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Abstract

Restless multi-armed bandits (RMABs) extend multi-armed
bandits to allow for stateful arms, where the state of each
arm evolves restlessly with different transitions depending on
whether that arm is pulled. Solving RMABs requires infor-
mation on transition dynamics, which are often unknown up-
front. To plan in RMAB settings with unknown transitions,
we propose the first online learning algorithm based on the
Whittle index policy, using an upper confidence bound (UCB)
approach to learn transition dynamics. Specifically, we es-
timate confidence bounds of the transition probabilities and
formulate a bilinear program to compute optimistic Whit-
tle indices using these estimates. Our algorithm, UCWhittle,
achieves sublinear O(H+/T log T) frequentist regret to solve
RMABs with unknown transitions in 7" episodes with a con-
stant horizon H. Empirically, we demonstrate that UCWhit-
tle leverages the structure of RMABs and the Whittle in-
dex policy solution to achieve better performance than exist-
ing online learning baselines across three domains, including
one constructed via sampling from a real-world maternal and
childcare dataset.

1 Introduction

Restless multi-armed bandits (RMABs) (Whittle 1988) gen-
eralize multi-armed bandits (MABs) by introducing states
for each arm. RMABs are commonly used to model se-
quential scheduling problems with limited resources such
as clinical health (Villar, Bowden, and Wason 2015), on-
line advertising (Meshram, Gopalan, and Manjunath 2016),
and energy-efficient scheduling (Borkar et al. 2017). As with
stochastic combinatorial MABs (Chen, Wang, and Yuan
2013), the RMAB learner must repeatedly pull K out of N
arms at each timestep. Unlike stochastic MABs, the reward
distribution of each arm in an RMAB depends on that arm’s
state, which transitions based on a Markov decision process
(MDP) dependent on whether the arm is pulled. These prob-
lems are called “restless” as arms may change state regard-
less of whether they are pulled. The reward at each timestep
is the sum of reward across all arms, including arms not
acted upon.
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Even when the transition dynamics are given, planning
an optimal policy for RMABs is PSPACE-hard (Papadim-
itriou and Tsitsiklis 1994) due to the state-dependent re-
ward and combinatorial action space. To compute an ap-
proximate planning solution to RMABSs, the Whittle index
policy (Whittle 1988) defines a “Whittle index” of each arm
as an estimate of the future value if acted upon, then acts on
the arms with the K largest indices. The Whittle index pol-
icy is shown to be asymptotically optimal (Weber and Weiss
1990) and is commonly adopted as a scalable solution to
RMAB problems (Hsu 2018; Kadota et al. 2016).

However, in many real-world applications of RMABs,
transition dynamics are often unknown in advance. The
learner must take actions that achieve high reward while si-
multaneously strategically querying to learn the underlying
transition probabilities. Accordingly, in this paper we focus
on the challenge of online learning in fixed-length episodic
RMABSs with unknown transitions, studying the Whittle in-
dex policy for its scalability.

Main contributions Here, we present UCWhittle, the first
upper confidence bound (UCB) algorithm for RMABs that
uses the Whittle index policy to achieve sublinear frequen-
tist regret. Our algorithm maintains confidence bounds for
each transition probability across all arms based on prior
observations. Using these bounds, we define a bilinear pro-
gram to solve for optimistic transition probabilities — the
transition probabilities that yield the highest future reward.
These optimistic transition probabilities enable us to com-
pute an optimistic Whittle index for each arm to inform a
Whittle index policy. Our UCWhittle algorithm leverages
the structure of RMABs and the Whittle index solution to
decompose the policy across individual arms, which greatly
reduces the computation cost of finding an optimistic solu-
tion compared to other UCB-based solutions (Auer and Or-
tner 2006; Jaksch, Auer, and Ortner 2010).

Theoretically, we analyze the frequentist regret of
UCWhittle. The frequentist regret is defined as the regret
incurred from unknown transition dynamics; in contrast, the
Bayesian regret is the regret averaged over all possible tran-
sitions from a prior distribution. In this paper, we define re-
gret in terms of the relaxed Lagrangian of the RMAB —
to make the objective tractable — which upper bounds the
primal RMAB problem. We show that UCWhittle achieves



sublinear frequentist regret O(H+/T log T) where T is the
number of episodes of interaction with the RMAB instance
and H is a sufficiently large horizon that the learner can
receive information from each episode. Our result extends
the analysis of Bayesian regret in RMABs using Thompson
sampling (Jung and Tewari 2019) to frequentist regret by re-
moving the assumption of a prior distribution. Finally, we
evaluate UCWhittle against other online RMAB approaches
on real data from maternal and child healthcare (Mate et al.
2022b) and two synthetic settings, showing that UCWhittle
achieves lower frequentist regret empirically as well.

2 Related Work

Offline planning for RMABs When the transition dy-
namics are given, an RMAB is a sequential decision-
making problem. Computing the optimal policy in RMABs
is PSPACE-hard (Papadimitriou and Tsitsiklis 1994) due to
the state-dependent reward distribution and combinatorial
action space. The Whittle index policy (Whittle 1988) ap-
proximately solves the planning problem by estimating the
value of each arm state. The indexability condition (Ak-
barzadeh and Mahajan 2019; Wang et al. 2019) guaran-
tees asymptotical optimality (Weber and Weiss 1990) of the
Whittle index policy at an infinite time horizon. Nakhleh
et al. (2021) use deep reinforcement learning to estimate
Whittle indices for episodic finite-horizon RMABs, which
requires the environment to be differentiable. In contrast,
we focus on settings where the transition dynamics are un-
known, which necessitates online learning.

Online learning for RMABs When the transition dynam-
ics are unknown, an RMAB becomes an online learning
problem to simultaneously learn the transition probabilities
(exploration) while executing high-reward actions (exploita-
tion) to minimize regret with respect to a chosen benchmark.
Dai et al. (2011) achieve a regret bound of O(logT), with
T timesteps of interaction with the RMAB instance, bench-
marked against an optimal policy from a finite number of
potential policies. Xiong, Li, and Singh (2022) use a La-
grangian relaxation and optimistic index-based algorithm,
but require access to a powerful offline simulator to gener-
ate samples for any given (state, action) pair. Tekin and Liu
(2012) define a weaker benchmark of the best single-action
policy — the optimal policy that continues to play the same
arm — and use an upper confidence bound (UCB) based al-
gorithm to achieve O(log T') frequentist regret.

Recent works introduce oracle-based policies for the non-
combinatorial setting that pulls only a single arm in each
round with bandit feedback, where only the state of the
pulled arm is observed. Jung and Tewari (2019) use a
Thompson sampling—based algorithm to show a Bayesian
regret bound O(y/T log T') under a given prior distribution.
Wang, Huang, and Lui (2020) split into an exploration and
an exploitation phase to achieve frequentist regret O(72/%).
These works assume some policy oracle is given, bench-
marking regret with the policy induced by the oracle using
the true transition. In contrast to the meta-algorithms they
propose, we design an optimal approach custom-tailored
to one specific oracle — based on the Whittle index policy

— which enables us to achieve a tighter frequentist regret
bound of O(H+/T log T') with a constant horizon H.

