
different layouts help visualize the content structure, from a section title, an introduction, to code. (b) A head shot can be
quickly replaced by an available asset via drag-and-drop that remains the original narration. (c) Our synthesis pipeline controls
the head pose and lip and eye motions. We encourage readers to visit the cookbook sources for comparison: (a) “Add a Drawer
to a screen” by Flutter; (b,c) “Create a scrolling parallax effect” by Flutter.

the video description or a video series.) All participants had the
same practice to read partial code descriptively. We verified that
the layouts we identified in Section 3 are commonly used.

Participants would iterate and finalize the script before recording
their final talking head videos. To refine details, several mentioned
that they would do dry-runs or table read [31] to verify what the
dialogue would sound in a video. During the recording phase, they
used a teleprompter to read the written dialogue from their script.
Finally, they moved to the editing phase and would iterate the
video edits on timing and animation, but rarely would re-record
materials. Although our study participants were from the same
organization, each team had different presentation styles for the
designated developer community.

7.3 Feedback on Doc2Video
Table 2 shows the participant feedback to our questions onDoc2Video
in the 5-point Likert scale from Strongly Disagree (1) to Strongly
Agree (5). We do not report further statistics due to the limited scale
of the study. An area of future research would be to expand the
study to include more representation with self-identified partici-
pants across dimensions such as location and self-identified gender.
Below we summarized our findings of our initial study.

Table 2: Participant feedback on Doc2Video’s results and
editing features in a 5-point Likert scale.

Med Min Max

Scripting
I found the pre-processed scenes useful. 4 4 5
I found the preview useful. 4 3 5
I found the TTS + lip-sync videos useful. 3.5 3 4

Editing
I found layout swap useful. 5 4 5
I found text-based editing useful. 5 4 5
I found doc element manipulation useful. 4 3 5

Overall
I found the concept of this tool promising. 4 3 5
This tool'd be helpful for professional creators. 4 4 5
This tool'd be helpful for amateur creators. 5 3 5

Scene breakdownmatched current workflows. Participants
found the scene breakdown from a document useful (Median or
𝑀=4) and well aligned with their current practices. Rather than
scripting from scratch, P1 commented that “I like that I am starting
with a default script based on an article” and P3 liked how the
tool helped “get from zero to draft very quickly.” As described in
Section 7.2, participants commonly started from organizing the
video script as a multi-column table, which Doc2Video attempted
to automate. In addition, it was helpful to present source materials

https://docs.flutter.dev/cookbook/design/drawer
https://docs.flutter.dev/cookbook/design/drawer
https://docs.flutter.dev/cookbook/effects/parallax-scrolling

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Peggy Chi, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, and Irfan Essa

next to processed scenes. P3 liked how Doc2Video “shows me the
source – it helps me understand why it made the decisions it made.”

Video preview was helpful. Participants’ feedback supported
the value of previewing with pre-rendered narrated videos (𝑀=4).
As scripting needs to be as accurate as possible, the preview helped
them hear (how the narration sounds) and see (how the talking
head and layouts look) altogether for refinement. Several thought
that a talking head preview helped them capture timing, while a
placeholder of a static head shot with TTS playback would not be
sufficient. P1 praised that “I can get an accurate sense of how long the
video will take” and P2 liked the “automatic timings” of Doc2Video.
Other participants commented that it “Would be weird with out
lipsyncing. It makes it more fun to use the tool.” and “I like that I don’t
have to use my imagination very much when reviewing the script.”
It was noted that TTS may fail in the programming context. For
example, yaml is commonly read as “yah-mal”, but TTS reads as
“y-a-m-l” by letters. P6 shared that in practice, they would explicitly
write the exact words to narrate for consistency.

Animated character was pleasing.We asked participants the
quality of the talking head previews. All participants found it fun
to see an animated character. Several were surprised by the natural
tone and movements of the rendered videos. In terms of using a
virtual character or a photorealistic footage, P2 commented that
similar to showing wireframes in UI design, a 3D character helped
him focus on the content and ignore any artifacts. P3 suggested
that the polar bear made it easy to project himself as the subject.

