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Abstract

In 2020, maternal mortality in India was estimated to be as
high as 130 deaths per 100K live births, nearly twice the
UN’s target. To improve health outcomes, the non-profit AR-
MMAN sends automated voice messages to expecting and
new mothers across India. However, 38% of mothers stop lis-
tening to these calls, missing critical preventative care infor-
mation. To improve engagement, ARMMAN employs health
workers to intervene by making service calls, but workers can
only call a fraction of the 100K enrolled mothers. Partnering
with ARMMAN, we model the problem of allocating limited
interventions across mothers as a restless multi-armed bandit
(RMAB), where the realities of large scale and model un-
certainty present key new technical challenges. We address
these with GROUPS, a double oracle–based algorithm for ro-
bust planning in RMABs with scalable grouped arms. Ro-
bustness over grouped arms requires several methodological
advances. First, to adversarially select stochastic group dy-
namics, we develop a new method to optimize Whittle indices
over transition probability intervals. Second, to learn group-
level RMAB policy best responses to these adversarial en-
vironments, we introduce a weighted index heuristic. Third,
we prove a key theoretical result that planning over grouped
arms achieves the same minimax regret–optimal strategy as
planning over individual arms, under a technical condition.
Finally, using real-world data from ARMMAN, we show that
GROUPS produces robust policies that reduce minimax re-
gret by up to 50%, halving the number of preventable missed
voice messages to connect more mothers with life-saving ma-
ternal health information.

1 Introduction
Maternal mortality, the death of a mother1 during preg-
nancy or within 42 days after childbirth, is an ongoing global
health crisis. In India, the maternal mortality rate is particu-
larly stark, estimated between 99 and 130 deaths per 100K
births in 2020 (Meh et al. 2021; Gates Foundation 2021),
significantly higher than Sustainable Development Goal 3.1

*These authors contributed equally.
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1We recognize that the term “mother” is imperfect, most no-
tably by not reflecting transgender and non-binary identities. We
highlight alternative language with discussion in Appendix A.

Figure 1: Mothers enrolled with
ARMMAN receive life-saving pre-
ventative care information via voice
messages throughout their preg-
nancy, childbirth, and neonatal pe-
riod. Photo courtesy of ARMMAN.

target of 70 per 100K births (United Nations 2021). Tragi-
cally, most maternal deaths are preventable (HLPF Review
of SDG3 2017), but lack of finances and awareness prevent
mothers from seeking care, particularly in low-income com-
munities (Carvalho, Salehi, and Goldie 2013).

To improve maternal health outcomes, we work with
ARMMAN, an India-based non-profit that provides free
preventive care to millions of mothers by sending auto-
mated health voice messages, specifically targeted towards
low-income communities (similar to MAMA (MomConnect
2021)). Mothers enrolled in the program receive weekly au-
tomated voice messages during pregnancy and up to one
year after childbirth. Randomized control trials showed that
ARMMAN’s intervention program significantly improves
key indicators including treatment-seeking during complica-
tions, infant breastfeeding, and post-infancy weight (Murthy
et al. 2019). However, ARMMAN found that nearly 38% of
mothers disengage, missing critical health information. To
improve engagement, ARMMAN employs health workers
to provide service calls, but there are only tens of health
workers compared to hundreds of thousands of mothers in
a given service area — so interventions must be carefully
targeted to maximize engagement.

Working with ARMMAN, we model this resource-limited
intervention planning problem as a restless multi-armed ban-
dit (RMAB), where each mother (arm) changes their weekly
engagement (state) according to a stochastic Markov deci-
sion process. RMABs are PSPACE-hard to solve exactly
(Papadimitriou and Tsitsiklis 1999) and even the widely-
cited, asymptotically optimal “Whittle index policy“ relax-
ation (Whittle 1988) is challenging to compute at scale.