Online reinforcement learning RMABs are a special
case of Markov decision processes (MDPs) with combinato-
rial state and action spaces. Q-learning algorithms are popu-
lar for solving large MDPs and have been applied to standard
binary-action RMABs (Avrachenkov and Borkar 2022; Fu
et al. 2019; Biswas et al. 2021) and extended to the multi-
action setting (Killian et al. 2021). However, these works
do not provide any regret guarantee. Significant work has
explored online learning for stochastic multi-armed bandits
(Neu and Bartdk 2013; Immorlica et al. 2019; Foster and
Rakhlin 2020; Baek and Farias 2020; Xu et al. 2021), but
these do not allow arms to change state.

Some papers study online reinforcement learning by us-
ing the optimal policy as the benchmark to bound regret
in MDPs (Auer and Ortner 2006; Jaksch, Auer, and Ort-
ner 2010) and RMABs (Ortner et al. 2012). These works
use UCB-based algorithms (UCRL and UCRL?2) to obtain
a regret of O(y/T logT'). However, calculating regret with
respect to the optimal policy requires computing the optimal
solution to the RMAB problem, which is intractable due to
the combinatorial space and action spaces. To overcome this
difficulty, we restrict the benchmark for computing regret
to the class of Whittle index threshold policies, and lever-
age the weak-decomposability of the Whittle index thresh-
old policy to establish a new regret bound.

3 Restless Bandits and Whittle Index Policy

An instance of a restless multi-armed bandit (RMAB) prob-
lem is composed of a set of N arms. Each arm i € [N] is
modeled as an independent Markov decision process (MDP)
defined by a tuple (S, A, R, P;). The state space S, action
space A, and reward function R : S x A — R are shared
across arms; the transition probability P; : S x A x § —
[0, 1] may be unique per arm .

We denote the state of the RMAB instance at timestep h €
N by s;, € SV, where s, ; denotes the state of arm i € [N].
We assume the state is fully observable. The initial state is
given by s; = si,; € S™V. The action (an “arm pull”) at time
h is denoted by a binary vector a;, € AN = {0,1} and is
constrained by budget K such that 3,y s, < K.

After taking action aj; on arm %, the state sj; tran-
sitions to the next state sj41; with transition probability
Pi(Sh,i,0h,i;Sht1,i) € [0,1]. We denote the set of all tran-
sition probabilities by P = [P;];c[n]. The learner receives
reward R(sy, ;,an ;) from each arm ¢ (including those not
acted upon) at every timestep h; we assume the reward func-
tion R is known to the learner.

The learner’s actions are described by a deterministic pol-
icy 7 : SV — AN, which maps a given state s € SV to an
action a € A™. The learner’s goal is to optimize the total
discounted reward, with discount factor v € (0, 1):

max E

h—1 ‘ .
4 (s,a)~(P,m) Z}LEN’Y ZiG[N] R(Sh,l?ah7z)

s.t. Ziem (n(s))i=K VseSN (1)



3.1 Lagrangian Relaxation

Equation 1 is intractable to optimize and evaluate over all
possible policies, thus a poor candidate objective for evalu-
ating online learning performance. Instead, we relax the con-
straints to use the Lagrangian as the evaluation metric:

UPXgy) = E
n " (s1) (s,a)N(P,ﬂ')ZhGN

Y ( > R(sni ani) — /\( > (m(sn))i — K))

i€[N] i€[N]
2

which permits actions that exceed the budget constraint, sub-
ject to a given penalty A. The optimal value of Equation 2,
which we denote UF*, is always an upper bound to Equa-
tion 1. Therefore, we solve Equation 2 for every A and find
the infimum A\* = arg min) Uf A afterward.

3.2 Whittle Index and Threshold Policy
Relaxing the budget constraint enables us to decompose the
combinatorial policy into a set of N independent policies for
each arm. The decoupled policy yields 7(s) = [m;(si)]ie[n],
where each arm policy m; : S — A specifies the action for
arm ¢ given state s;. The value function is then:

Vit (s1) = > hen

(8h,iran,:)~(Pi,m;) Yh

ARt <R(3h,i, ani) — )\<7Ti(sh,i) - K)) - G

Equation 3 can be interpreted as adding a penalty A to
the pulling action a = 1, which motivates the definition of
Whittle index (Whittle 1988) as the smallest penalty for an
arm such that pulling that arm is equally good as not pulling:
Definition 3.1. Given transition probabilities P; and state s;,
the Whittle index of arm i is defined as:

Wi(Pi,s:) = inf{m; : Q™ (s;,0) = Q™ (s, )} (4)

where Q™ (s, a) and V™ (s) are the solution to the Bellman
equation with penalty m; for pulling action a = 1:

Q™ (s,a) = —mya + R(s,a) + 7 Z P(s,a,s)V™i(s")
s'eS
Vmi(s) = gleaj‘(Q i(s,a).

When the Whittle index W;(P;, s;) for an arm is higher
than the chosen global penalty A\ — that is, m; > A — the
optimal policy in Equation 3 is to pull the arm, i.e., 7;(s;) =
1. We denote the Whittle indices of all arms and all states by
W(P) = [Wi(Pi, si)licn),s.c5 € RV*IS],

Definition 3.2 (Whittle index threshold policy). Given a
chosen global penalty A and the Whittle indices W (P) com-
puted from transitions P, the threshold policy is defined by:

Tw () A(8) = [lw,(pszaliey €AY . (9)
which pulls all the arms with Whittle indices larger than ).
The Whittle index threshold policy may violate the bud-
get constraints in Equation 1, but it maximizes the relaxed
Lagrangian in Equation 2 under penalty .

4 Problem Statement:
Online Learning in RMABs

In this paper, we consider the online setting where the
true transition probabilities P* are unknown to the learner.
The learner interacts with an RMAB instance across mul-
tiple episodes, and only requires observations for the first
H timesteps of each episode to estimate transition probabil-
ities. The observations of the transitions are maintained in a
historical dataset which we denote D = {(s,a, s')}.

At the beginning of each episode ¢ > 1, the learner starts
the RMAB instance (b = 1) from s; = sj,; and selects a
new policy 7(*). We make the following assumptions:

* Each episode is infinite horizon with discount factor ~.

« In each episode ¢, the learner proposes a policy 7(*). The
learner observes the first H timesteps', but receives the

infinite discounted reward Uf(;;\(sl) to account for the
long-term effect of 7(*).

* We assume the MDP associated with each arm is ergodic.
That is, starting from the given initial state, we assume
H is large enough such that after H timesteps, there is at
least £ > 0 probability of reaching any state s € S.