Editing was essential. All participants addressed the impor-
tance of editing (𝑀=5). P3 praised that “I still had a lot of control
over the final text and video” and P1 “like that I can make edits.” We
observed several editing aspects that participants found useful in
our tool: (1) Removal: Participants commonly removed phrases or
sentences that did not fit the flow. They all wanted to remove sec-
tions that were not suitable for videos, especially full code samples.
(2) Combine or highlight: To make a video concise, participants
would combine a screenshot with a code snippet or highlight partial
code. Several pointed out that it is rare to present a full code snippet
alone without animation or narration. (3) Layout change: Partici-
pants found the instant layout preview useful (𝑀=5). P6 commented
that, “My written scripts often include instructions like "When I say
X, switch to a side-by-side view with <code> and then when I say Y
switch back to full screen speaker." This tool could very much help in
simplifying that communication.”

Participants also commented additional editing capabilities to
be considered in a future tool: Rephrase or tone change: All par-
ticipants addressed that the tone in a written tutorial might not
always fit a video. P2, who immediately changed all questions to a
direct tone upon reviewing the results, explained that he preferred
to quickly get into the point in a video, but questions would take
away the viewers. P4 and P6 preferred to make the narration more
conversational to entertain the audience. Visualization: To make
an instructional video clear, it is important to polish the presen-
tation format and video pacing for better content following and
accessibility support in an iterative process. These suggestions open
up for opportunities of developing advanced document content un-
derstanding and transformation techniques for video prototyping.

8 DISCUSSION AND OPPORTUNITIES
Overall, we found the feedback from professional creators encour-
aging. The concept of Doc2Video was promising (𝑀=4), and the
tool could be helpful for professional (𝑀=4) and amateurs (𝑀=5).
Participants also suggested opportunities derived from this work:

Context-aware adjustment and synthesis: As participants
showed preferences in tone (to be more dialogue or direct) and visu-
als (to combine materials or highlight code changes), we suggested
that future work could include language models and content under-
standing for automatic content adjustments. A tool could highlight
patterns (e.g., interrogative clauses) or suggest completion (e.g., add
links to code examples or relevant screenshots.) In addition, under-
standing context could possibly improve synthesis techniques. For
examples, TTS could emphasize keywords such as “id” and “where”
in the programming context, and a synthetic character could change
facial expressions with an excitement when a code change creates
a surprising effect. It is important to develop synthetic characters
responsibly, and to be aware of cultural contexts.

From scripting to video production: To support real-world
production, participants expected to have fine-grained controls.
Participants suggested that Doc2Video could further support the
recording phase in a video production process and communica-
tions between stakeholders. They would want to see prompting
or leave comments in the tool, which well aligned with insights
from recent research [34, 36]. Given the script, it is also possible to
make automatic video edits on the talking head footage based on
the transcript [27].

From videos to documents:While our work focuses on video
creation from a document, two participants suggested opportunities
generating documents from an edited video and its script, where
they currently manually converted. This aligns with prior art that
demonstrated automatic approaches for video navigation [11, 41].
We look forward to integrating videos, code examples, and scripts
to generate mixed-media documents for wider audiences of various
learning preferences.

Beyondprogramming cookbooks: Participants suggested that
our synthetic creation approach could support descriptive content
beyond programming tutorials. To generalize to other domains, we
believe that our method potentially applies to source documents
that contain a hierarchy and annotations of neutral topics, such as
step-by-step instructions or advertisement, and document or video
translation in multiple languages. Inspired by recent work that
enhances text content with screenshots [48] or stock footage [28],
we look forward to supporting various types of source documents
for making information accessible to the online community.

Ethical Considerations: Our method utilizes synthetic media
to empower scripting in a video production process. We acknowl-
edge that it may introduce concerns such as the potential for deep-
fakes and the effects of biased subject characteristics on gender,
appearances, and speaker tone. We focus on trusted content and
support users who create content responsibly. We believe that tools
should provide sufficient controls to synthesize content closer to
users’ preferred production. Finally, our findings are limited to the
sample size and the recruitment strategy from internal listservs.
We suggest future studies should consider long-term and diverse
user feedback.