To improve the scalability of real-world RMAB plan-
ning, Mate et al. (2022) proposed to organize arms into
a small number of groups, infer transition dynamics from



each group’s data, then compute the Whittle index policy
per group. While the scalability of their method is desir-
able for ARMMAN’s problem setting, it ignores a key re-
ality of model uncertainty: learning transition probabilities
from historical data leads to imprecise and imperfect esti-
mates (Sinha and Mahajan 2022) which must be accounted
for in planning. Computing RMAB policies that are robust
to model uncertainty has only recently been studied. Exist-
ing methods achieve robustness to interval uncertainty over
model dynamics by planning against a model-controlling
“nature” adversary to yield policies that minimize max re-
gret (Killian et al. 2022; Xu et al. 2021). Robustness is de-
sirable for ARMMAN’s setting, but these methods require
training deep reinforcement learning (RL) agents for each
arm, so unfortunately do not scale past hundreds of arms.

To enable large-scale, robust intervention planning for
ARMMAN, we bridge the gaps in previous works by in-
troducing robust grouped RMAB. Our model achieves scala-
bility by considering a grouped-arm paradigm and optimiz-
ing for minimax regret over the uncertain model dynamics
per group. Unfortunately, the grouping abstraction breaks
key assumptions used in previous robust RMAB work: that
(1) policies improve by collecting samples of regret by
evolving a joint state of all arms, and (2) the nature adversary
controls the transitions of each arm individually. We over-
come (1) by decomposing regret per arm, freeing the planner
from relying on a cumbersome joint state to enable efficient
group-abstracted planning. For (2), we prove that restricting
the adversary to control dynamics only over groups does not
change the equilibrium strategy, allowing us to leverage the
scalable robust grouped model to find policies over hundreds
of thousands of arms without sacrificing quality.

Our contributions are as follows. First, we introduce
robust grouped RMABs with a minimax regret objective
and propose a solution that employs the double oracle
framework (McMahan, Gordon, and Blum 2003). The ap-
proach we propose is GROUPS: Group RMAB Oracles for
Uncertainty-robust Planning at Scale. Second, we develop
novel methods designed for robust grouped RMABs to im-
plement the two oracles, the planner and adversary. Planning
over groups of arms allows large scale-up but presents sev-
eral new algorithmic challenges as we detail above. Third,
we prove that the minimax regret–optimal strategy is the
same whether the planner and adversary play at individual
or group level. Our proof enables massive scale-up as it is
now sufficient to compute robust strategies only over groups,
instead of over individual arms. Finally, we demonstrate em-
pirically on real data that GROUPS reduces worst-case re-
gret up to 50% compared to baselines, representing po-
tentially thousands of additional engagements with life-
saving information. We are working with ARMMAN to de-
ploy GROUPS to positively impact maternal health.

2 Related Work
Mobile-based maternal health services are effective and af-
fordable in low- and middle-income communities (Watter-
son, Walsh, and Madeka 2015; Tamrat and Kachnowski
2012). Successful programs include MatHealth in Uganda
(Musiimenta et al. 2021), Aponjon in Bangladesh (Alam

et al. 2017), ARMMAN in India (Murthy et al. 2019), and
text4baby in the United States (Evans, Wallace, and Snider
2012). Our work is designed to support such programs.

Whittle (1988) introduced RMABs and proposed the
Whittle index policy, which computes indices estimating
each arm’s “return on investment” then acts on arms with
the top K. Weber and Weiss (1990) showed this policy is
asymptotically optimal under a technical condition. Many
RMAB studies assume known transition dynamics, although
some recent works design methods to learn policies online
(Wang, Huang, and Lui 2020; Nakhleh et al. 2021; Biswas
et al. 2021; Killian et al. 2021; Wang et al. 2022). However,
these online approaches require collecting a prohibitively
large number of samples, limiting their real-world applica-
bility in scenarios where the time horizon is short.

Most robust planning literature consider single-MDP (one
arm) settings (Pinto et al. 2017; Lanctot et al. 2017; Li
et al. 2019), rather than the budget-coupled N-MDP setting
of RMAB. Even for single MDPs, optimizing criteria such
as minimax regret (Braziunas and Boutilier 2007) requires
searching massive strategy spaces; double oracle (McMa-
han, Gordon, and Blum 2003) is one approach to do so effi-
ciently. Recent work combines double oracle with deep RL
to solve for minimax regret–optimal robust policies for sin-
gle MDPs (Xu et al. 2021). Killian et al. (2022) extended the
idea to solve larger RMABs. Both Xu et al. (2021) and Kil-
lian et al. (2022) use deep RL which, if applied to a group
setting, would need to explicitly account for the size of each
group and state of each arm within each group, limiting their
methods’ ability to scale beyond hundreds of arms. For the
large problem size that ARMMAN faces, our methods must
scale to hundreds of thousands of arms.