4.1 Offline Benchmark and Regret

To evaluate performance of our policy 7(*), we compare
against a Whittle index threshold policy 7y (p+), trained
with knowledge of the true transitions P* and a given
penalty A. This offline benchmark measures the advantage
gained from knowing the true transitions P*. We measure
regret against this full-information benchmark.

Definition 4.1 (Frequentist regret of the Lagrangian objec-
tive). Given a penalty A and the true transitions P*, we de-
fine the regret of the policy 7(*) in episode t relative to the
optimal policy 7* = Ty (p+) a:
RegE\t) = UTI:’A(sl) — Uf(:)’A(sl) ,
— ()
Reg, (T) = Ztem Reg)’ . (6)
However, the relaxed Lagrangian in Equation 2 with a
randomly chosen penalty A may not be a good proxy to the
primal RMAB problem in Equation 1. Therefore, we define

the Lagrangian using the optimal Lagrangian multiplier \*
as the tightest upper bound of Equation 1.

Definition 4.2 (Frequentist regret of the optimal Lagrangian
objective). Given P*, we denote the optimal penalty by
A* = argminy UL *(s;). The regret of the optimal La-
grangian objective is defined by:

Reg) = UL ™ (s1) - UR (s1)

Reg,.(T) = Ztem Reg!!) . (7)

While our algorithm requires satisfying the strict budget
constraint, the expected regret is approximated by the regret
from the relaxed Lagrangian in Equation 2 as defined in Def-
inition 4.1 and Definition 4.2.

'In practice, infinite time horizon means a large horizon that is
much larger than H.



4.2 Frequentist Versus Bayesian Regret

Note that the definitions of regret that we consider are fre-
quentist regret, which measures worst-case regret under un-
known transition probabilities. The other regret notion is
Bayesian regret, calculated as the expected value over a prior
distribution of possible transitions. We bound the frequentist
regret of each instance of the RMAB problem with a con-
stant dependence on the ergodicity of the problem instance;
approaches to calculate Bayesian regret rely on a prior, such
as Thompson sampling-based methods (Jung and Tewari
2019; Jung, Abeille, and Tewari 2019).

5 UCWhittle: Optimistic Whittle Index
Threshold Policy

A key challenge to online learning in RMABs is that the con-
fidence bounds of the estimated transitions indirectly impact
future reward, affecting the future state and reward distribu-
tion. We introduce a method, UCWhittle, to compute opti-
mistic Whittle indices that account for highest future value.

5.1 Confidence Bounds of Transition Probabilities
We maintain confidence bounds for every unknown tran-
sition probability in the RMAB instance. Specifically we

maintain counts Ni(t)(s,a,s’) for every state, action, and

next state transition observed by episode ¢. Let Ni(t) (s,a) =

ZéesN()(sas) .
Given a chosen small constant § > 0, we estimate each
transition probability P;(s, a, s’) with empirical mean

Ni(t) (s,a,s")

P-(t)(s,ms/) = (8)
’ N (s,a)
and confidence radius
2|S|log(2|S||A|N &
00y | ASTBRASIANG)

max{l,Ni(t)(s,a)}

With these confidence bounds, we specify the open ball B
of possible values for transition probabilities P as

B® :{

5.2 Optimistic Transitions and Whittle Indices

To translate confidence bounds in transition probabilities to
the actual reward, we define an optimization problem (Py-)
to find for each arm 7 the optimistic transition probability PT,

the value within the confidence bound that yields the hlghest
future value from the starting state s;:

Pi(s,a,-)— P (s,

max  V(s;) s.t. V(s) =maxQ(s,a) (Py)
V,Q,PiGB(t) ac€A
Q(s,a) = —Xa+ R(s,a) + ’yz (s,a,8" )V (s")

We prove Equation (Py) to be optimal in Section 6.
We use the optimistic transition Pj to compute the cor-
responding optimistic Whittle index W, = [W(P})].es.

7 (2

a, )Hl Sdz(-t)(s, a) Vi, s, a} )

The Whittle index threshold policy 7r;r = my+ , achieves

the same value function derived from the transition PiT,
which maximizes Equation (Py). Aggregating all the arms
together, optimistic policy 7 with optimistic transitions P
maximizes the future value of the current state s.

5.3 UCWhittle Algorithm

Having computed optimistic transitions and the correspond-
ing optimistic Whittle indices (P,,), we construct an opti-
mistic Whittle index threshold policy to execute. The full
algorithm is outlined in Algorithm 1, and implementation
details — including novel techniques for speeding up com-
putation of Whittle index — are given in Appendix F.1.

Algorithm 1: UCWhittle
1: Input: N arms, K budget, episode horizon H

2: Initialize counts Ni(t) =0forall s,a,s

3: Randomly initialize penalty \(*)

4: for episode t € {1,2,...} do

5: Reset h=1and s = s,y > Reset RMAB instance

6 Pl =Py(s;, N, AW)foralli € [N]
an optimistic transition for each arm

7. W; = COMPUTEWI(P],s;) for all i € [N]
> Compute Whittle indices using Def. 3.1

8:  Execute 7(*) for H steps by pulling arms with the top
K Whittle indices. Observe transitions (s, a, s').

> Compute

9:  Update counts Ni(t), empirical means P(t), and con-
fidence regions B(*)

10: At = Kth highest Whittle index
penalty

11: end for

> Update

5.4 Alternative Formulation for Whittle Index
Upper Bound

Equation (Py) is computationally expensive, so we formu-
late a heuristic optimization to compute an upper bound on
the Whittle index. We solve for the transition probability and
the value function that yield the highest Whittle index (in-
stead of highest future value) at the current state sy, ;:

max m; Pumn)
mi,V,Q,P;,eBY
s.t. V(s) = meaXQ(s,a), Q(sn,i;a=0) = Q(sp,i,a=1)
Q(s,a) = —m;a+ R(s,a) —1—72 (s,a,8")V(s")

This optimization problem differs shghtly from the opti-
mization in Equation (Py ) with a different objective, addi-
tional variables m; representing the penalty for each arm,
and added Whittle index constraint.

Solving Equation (P,,) directly gives us the maximal
Whittle index estimate within the confidence bound. We
thus save computation cost while maintaining a valid upper
bound to the optimistic Whittle index from Equation (Py),
which requires an intermediate step to compute the op-
timistic Whittle index. However, the theoretical analysis



does not hold for the heuristic. Empirically, we show that
this heuristic achieves comparable performance with signif-
icantly lower computation.

6 Regret Analysis

We provide regret guarantees of our UCWhittle algorithm.
In the following section, we use the Lagrangian objective
as a proxy to the reward received from the proposed pol-
icy. Section 6.1 first assumes an arbitrary penalty A is given
to define the regret (Definition 4.1). Section 6.2 generalizes
to define the regret of optimal Lagrangian objective based
on the unknown optimal penalty \* (Definition 4.2). Sec-
tion 6.3 provides an update rule for updating the penalty A(*)
after each episode. Full proofs are given in Appendix D.