Synthesis-Assisted Video Prototyping From a Document UIST ’22, October 29-November 2, 2022, Bend, OR, USA

9 CONCLUSION
In this paper, we introduced a video prototyping approach that
automatically converts a programming cookbook to interactive
scripting supported by synthetic lip-sync talking head videos. Our
pipeline, Doc2Video, generates a series of scenes based on the doc-
ument structure and elements, including titles, paragraphs, code
blocks, and images. In each scene, sentences are used to create a syn-
thesized video featuring a virtual instructor. Visual elements from
the source document enhance the videos shown in suitable layouts,
such as a code snippet or a screenshot. We provided an Editing UI
for users to edit sentences and manipulate sections to prototype
a video. We evaluated our pipeline with open-sourced cookbooks
and received positive feedback from professional creators.

ACKNOWLEDGMENTS
We thank all the participants in our studies for their valuable insight
to move this research forward. In addition, this work has been
possible thanks to the support of people including, but not limited
to the following (in alphabetical order of last name): Brian Curless,
Molly FitzMorris, Andrew Fitz Gibbon, Senpo Hu, Philip Parham,
and David Salesin.

REFERENCES
[1] Faisal Ahmed, Yevgen Borodin, Andrii Soviak, Muhammad Islam, I.V. Ramakr-

ishnan, and Terri Hedgpeth. 2012. Accessible Skimming: Faster Screen Reading
of Web Pages. In Proceedings of the 25th Annual ACM Symposium on User In-
terface Software and Technology (Cambridge, Massachusetts, USA) (UIST ’12).
Association for Computing Machinery, New York, NY, USA, 367–378. https:
//doi.org/10.1145/2380116.2380164

[2] Daniel Arijon. 1991. Grammar of the film language. Silman-James Press.
[3] Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. 2012. Tools for Placing

Cuts and Transitions in Interview Video. ACM Trans. Graph. 31, 4, Article 67
(July 2012), 8 pages. https://doi.org/10.1145/2185520.2185563

[4] Juan Casares, A. Chris Long, Brad A. Myers, Rishi Bhatnagar, Scott M. Stevens,
Laura Dabbish, Dan Yocum, and Albert Corbett. 2002. Simplifying Video Editing
Using Metadata. In Proceedings of the 4th Conference on Designing Interactive
Systems: Processes, Practices, Methods, and Techniques (London, England) (DIS ’02).
Association for Computing Machinery, New York, NY, USA, 157–166. https:
//doi.org/10.1145/778712.778737

[5] Minsuk Chang, Mina Huh, and Juho Kim. 2021. RubySlippers: Supporting
Content-Based Voice Navigation for How-to Videos. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
’21). Association for Computing Machinery, New York, NY, USA, Article 97,
14 pages. https://doi.org/10.1145/3411764.3445131

[6] Minsuk Chang, Anh Truong, Oliver Wang, Maneesh Agrawala, and Juho Kim.
2019. How to Design Voice Based Navigation for How-To Videos. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 701, 11 pages. https:
//doi.org/10.1145/3290605.3300931

[7] Jiajian Chen, Jun Xiao, and Yuli Gao. 2010. ISlideShow: A Content-Aware
Slideshow System. In Proceedings of the 15th International Conference on Intelligent
User Interfaces (Hong Kong, China) (IUI ’10). Association for Computing Machin-
ery, New York, NY, USA, 293–296. https://doi.org/10.1145/1719970.1720014

[8] Yan Chen, Walter S. Lasecki, and Tao Dong. 2021. Towards Supporting Program-
ming Education at Scale via Live Streaming. Proc. ACM Hum.-Comput. Interact. 4,
CSCW3, Article 259 (jan 2021), 19 pages. https://doi.org/10.1145/3434168