6.1 Regret Bound with Known Penalty

By the Chernoff bound, we know that with high probability
the true transition P* lies within B("):

Proposition 6.1. Given 6 > 0 and t > 0, we have:
Pr(P*e BY)>1- 2.

This bound can be used to bound the regret incurred when
the confidence bound fails. In the following theorem, we
bound the regret in the case where the confidence bound
holds and when the penalty A is given.

Theorem 6.2 (Regret decomposition). Given the penalty \
and P* € B for all t, we have:

Reg,(T') = ZtE[T] Uy, M(s1) — Ufm’/\(sl)

P® ) P* A
< ZtE[T] U (s1) — Uy (s1). (10
Proof. By optimality of Equation (Py) to enable
(Pi(t),wl(t)) = PeBO VEiA(sy;) and the
assumption that the true transition lies within the confidence
region P’ € B(t)

UM 1) =30, Ve 1)

(t)

P! ,\ P® A\

g Vi $1.4) =U “(s1) .0
— ZE[N] (ﬂ 1}7,> () ( 1)

Theorem 6.2 enables us to bound our regret by the differ-
ence between two future values under the same policy 7(*).

Definition 6.3 (Bellman operator). Define the Bellman op-
erator as:

arg max

we show that:

T V(s)= E

anyT;

—Xa+R(s,a)+~v Z Pi(s,a,8)V(s)
s’eS
Using Theorem 6.2 and the Bellman operator, we can fur-
ther decompose the regret by:
Theorem 6.4 (Per-episode regret decomposition in the fully

observable setting). For an arm i, fix P(t) Pr, X\ and the
initial state sy ;. We have:

PM A i
|4 (Zw (81 i) — v’ <1> (81,i) =

- P(t) P; P A
(t) [ZV}L 1( (r) _Tu)) V&) (Shz)l - (1)

h=1

Theorem 6.4 further decomposes the regret in Equation 10
into individual differences in Bellman operators. The next
theorem bounds the differences in Bellman operators by dif-
ferences in transition probabilities.

Theorem 6.5. Assume the penalty term \) = X is given
and the RMAB instance is e-ergodicity after H timesteps.
The following bound on the cumulative regret in T’ episodes
holds with probability 1 — 6:
1
Reg,(t) <O <|S||A|éNH TlogT) . (12)
€
Proof sketch. We focus on bounding the regret when the
confidence bounds hold. By Theorem 6.2 and Theorem 6.4,

we estimate the right-hand side of Equation 11 to bound the
total regret by the L!-difference in the transition probability:

Z:O:1 Ah=1
_Zh Y ’

We bound the regret outside of the horizon H by the ergodic
assumption of the MDPs. For the regret inside the hori-
zon H, we use the confidence radius to bound the L!-norm
of transition probability differences and count the number
of observations for each state-action pair to express the re-
gret as a sequence of random variables, whose sum can be
bounded by Lemma D.3 to conclude the proof. O

P(t) P(t)
(Té) - Tl?z)) VW;;) (Sh,i) (13)

i

)(Sh 7,7ah i3 ) - Pi*(sh,iy ah,i7 )Hl Vmax-

When the penalty term A is given, Theorem 6.5 bounds
the frequentist regret with a constant term depending on the
ergodicity € of the underlying true MDPs.

6.2 Regret Bound with Unknown Optimal
Penalty

The analysis in Theorem 6.2 assumes a fixed and given
penalty A. In this section, we generalize to regret defined
in terms of the optimal but unknown penalty A\* (Defini-
tion 4.2). We show that updating penalty A(*) in Algorithm 1
achieves the same regret bound without requiring knowledge
of the true transitions P* or optimal penalty \*:

Theorem 6.6 (Regret bound with optimal penalty). Assume
the penalty \V) in Algorithm 1 is updated by a saddle point
A® PO 7)) = argminy maxp . UF*(s1) subject to
constraints in Equation (Py). The cumulative regret of the
optimal Lagrangian objective is bounded with probability
1-9:

Reg,.(t) < O (iS||A|5NH TlogT) . (14
Proof sketch. The main challenge of an unknown penalty
term \* is that the optimality of the chosen transition P(*)
and policy 7(*) does not hold in Theorem 6.2 due to the mis-
alignment of the penalty A\(*) used in solving Equation (Py/)
and the penalty A\* used in the regret.

Surprisingly, the optimality of (A®), P®) 7(®)) =
arg miny maxp . UP*(s1) and A\* = infy Uf*w‘(sl) is
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Figure 1: Cumulative discounted regret (lower is better) in each episode (z-axis) incurred by our UCWhittle approaches com-
pared to baselines across the three domains with N = 8 arms, budget B = 3, episode length H = 20, and T' = 40 episodes.

sufficient to show Theorem 6.2 by:

P P A® PMA® P® 3>
U, < U, <U U
N————’

P() X

(1)
P® x\* P\

Uﬂ'(t) - Uﬂ'(t>

(15)

L P* A
* > . (t) c
A* minimizes U, P® 7™ maximizes UF 2" A(t) minimizes U

(t) _ ;7P A" P* "
= Reg)\/ =U,." —U_

where we omit the dependency on s;.

After taking summation over ¢ € [T, Equation 15 leads to
the same result as shown in Theorem 6.2 but the penalty up-
date rule does not use the knowledge of the optimal penalty
A*. The rest of the proof follows the same argument in The-
orem 6.4 and Theorem 6.5 with the same regret bound. [

6.3 Penalty Update Rule

Theorem 6.6 suggests that the penalty term A(®) should be
defined by solving a minimax problem (A(*), P() 7(1)) —
arg miny maxp_. UL *(s;). However, solving a minimax
problem with a bilinear objective is difficult. A heuristic
solution is to solve the maximization problem using the
previous penalty A=Y to determine P(*) and 7(*) (Equa-
tion (Py)). We update A® based on the current policy, set
equal to the Kth largest Whittle index pulled at time ¢ to
minimize the Lagrangian. This update rule mimics the min-
imax update rule required by Theorem 6.6.

7 Experiments

We show that UCWhittle achieves consistently low regret
across three domains, including one generated from real-
world data on maternal health. Additional details about the
dataset and data usage are shown in Appendix E, and details
about implementation (including novel techniques to speed
up computation) and experiments are shown in Appendix F.

7.1 Preliminaries

Domains We consider three binary-action, binary-state
settings. Across all domains, the binary states are good or
bad, with reward 1 and 0 respectively. We impose two as-
sumptions: that acting is always beneficial (more likely to
transition to the good state), and that it is always better
to start from the good state (more likely to stay in good
state). The first domain is an online learning environment
constructed from the ARMMAN dataset, and the other two

are synthetic environments sampling from specific ranges of
transition probabilities.