[9] Peggy Chi, Nathan Frey, Katrina Panovich, and Irfan Essa. 2021. Automatic
Instructional Video Creation from a Markdown-Formatted Tutorial. In The 34th
Annual ACM Symposium on User Interface Software and Technology (Virtual Event,
USA) (UIST ’21). Association for Computing Machinery, New York, NY, USA,
677–690. https://doi.org/10.1145/3472749.3474778

[10] Peggy Chi, Zheng Sun, Katrina Panovich, and Irfan Essa. 2020. Automatic Video
Creation From a Web Page. In Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association
for Computing Machinery, New York, NY, USA, 279–292. https://doi.org/10.
1145/3379337.3415814

[11] Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva, Wilmot Li, and Björn
Hartmann. 2012. MixT: Automatic Generation of Step-by-step Mixed Media

Tutorials. In Proceedings of the 25th Annual ACM Symposium on User Interface
Software and Technology (Cambridge, Massachusetts, USA) (UIST ’12). ACM, New
York, NY, USA, 93–102. https://doi.org/10.1145/2380116.2380130

[12] Pei-Yu Chi, Joyce Liu, Jason Linder, Mira Dontcheva, Wilmot Li, and Björn
Hartmann. 2013. DemoCut: Generating Concise Instructional Videos for Physical
Demonstrations. In Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST
’13). Association for Computing Machinery, New York, NY, USA, 141–150. https:
//doi.org/10.1145/2501988.2502052

[13] Han L. Han et al. 2022. Passages: Interacting with Text Across Documents (CHI
’22). Association for Computing Machinery, New York, NY, USA.

[14] Flutter. 2022. Cookbook | Flutter. Retrieved April, 2022 from https://github.com/
flutter/website/tree/main/src/cookbook

[15] Ohad Fried, Ayush Tewari, Michael Zollhöfer, Adam Finkelstein, Eli Shecht-
man, Dan B Goldman, Kyle Genova, Zeyu Jin, Christian Theobalt, and Maneesh
Agrawala. 2019. Text-Based Editing of Talking-Head Video. ACM Trans. Graph.
38, 4, Article 68 (July 2019), 14 pages. https://doi.org/10.1145/3306346.3323028

[16] Camille Gobert and Michel Beaudouin-Lafon. 2022. i-LaTeX: Manipulating Tran-
sitional Representations between LaTeX Code and Generated Documents (CHI
’22). Association for Computing Machinery, New York, NY, USA.

[17] John Gruber. 2004. Daring fireball: Markdown. (2004). https://daringfireball.net/
projects/markdown/

[18] Philip J. Guo, Juho Kim, and Rob Rubin. 2014. How Video Production Affects
Student Engagement: An Empirical Study of MOOC Videos. In Proceedings of the
First ACM Conference on Learning @ Scale Conference (Atlanta, Georgia, USA)
(L@S ’14). Association for Computing Machinery, New York, NY, USA, 41–50.
https://doi.org/10.1145/2556325.2566239

[19] Joshua M. Hailpern and Bernardo A. Huberman. 2014. Odin: Contextual Doc-
ument Opinions on the Go. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). As-
sociation for Computing Machinery, New York, NY, USA, 1525–1534. https:
//doi.org/10.1145/2556288.2556959

[20] Bernd Huber, Hijung Valentina Shin, Bryan Russell, Oliver Wang, and Gautham J.
Mysore. 2019. B-Script: Transcript-Based B-Roll Video Editing with Recommen-
dations. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
NewYork, NY, USA, Article 81, 11 pages. https://doi.org/10.1145/3290605.3300311

[21] Corneliu Ilisescu, Halil Aytac Kanaci, Matteo Romagnoli, Neill D. F. Campbell,
and Gabriel J. Brostow. 2017. Responsive Action-Based Video Synthesis. Association
for Computing Machinery, New York, NY, USA, 6569–6580. https://doi.org/10.
1145/3025453.3025880

[22] Google Inc. 2022. Text-to-Speech: Lifelike Speech Synthesis. Retrieved April, 2022
from https://cloud.google.com/text-to-speech/

[23] Christopher Jeffrey. 2018. Marked: A markdown parser and compiler. Built for
speed. Retrieved April, 2021 from https://github.com/markedjs/marked

[24] Murat Kalender, Mustafa Eren, Zonghuan Wu, Ozgun Cirakman, Sezer Kutluk,
Gunay Gultekin, and Emin Korkmaz. 2018. Videolization: knowledge graph based
automated video generation from web content. Multimedia Tools and Applications
77 (12 2018). https://doi.org/10.1007/s11042-016-4275-4

[25] Kandarp Khandwala and Philip J. Guo. 2018. Codemotion: Expanding the Design
Space of Learner Interactions with Computer Programming Tutorial Videos. In
Proceedings of the Fifth Annual ACM Conference on Learning at Scale (London,
United Kingdom) (L@S ’18). Association for Computing Machinery, New York,
NY, USA, Article 57, 10 pages. https://doi.org/10.1145/3231644.3231652

[26] Avisek Lahiri, Vivek Kwatra, Christian Frueh, John Lewis, and Chris Bregler.
2021. LipSync3D: Data-Efficient Learning of Personalized 3D Talking Faces from
Video using Pose and Lighting Normalization. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 2754–2763. https://doi.org/10.1109/CVPR46437.2021.00278

[27] Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala. 2017. Com-
putational Video Editing for Dialogue-Driven Scenes. ACM Trans. Graph. 36, 4,
Article 130 (July 2017), 14 pages. https://doi.org/10.1145/3072959.3073653

[28] Mackenzie Leake, Hijung Valentina Shin, Joy O. Kim, and Maneesh Agrawala.
2020. Generating Audio-Visual Slideshows from Text Articles Using Word Con-
creteness. In Proceedings of the 2020 CHI Conference on Human Factors in Comput-
ing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–11. https://doi.org/10.1145/3313831.3376519

[29] Bridjet Lee and Kasia Muldner. 2020. Instructional Video Design: Investigating the
Impact ofMonologue- and Dialogue-Style Presentations. Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376845

[30] Daniel Li, Thomas Chen, Albert Tung, and Lydia B Chilton. 2021. Hierar-
chical Summarization for Longform Spoken Dialog. In The 34th Annual ACM
Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 582–597.
https://doi.org/10.1145/3472749.3474771

[31] MasterClass. 2022. What Is a Table Read? How to Set Up a Table Read, Includ-
ing Who to Invite and What to Provide. Retrieved April, 2022 from https:
//www.masterclass.com/articles/what-is-a-table-read-how-to-set-up-a-table-

https://doi.org/10.1145/2380116.2380164
https://doi.org/10.1145/2380116.2380164
https://doi.org/10.1145/2185520.2185563
https://doi.org/10.1145/778712.778737
https://doi.org/10.1145/778712.778737
https://doi.org/10.1145/3411764.3445131
https://doi.org/10.1145/3290605.3300931
https://doi.org/10.1145/3290605.3300931
https://doi.org/10.1145/1719970.1720014
https://doi.org/10.1145/3434168
https://doi.org/10.1145/3472749.3474778
https://doi.org/10.1145/3379337.3415814
https://doi.org/10.1145/3379337.3415814
https://doi.org/10.1145/2380116.2380130
https://doi.org/10.1145/2501988.2502052
https://doi.org/10.1145/2501988.2502052
https://github.com/flutter/website/tree/main/src/cookbook
https://github.com/flutter/website/tree/main/src/cookbook
https://doi.org/10.1145/3306346.3323028
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://doi.org/10.1145/2556325.2566239
https://doi.org/10.1145/2556288.2556959
https://doi.org/10.1145/2556288.2556959
https://doi.org/10.1145/3290605.3300311
https://doi.org/10.1145/3025453.3025880
https://doi.org/10.1145/3025453.3025880
https://cloud.google.com/text-to-speech/
https://github.com/markedjs/marked
https://doi.org/10.1007/s11042-016-4275-4
https://doi.org/10.1145/3231644.3231652
https://doi.org/10.1109/CVPR46437.2021.00278
https://doi.org/10.1145/3072959.3073653
https://doi.org/10.1145/3313831.3376519
https://doi.org/10.1145/3313831.3376845
https://doi.org/10.1145/3472749.3474771
https://www.masterclass.com/articles/what-is-a-table-read-how-to-set-up-a-table-read-including-who-to-invite-and-what-to-provide#what-is-a-table-read
https://www.masterclass.com/articles/what-is-a-table-read-how-to-set-up-a-table-read-including-who-to-invite-and-what-to-provide#what-is-a-table-read
https://www.masterclass.com/articles/what-is-a-table-read-how-to-set-up-a-table-read-including-who-to-invite-and-what-to-provide#what-is-a-table-read