ARMMAN (2022) is a non-profit based in India that dis-
seminates health information to pregnant women and moth-
ers to reduce mortality and morbidity for mothers and their
children. Twice a week, ARMMAN sends automated voice
messages to enrolled beneficiaries relaying critical preven-
tative health information. To improve listenership, the orga-
nization provides service calls to a subset of beneficiaries;
the challenge is selecting which subset to call to maximize
engagement. We use a real-world anonymized dataset based
on the engagement behavior of 7,656 mothers from a previ-
ous RMARB field study (Mate et al. 2022b). We construct in-
stances of RMAB problem with transition probabilities ran-
domly sampled from the real dataset.

Wide Margin ~ We randomly generate transition proba-
bilities with high variance, while respecting the constraints
specified above.

Thin Margin  For a more challenging setting, we con-
sider a synthetic domain with probabilities of transitioning
to the good state constrained to the interval [0.2,0.4] to test
the ability of each approach to discern smaller differences in
transition probabilities.

Algorithms We evaluate both variants of UCWhittle (Al-
gorithm 1) introduced in this paper. =~ UCWhittle-value
uses the value-maximizing bilinear program (Py) while
UCWhittle-penalty uses the penalty-maximizing bilinear
program (Pp,).

In this paper, we focus on frequentist regret, thus we ex-
clude the Bayesian regret baselines, e.g., Thompson sam-
pling (Jung and Tewari 2019), because their regret bounds
are averaged over a prior. We consider the following three re-
gret baselines: ExtremeWhittle is similar to the the approach
by Wang et al. (2019): estimate Whittle indices from the ex-
treme points, using UCBs of active transition probabilities
and lower confidence bounds (LCB) for passive transition
probabilities to estimate the gap between the value of acting
versus not acting. We then solve a Whittle index policy using
these estimates. WIQL (Biswas et al. 2021) uses Q-learning
to learn the value function of each arm at each state by in-
teracting with the RMAB instance. Random takes a random
action in each step, serving as a baseline for expected re-
ward without using any strategic learning algorithm. Lastly,
we evaluate an optimal policy which computes a Whittle in-
dex policy with access to the true transition probabilities.
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Figure 2: Varying budget ratio K /N, with N = 15 arms, on the ARMMAN domain. Our UCWhittle approaches perform
stronger than baselines, particularly in the challenging low-budget scenarios.
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Figure 3: Changing episode length H on the ARMMAN domain. We run each setting for 1, 200 total timesteps. UCW-penalty
performs best with longer horizons. At shorter horizons, UCW-value converges in fewer timesteps, but more episodes are
necessary: around episode ¢ = 100 with a horizon H = 5 compared to episode ¢ = 16 with horizon H = 50.

Experiment setup We evaluate the performance of each
algorithm across 7' episodes of length H. The per-episode
reward is the cumulative discounted reward with discount
rate v = 0.9. We then compute regret by subtracting the
reward earned by each algorithm from the reward of the op-
timal policy. Results are averaged over 30 random seeds and
smoothed using exponential smoothing with a weight of 0.9.
We ensure consistency by enforcing, across all algorithms,
identical populations (transition probabilities for each arm)
and initial state for each episode.

7.2 Results

The performance results across all three domains are shown
in Figure 1. Our UCWhittle algorithm using the value-
maximizing bilinear program (UCW-value) achieves consis-
tently strong performance and generally converges by 600
timesteps (across varying episode lengths). In Figures 2
and 3 we evaluate performance while varying the budget K
and episode length H, as the regret of UCWhittle (Theo-
rem 6.5) has dependency on both the budget as a ratio of
total number of arms (X /N) and episode length H. We see
that UCW-value performs comparatively stronger than the
baselines in the challenging low-budget settings, in which
each arm pull has greater impact.

Our heuristic approach UCW-penalty — the penalty-
maximizing bilinear program we present in Eq. (P,,) —
shows strong performance. UCW-penalty performs even
better than UCW-value in some settings, particularly in the
ARMMAN domain with N = 15 arms (Figure 2). Notably
in Table 1 we see this heuristic approach performs dramati-
cally faster than UCW-value — a 6.1x speedup. Therefore
while are able to establish regret guarantees only for UCW-
value, we also propose UCW-penalty as a strong candidate

Method Time (s)
UCWhittle-value 1090.92
UCWhittle-penalty 177.57
ExtremeWhittle 109.44
WIQL 3.39
random 1.32

Table 1: Average runtime of the different approaches across
500 timesteps with N = 30 arms and budget B = 6

for its strong performance and quick execution.

In Figures 2 and 3 we see ExtremeWhittle has poor per-
formance particularly in the early episodes, consistently
achieving higher regret than the random policy. Addition-
ally, WIQL is slow to converge, performing similarly to the
random baseline across the time horizons that we consider.

8 Conclusion

We propose the first online learning algorithm for RMABs
based on the Whittle index policy, using an upper confidence
bound—approach to learn transition dynamics. We formulate
a bilinear program to compute optimistic Whittle indices
from the confidence bounds of transition dynamics, enabling
an online learning algorithm using an optimistic Whittle
index threshold policy. Theoretically, our work pushes the
boundary of existing frequentist regret bounds in RMABs
while maintaining scalability by leveraging decomposition
in the Whittle index threshold policy.
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A Notation

All the notations used in the problem statement, restless multi-armed bandits, and regret analysis are shown in Table 2 and

Table 3.
Problem instantiation

Symbol Definition

K Budget in each timestep

N Number of arms. Each arm indexed by i € [N]

t Episode

T Number of episodes

h Timestep within a single episode

H Horizon length for a single episode

~y Discount factor, with v € (0, 1)

Table 2: List of common notations in the problem statement
Restless bandit notation
Symbol Definition
P Set of transition probabilities across all arms, with P; as transitions for a single arm
P~ True transition probabilities
S Set of finitely many possible states with |S| = M possible states
S State of the RMAB instance at timestep h, with s;, € S N and initial state Sip
Sh.i State of arm ¢ € [N] at timestep h
A Set of possible actions. We consider {0, 1}
aj, Action at time h, with aj, € AN
Qi Action taken on arm ¢ at timestep h
R Given reward function as a function of the state and action R: S x A — R.
x® Learner’s policy in episode ¢, where 7(*) : SN — AN
™ The optimal policy that maximizes the total future reward.
P The optimization problem defined to maximize the optimistic Whittle index value.
Py The optimization problem defined to maximize the optimistic future value.
Q™i(s,a) Q-value in Bellman equation. The Q-value is defined as the future value associated to the current state and action.
R(sh,i,an,:) Reward from arm ¢ at timestep h with action ay, ;
UPA(sy) Lagrangian relaxation of learner’s objective, with optimal value Uk
VPiA(s1;)  Value for being in state s;
Global penalty for taking action a = 1

m; Whittle index penalty for arm 4
Wi (P, si) Whittle index of arm 7 with transitions P; and state s;
D Dataset of historical transitions

Table 3: List of common notations in the RMAB regret analysis

B Societal Impacts

Restless bandits have been increasingly applied to socially impactful problems including healthcare and energy distribution.
In these settings, we would likely not know the transition dynamics in advance, particularly if we are working with a new
patient population (for healthcare) or new residential community (for energy). Even past work on streaming bandits (Mate et al.
2022a) which allow for new beneficiaries to enroll over time assume that the transition probabilities are fully known in advance,
which is not realistic. Our UCWhittle approach enabling online learning for RMABs has the potential to greatly broaden the
applicability of RMABs for social impact, particularly as our theoretical results guarantee limited regret.