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Peggy Chi, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, and Irfan Essa

read-including-who-to-invite-and-what-to-provide#what-is-a-table-read
[32] Alok Mysore and Philip J. Guo. 2017. Torta: Generating Mixed-Media GUI and

Command-Line App Tutorials Using Operating-System-Wide Activity Tracing.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 703–714. https://doi.org/10.1145/3126594.3126628

[33] Amy Pavel, Dan B. Goldman, Björn Hartmann, and Maneesh Agrawala. 2015.
SceneSkim: Searching and Browsing Movies Using Synchronized Captions,
Scripts and Plot Summaries. In Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software amp; Technology (Charlotte, NC, USA) (UIST
’15). Association for Computing Machinery, New York, NY, USA, 181–190.
https://doi.org/10.1145/2807442.2807502

[34] Amy Pavel, Dan B. Goldman, Björn Hartmann, and Maneesh Agrawala. 2016.
VidCrit: Video-Based Asynchronous Video Review. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). Association for Computing Machinery, New York, NY, USA, 517–528.
https://doi.org/10.1145/2984511.2984552

[35] Amy Pavel, Gabriel Reyes, and Jeffrey P. Bigham. 2020. Rescribe: Authoring
and Automatically Editing Audio Descriptions. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’20). Association for Computing Machinery, New York, NY, USA, 747–759.
https://doi.org/10.1145/3379337.3415864

[36] Hariharan Subramonyam, Wilmot Li, Eytan Adar, and Mira Dontcheva. 2018.
TakeToons: Script-Driven Performance Animation. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology (Berlin, Ger-
many) (UIST ’18). Association for Computing Machinery, New York, NY, USA,
663–674. https://doi.org/10.1145/3242587.3242618

[37] Synthesia. 2022. Synthesia - AI Video Generation Platform. Retrieved April, 2022
from https://www.synthesia.io/

[38] Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anasta-
sio Garcia Rodriguez, Jessica Hodgins, and Iain Matthews. 2017. A Deep Learning
Approach for Generalized Speech Animation. ACM Trans. Graph. 36, 4, Article
93 (July 2017), 11 pages. https://doi.org/10.1145/3072959.3073699

[39] Anh Truong, Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. 2016.
QuickCut: An Interactive Tool for Editing Narrated Video. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). Association for Computing Machinery, New York, NY, USA, 497–507.
https://doi.org/10.1145/2984511.2984569

[40] Anh Truong, Sara Chen, Ersin Yumer, David Salesin, and Wilmot Li. 2018. Ex-
tracting Regular FOV Shots from 360 Event Footage. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, Article
316, 11 pages. https://doi.org/10.1145/3173574.3173890

[41] Anh Truong, Peggy Chi, David Salesin, Irfan Essa, and Maneesh Agrawala. 2021.
Automatic Generation of Two-Level Hierarchical Tutorials from Instructional
Makeup Videos. In Proceedings of the 2021 ACM Conference on Human Factors in
Computing Systems (CHI ’21).

[42] Sylvaine Tuncer, Barry Brown, and Oskar Lindwall. 2020. On Pause: How Online
Instructional Videos Are Used to Achieve Practical Tasks. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI,
USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3313831.3376759

[43] Bryan Wang, Meng Yu Yang, and Tovi Grossman. 2021. Soloist: Generating
Mixed-Initiative Tutorials from Existing Guitar Instructional Videos Through
Audio Processing. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing
Machinery, New York, NY, USA, Article 98, 14 pages. https://doi.org/10.1145/
3411764.3445162

[44] Miao Wang, Guo-Wei Yang, Shi-Min Hu, Shing-Tung Yau, and Ariel Shamir. 2019.
Write-a-Video: Computational Video Montage from Themed Text. ACM Trans.
Graph. 38, 6, Article 177 (Nov. 2019), 13 pages. https://doi.org/10.1145/3355089.
3356520

[45] Nora S.Willett, Wilmot Li, Jovan Popovic, and Adam Finkelstein. 2017. Triggering
Artwork Swaps for Live Animation. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology (Québec City, QC, Canada)
(UIST ’17). Association for Computing Machinery, New York, NY, USA, 85–95.
https://doi.org/10.1145/3126594.3126596

[46] Haijun Xia, Jennifer Jacobs, and Maneesh Agrawala. 2020. Crosscast: Adding
Visuals to Audio Travel Podcasts. In Proceedings of the 33rd Annual ACM Sym-
posium on User Interface Software and Technology (Virtual Event, USA) (UIST
’20). Association for Computing Machinery, New York, NY, USA, 735–746.
https://doi.org/10.1145/3379337.3415882

[47] Saelyne Yang, Jisu Yim, Aitolkyn Baigutanova, Seoyoung Kim, Minsuk Chang,
and Juho Kim. 2022. SoftVideo: Improving the Learning Experience of Software
Tutorial Videos with Collective Interaction Data. In 27th International Conference
on Intelligent User Interfaces (Helsinki, Finland) (IUI ’22). Association for Comput-
ing Machinery, New York, NY, USA, 646–660. https://doi.org/10.1145/3490099.
3511106

[48] Mingyuan Zhong, Gang Li, Peggy Chi, and Yang Li. 2021. HelpViz: Automatic
Generation of Contextual Visual Mobile Tutorials from Text-Based Instructions.
In The 34th Annual ACM Symposium on User Interface Software and Technology
(Virtual Event, USA) (UIST ’21). Association for Computing Machinery, New York,
NY, USA, 1144–1153. https://doi.org/10.1145/3472749.3474812

[49] Douglas E. Zongker and David H. Salesin. 2003. On Creating Animated Presen-
tations. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (San Diego, California) (SCA ’03). Eurographics Association,
Goslar, DEU, 298–308.

https://www.masterclass.com/articles/what-is-a-table-read-how-to-set-up-a-table-read-including-who-to-invite-and-what-to-provide#what-is-a-table-read
https://doi.org/10.1145/3126594.3126628
https://doi.org/10.1145/2807442.2807502
https://doi.org/10.1145/2984511.2984552
https://doi.org/10.1145/3379337.3415864
https://doi.org/10.1145/3242587.3242618
https://www.synthesia.io/
https://doi.org/10.1145/3072959.3073699
https://doi.org/10.1145/2984511.2984569
https://doi.org/10.1145/3173574.3173890
https://doi.org/10.1145/3313831.3376759
https://doi.org/10.1145/3411764.3445162
https://doi.org/10.1145/3411764.3445162
https://doi.org/10.1145/3355089.3356520
https://doi.org/10.1145/3355089.3356520
https://doi.org/10.1145/3126594.3126596
https://doi.org/10.1145/3379337.3415882
https://doi.org/10.1145/3490099.3511106
https://doi.org/10.1145/3490099.3511106
https://doi.org/10.1145/3472749.3474812

	Abstract
	1 Introduction
	2 Related Work
	3 What goes to a programming video?
	4 Video Prototyping with Doc2Video
	5 Automatic Scripting and Rendering
	5.1 Document Parser
	5.2 Script Planner
	5.3 Talking Head Video Synthesizer
	5.4 Interactive Composition and Editing
	5.5 Implementation

	6 Results
	7 User Evaluation
	7.1 Study Design
	7.2 Understanding Existing Workflows
	7.3 Feedback on Doc2Video

	8 Discussion and Opportunities
	9 Conclusion
	Acknowledgments
	References