C Limitations

One challenge with our UCWhittle approach is that online learning often converges slower than offline learning that reuses all
the data to train for many epochs. In order to accommodate new data coming in, online learning approaches often take a single



update when each new data arrives. In contrast, offline learning can iterate through the same data for many times, which allows
offline learning approaches to fit the data repeatedly. Therefore, online learning approaches often require more data to reach the
same performance as offline learning approaches.

However, this slower learning behavior also allows online learning approaches to be less biased to the existing dataset.
Online learning approaches are incentivized to explore and update data that is less queried previously, which also encourages
exploring underrepresented groups. This property encourages the exploration process and reduce bias to the learned model. This
is particularly important when there are features involved in the learning process. Online learning approaches are able to explore
unseen features more, while offline learning approaches often rely on extrapolation and are unable to handle unseen features.
Our work further extends research in online learning in RMABs, which also helps explore more possibility to accommodate
new data and new features that are unseen in the existing dataset.

D Full Proofs
D.1 Confidence Bound
Proposition 6.1. Given § > 0 andt > 0, we have: Pr (P* € B®) > 1— &,
Proof. Generally, the L1-deviation of the true distribution and the empirical distribution over m distinct events from n samples
is bounded according to (Weissman et al. 2003) by:

ne? )

Pr([[p —pll; = ) < (2" —2) exp~7

(16)

This result can be applied to our case to compare Pi(t) (s,a,-) € RISl with P*(s,a,-) € RIS for every state s and action a. We
have:

Pr (HPi(t)(s’a7 ) — P*(s,a, )Hl > 5) < (2|S\ _ 2) exp(fnf) (17)

By choosing € = \/% log (2I51|S||AINE) < \/¥ log (2|S||A|N%), we have:
Pr (‘

Set n = max{1, Ni(t) (s,a)} for each pair of (s, a). Taking union bound over all states s € S, actions a € A, and arms i € [V]
yields:

2 4 —log (25! 4
Pi(t)(s,a7~) _P*(S7a7')H1 > \/|S|10g (2S|A|Nt5>> < 9lS| exp 1 g(25 [S||AIN 5)
n

)

_ I 1
S[ANE (1%)

9 0

Pr(P¢BY) <5 — Pr(PeBY)>1-4 (19)

O

D.2 Regret Decomposition

Theorem 6.4 (Per-episode regret decomposition in the fully observable setting). For an arm i, fix Pz.(t), P?r, A\ and the initial
state s ;. We have:

P X Py
Vi ") =V 0" (s10) =

oo
_ p® Py P
E(t) [Z ’Yh ! <7;(z) - 7;@) Vﬂgi) (S}L,i)] . (11)
J i i

h=1 ‘
Proof. Since the value function is a fixed point to the corresponding Bellman operator, we have:

(t) * (t) (t) * *
P; F; _ P; P; Py, P
Vﬂgt) (51 z) - Vﬂgt) (Sl,i) = (7;1@ Vﬂgt) - 7;51,)‘/”51,)) (51,i>

7.{-7. ﬂ—l

(t) * (t) * (t) *
P P’ P P; P P;
= (Cgi) - 7;@)) Vv (1) (Sl,i) + 7;m <Vﬂ(;) -V (i)) (Sl,i) (20)



where the second term in Equation (20) can be further expanded by the Bellman operator:

)

P P Py " P, Py
ToWVo =Vi)s) =E, o {W Zs,es P; (Slmflys/)(vﬂo () = V¢ (8/))}

Vv
Ao Vo =V 1

P P
=E,, P a® [V o (s24) =V @)(su)} 1)

LR T

We can repeatedly apply the decomposition process in Equation (20) to the value function difference in Equation (21) to get
Equation (11), which concludes the proof.

D.3 Regret Bound with Given Penalty

Theorem 6.5. Assume the penalty term \) = X is given and the RMAB instance is e-ergodicity after H timesteps. The
following bound on the cumulative regret in T episodes holds with probability 1 — §:

1
Reg,(t) < O <€|S|A|%NH TlogT) . (12)
Proof. We can write
T T
Reg(T) = thl Reg®) = thl (Reg(t)]lp*gB(t) + Reg(t)]lp*eBm)

T T
=>_ Reelp.gpo+) RegWlp.cpo (22)

We will analyze both terms separately and combine them together in the end.

Regret when the confidence bounds do not hold
T VT T
Z t _ Z t Z t
i1 Reg( )]lp*€B<‘) = i1 Reg( )]]-P*QB(") + /T4l Reg( )]lP*QB“‘)

N Rpax T
<——VT
3

Tl Reg(t)llp*gB(t) (23)

where we use the trivial upper bound of the individual regret Reg(t) < %‘;‘“ for all ¢, where Ry, is the maximal reward per
time step.
Notice that the second term vanishes with probability:

Pr ({P* e BOWT <t < T}) >1-3 o P ({p* c B(t)})

1)
Zl_zﬁgtgﬁ
. 5
= L T<i<T t4
21—/ 3—fdt

\/Tt
1)

Therefore, the regret outside of confidence bounds is upper bounded by O(+/T)) with probability at least 1 — %. We can
apply union bound to all possible T € N, which holds with high probability:

Zoo )
Regret when the confidence bounds hold Notice that
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When the confidence bound holds P* € B*), we can bound the regret at round [ by:

(t) *
Reg™ =UR,) (s1) — UK, (s1)

N P(t) pr
=2, Vi o (s1,1) — Vﬂl{fl) (s1,6)

N oo p® pry PO
"X o [ S T =T o]

P
P; a® Zh 1 Zb resY )(Sh is @iy 8') = P (Sniy anis 3/))Vﬂ53> (s")

<Z E <’>Z yh=1 P()<5huahz, )*Pi*(sh,hah,ia')Hleax
S 2 Zi:l EPi*,TF(t) Zh:l ’Yh_ldz(‘t)(sh,i; ah,i)vmax (26)

Next, we split the term into regret within H horizon and the regret outside of H horizon. By applying Theorem D.2 with the
assumption (Assumption D.1) of the H-step ergodicity € of MDP associated to arm 4, we can bound the regret outside of H
horizon by the regret at H time step:

Ens o E = ’yh71d<t)(8h‘ ap )V
Py m(t heH41 i i Qh i) Vmax
o0
_ h—1 (t) _ )
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H
Y
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Now, we can further bound the contribution of arm ¢ in Equation 26 by substituting the regret after H steps by Equation 27
to get:
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~H v(t)(s a)
< (14 1= ) VISTORRANT Va0 (3 @

s€S,aeA \/max{l (s a)}

where vZ@ (s,a) is a random variable denoting the number of visitations to the pair (s, a) at arm 4 that the policy 771@ visits
within H steps under the transition probability P}.
Recall that Z 1 Z / (s7 a) = NZ-(t)(s7 a). We also know that 0 < vl(j)(s, a) < H. Applying Lemma D.3, we have:
a v(t)(s a)
Do) (ETT 1) N a) @)

t=1 \/max{l, Ni(t) (s,a)}



Taking summation over all the (s, a) pairs and applying Jensen inequality give us:

(\/TH + 1) Z Ni(t)(s, a)

s€S,ac A

N® s, a
< (m+ 1) |S|A|\/Z‘SES’“|ESA|A|Z (s,9)

= (VH+1+1) /ISATH G0

where Y . s .ca Ni(t) (s,a) = TH is the total number of state-action pairs visited in 7" rounds.
Lastly, using the trivial upper bound Vi« < fj“;, we can take summation over the regret from all 7" rounds. This give us:
T t
Zt:l Reg( )]lP*GB(t) (3])

N H

<> 2 <1 + (17)) V2|S[10g(2[AINT) Vigax (\/H Fi+ 1) VISIATH
i= e(l—~n
1

<0 (|S||A%NH TlogT) (32)
€

Combining everything together In the first part, we show that ZL Reg(t)]l p+gB( 1s upper bounded by O(\/T ) for
all T € N with probability 1 — O(4). In the second part, we show that ZtT:l Reg 1 p.cpey = O(|S||A|2N/TTogT).
Therefore, we can conclude that the total regret Reg(T') is upper bounded by O(|S||A|2 Ny/TlogT) for all T € N with
probability 1 — O(9). O

D.4 Supplementary Lemma and Theorem

Assumption D.1 (Ergodic Markov chain). We denote uf"* "™ to be the state distribution of Markov chain induced by the MDP

with transition probability P and policy m; after h time steps. We assume ufi*’ﬂi (s) > e > 0Oforall entry s € S, all arm
i € [N], h > H, and all policy ;. In other words, the state distribution after H steps is universally lower-bounded by £ > 0,
which we say that the MDP is H-step c-ergodic.

Assumption D.1 can be achieved when both the MDP is ergodic and the horizon H is large enough.

Theorem D.2 (Regret outside of H steps). When the Markov chain induced by transition P} and policy 7 is H-step ¢ ergodic,
we have:

1
Esh,hah,i"’Pg*77Tf(8h1i7a}%i) < g]ESH,i#lH,iNPi*aﬂf(SHvi’ am,i) (33)
for all non-negative function f and h > H.
Proof.
ES}L,i,ah,iNPfﬂTf(shJv ani) = ZSNS,QNA Pr(mi(s) = a)un(s)f (s, a)
< ; =
<Y oo PrT(s) = ) (s, a)
up(s)
< . =
<Y oo Prml) = ) s )
1
S () = aun () (5,0)
1
= Esusaninprn (51 ami) (34)
O
Lemma D.3. For any sequence of numbers z1,-- - , zr with 0 < z; < H and Z; = max{1, 23:1 zj}, we have:

Yo s (V)

(35)



Proof. Proof by induction. Assume that Equation 35 holds for 7' — 1. We have:

Zz:ll \/% (v 1+ 1) vV Zr_1

(36)
Adding an additional term , we get:
T—1
T-1 2t 2T
+ S(VH+1+1>«/ZT 1+
Zt:l Vi1 NZra V. ZT 1
2
—\/\/ +1) ZT71+2(\/H+1+1>ZT+Z
T—1
2
g\/( 1) ZT_1—|—2(\/H+1—|—1>ZT+HZT
2 2
\/(\/ F14+1) Zroa+ (VE+1+1) 2r
< (\/H+1+ 1) N Zr_1+ 27
= (VE+1+1) V27 (37)
which implies the Equation 35 also holds for T'.
The initial case with 7" = 1 holds trivially. Therefore, by induction, we conclude the proof. O

D.5 Regret Bound with Unknown Optimal Penalty

Theorem 6.6 (Regret bound with optimal penalty). Assume the penalty X in Algorithm 1 is updated by a saddle point
A® PO 7)) = argminy maxp . UF*(s,) subject to constraints in Equation (Py). The cumulative regret of the optimal
Lagrangian objective is bounded with probability 1 — §:

1 1
Regy.(t) <O (€|S||A2NH\/TlogT> : (14)

Proof. The main challenge of an unknown penalty term A\* is that the optimality of the chosen transition P*) and policy =*)
does not hold in Theorem 6.2 due to the misalignment of the penalty A(*) used in solving the optimization in Equation (Py)
and the penalty A\* used in computing the regret.

The optimality of A(*) (minimizing UF**) and the optimality of P® () (maximizing UF}) are given by:

2O PO 70 — arg mln nlgax upb

which give us, respectively:

POA® UP(t) A*

PrA® PRORNG
() o Unp < (38)

x(®
Similarly, the optimality of A* can be written as:

*
A = arg m}%n Uk A
which gives us

UP*’/\* S U‘f:*’)‘(t) (39)

Combining Inequality 38 and Inequality 39, we can bound:

P* A* P*. )\(f) P(f)’)\(t) P(t),)\*
Uﬂ* < U < 7t S ()
This implies that:
(t) _ 77 P* A" Pt P® 2\ P*\*
Regy/! =Ur. " —U_ " <U_ " —U_ (40)

which is exactly the same result as shown in Equation 10. The rest of the proof follows the same argument of Theorem 6.4 and
Theorem 6.5, which concludes the proof. O



D.6 Choice of Horizon and Ergodicity Constant ¢

For a given Markov chain, we need H to be sufficiently large to ensure the probability of visiting any state after H steps is at
least a positive constant € > 0. The choice of H depends on the MDP; we elaborate below how to select H and e.
We follow a similar analysis of Markov chain convergence from Chapter 10 in (Spielman 2007) by defining:

wo = max oo (Pr)
well

where o2 (P) is the magnitude of the second largest eigenvalue of the random walk matrix P, induced by the policy 7. In
practice, wo can be upper bounded by 1 if the MDP satisfies some properties, e.g., laziness of the Markov chain induced from
the MDP (Chapter 10.2 in (Spielman 2007)).

Let v be the corresponding stationary distribution of the random walk matrix P, with the policy 7 that maximizes the second
largelst eigenvalue. We know that v is strictly positive by ergodicity. When o2 < 1, we can write 7 = min; v; > 0 and choose
e=z5r>0.

Le2t w be an arbitrary initial distribution. By applying Theorem 10.4.1 from (Spielman 2007) (the directed graph version), for
every t > H = log,, (3r3/?) =log,, (v/2¢%?), we have:

1

— Ptwl|; <
v wwh < min; v;

wég

r
2
which implies that the minimum value of Pﬁw and the minimum value of v, i.e., r, differ by at most % This implies that

the minimum value of Plw is at least § = ¢ for any initial distribution w. This choice of ¢ and H satisfies our requirement
mentioned in Appendix D.4.

E ARMMAN: Maternal and Child Health Data

In the maternal mobile health program operated by ARMMAN, each instance is composed of a set of beneficiaries who par-
ticipated in the program for 10 or more weeks. The dataset contains the states of each beneficiary, actions taken to schedule a
service call to the beneficiary or not, and the beneficiary’s next states after receiving the calling actions. This dataset is used
to construct a set of empirical estimates of the transition probabilities and build an interactive RMAB environment to interact
with. Our online learning algorithm then interacts with the environment to learn the transition and optimize total engagement.
The experiments were all done in simulation.

Specifically, this problem is modelled as a 2-state (Engaging and Non-Engaging) RMAB problem where we do not know
each beneficiary’s transition behavior — transition between Engaging and Non-Engaging state, determined by whether the
beneficiary listens to an automated voice message (average length 1 minute) for more than 30 seconds. The goal of the online
learning challenge is to simultaneously learn the missing transition and optimize the overall engagement of all beneficiaries
under budget constraints. The ARMMAN data is also abstracted out and contains no personally identifiable information and
demographic feature related to the beneficiaries.

In the following sections, we provide more detailed information about consent related to data collection, analyzing data, data
usage and sharing.

E.1 Secondary Analysis and Data Usage

This study falls into the category of secondary analysis of the aforementioned dataset shared by ARMMAN. We randomly sam-
pled from the previously collected engagement probabilities of different beneficiaries participating in the service call program
to simulate online learning environment. This paper does not involve deployment of the proposed algorithm or any other base-
lines to the service call program. As noted earlier, the experiments are secondary analysis with approval from the ARMMAN
ethics board.

E.2 Consent for Data Collection and Sharing

The consent for collecting data is obtained from each of the participants of the service call program. The data collection
process is carefully explained to the participants to seek their consent before collecting the data. The data is anonymized
before sharing with us to ensure anonymity. Data exchange and use was regulated through clearly defined exchange protocols
including anonymization, read-access only to researchers, restricted use of the data for research purposes only, and approval by
ARMMAN’s ethics review committee.

E.3 Universal Accessibility of Health Information

To allay further concerns: this simulation study focuses on improving quality of service calls. Even in the intended future
application, all participants will receive the same weekly health information by automated message regardless of whether they
are scheduled to receive service calls or not. The service call program does not withhold any information from the participants
nor conduct any experimentation on the health information. The health information is always available to all participants, and



participants can always request service calls via a free missed call service. In the intended future application our algorithm may
only help schedule additional service calls to help beneficiaries who are likely to drop out of the program.

F Experiment Details
F.1 Whittle Index Implementation Speedups

We introduce a number of implementation-level improvements to speed up the computation of Whittle indices. To our knowl-
edge these approaches are novel for Whittle index computation.

Early termination The key insight is that the Whittle index threshold policy will pull the arms with the K largest Whittle
indices. As we compute Whittle indices for each of the N arms, after we have computed the first X' Whittle indices, any future
arm selected would have to have Whittle index at least as high as the K -th largest seen so far in order to be pulled. Let us notate
the K -th largest value seen so far as top—k.

Whittle indices are computed using a binary search procedure (Qian et al. 2016), which at each iteration tracks the upper
bound A and lower bound ) of the index. Once the upper bound falls below that of the minimum value of the K largest indices
so far A < top-—k, then we can terminate the binary search procedure as we are guaranteed that we would not act on that arm
anyways. We implement the tracking of the K largest indices so far with a priority queue.

Similarly, we implement early termination to solve the bilinear programs (Py) and (P,,) as callbacks in the Gurobi solver,
in which we check the value of the current objective bound.

Memoization We memoize every Whittle index result computed throughout execution to track the index resulting from each
pair of probabilities P; and current state s; as we perform calculations for each arm i. We implement this memoizer as a
dictionary where the key is a tuple (P, s;) with P; recorded to four decimal places.

To implement the bilinear programs (Py ) and (P,,), we similarly memoize using the lower confidence bound (LCB) and

upper confidence bound (UCB) that comprise the space Bi(t)
F.2 Synthetic Data

The synthetic datasets are created by generating transition probabilities Pf a,s Sampled uniformly at random from the interval

[0, 1] for each arm 4, starting state s, action a, and next state s’. Spemﬁcally we select transition probabilities for the probability
of transitioning to a good state P! a,s'—1> then set P! as—=0 =1—FPg, o
To ensure the validity constraints that acting is always helpful and’ starting in the good state is always helpful, we apply the

following: for all arms ¢ € [N]:
* Acting is always helpful: If this requirement is violated with P ,_, | < P! ,_o,,then P! ,_, | = P! ,_, | x n where n is
uniform noise sampled between [0, 1].
o Starting from good state is always helpful: If this requirement is violated with P¢_, a1 < P! —0,a,1- then Pi_ 0a1 =
Pl_, .1 % n where 7 is uniform noise sampled between [0, 1].

S

The thin margin dataset is created by mirroring the procedure described above but then constraining the probability of
transitioning to a good state P! _ _,_, to the interval [0.2,0.4]. Thus the probabilities of transitioning to the bad state P! . .,_,

are all between [0.6, 0.8].

F.3 Acting in Low-Budget Settings

The potential impact of effectively allocating one resource is greater in low-budget settings. As one example, the ARMMAN
setting from our experiments helps distribute a small number of healthcare workers across a group of pregnant women for
preventative health care. We study real data from ARMMAN to show that the performance gap between approaches is wider in
low-budget settings.

Using one actual instance from ARMMAN, we consider distributing healthcare workers across mothers (arms). Using the
true transition probabilities, we calculate the (sorted) Whittle indices of an optimal policy as: 0.42, 0.39, 0.28, 0.23, 0.19, 0.11,
0.07, 0.

In the table below, we first show the expected reward of the optimal action and a random action (baseline) as we increase
budget in the ARMMAN problem. We then calculate the difference in reward between the optimal action and random action
for each budget level, normalized per worker. It is clear that the potential impact over the baseline of effectively allocating one
worker is greater in low budget settings.

F.4 Computation Infrastructure

All results are averaged over 30 random seeds. Experiments were executed on a cluster running CentOS with Intel(R) Xeon(R)
CPU ES-2683 v4 @ 2.1 GHz with 8GB of RAM using Python 3.9.12. The bilinear program solved using Gurobi optimizer
9.5.1.



Reward Reward gap per worker

K Optimal Random (Opt — Random) /K
1 0.42 0.211 0.209
2 0.81 0.423 0.194
3 1.09 0.634 0.152
4 1.32 0.845 0.119
5 1.51 1.056 0.091
6 1.62 1.268 0.059
7 1.69 1.479 0.030
8 1.69 1.690 0.000

Table 4: Reward contribution from each worker