Finally, robust planning for stochastic bandits is well
studied (Maillard 2013; Huo and Fu 2017) However,
stochastic bandits are stateless and lack passive rewards, and
so are not expressive enough to model ARMMAN’s setting.

3 Model
We consider grouped RMABs whereN arms (enrolled moth-
ers) compriseM groups. Each arm n ∈ [N ] follows an MDP
⟨S,A, Pn, r, γ⟩ where s ∈ S := {0, 1} is the state space
indicating whether a mother is engaging (sn = 1) or not en-
gaging (sn = 0) with automated voice messages; r(s) = s
is the reward function; a ∈ A := {0, 1} is the action space,
i.e., {not intervene, intervene}; Pn(s, a, s′) is the probabil-
ity that arm n transitions from state s to s′ given action a;
γ ∈ [0, 1] is the discount factor. Let s ∈ SN and a ∈ AN be
the combined state and action vectors of all arms. At each
timestep t, the task is to choose K mothers to intervene on
(deliver service calls to) given the current state st.

Formally, we compute RMAB policies π : SN →
AN that respect the the budget constraint ∥π(s)∥1 =
K. For a given policy π and a fixed environment P :=
{Pn}n∈[N ] representing a matrix of transition probabilities
of all arms, the average discounted reward is G(π, P ) :=
E[
∑∞

t=0 γ
tr(st) | π, P ]. Given P , the optimal policy which

maximizes reward is π⋆
P := maxπ G(π, P ). An asymp-

totically optimal RMAB policy is the Whittle index pol-



icy (WIP), which computes the Whittle index Wn
P (s) for

each arm n and state s, then intervenes on the arms with
the greatest K indices. The Whittle index represents “re-
turn on investment,” interpreted as a charge for acting
that makes no intervention equally valuable as interven-
tion in the long term. Let Qn

P (s, a, λ) = r(s) − λa +
γEs′∈S [maxa′∈AQ

n
P (s

′, a′, λ)] be the long-term expected
value of action a on arm n in state s. Then, for a given P ,
the Whittle index for arm n at state s is Wn

P (s) = min{λ :
Qn

P (s, 1, λ) = Qn
P (s, 0, λ)}.

Grouped RMAB For scalability, we organize arms into
groups, extending the concept from Mate et al. (2022)
to our more challenging robust setting, e.g., by cluster-
ing based on historical engagement patterns. We then esti-
mate uncertainty intervals over transition probabilities per
group. However, note that our robust policy computation
steps in Section 4 are agnostic to the particular grouping
and interval estimation methods. Let ϕ : [N ] → [M ]
be a surjective mapping of arms to groups and ϕ−1(m)
be the set of arms in group m. The uncertainty intervals
are P

m

s,a,s′ := [Pm
s,a,s′ , P

m

s,a,s′ ] for all m, s, a, s′. Then let
P

m
:= {Pm

s,a,s′}s,a,s′ be the interval uncertainty matrix for
group m across all states and actions. Importantly, though
arms in the same group have the same uncertainty intervals,
they may not have the same instantiated probabilities within
those intervals.

Minimax regret We define regret for grouped RMAB as:

R(π, P ) := G(π⋆
P , P )−G(π, P ) , (1)

where P instantiates Pm ∈ P
m

for all groups m ∈ [M ].
Our objective is learn a policy π that minimizes max regret:

min
π

max
P

R(π, P ) . (2)

We choose minimax regret as our robust objective since it
does not require probability distributions over the uncer-
tainty intervals (Braziunas and Boutilier 2007). Such distri-
butional information is scarce in our setting where K ≪ N ,
giving us few samples of transitions for action a = 1.

4 Methodology
We introduce GROUPS (Group RMAB Oracles for
Uncertainty-robust Planning at Scale), a four-step approach
visualized end-to-end in Fig. 2. Step (3) is our key algo-
rithmic contribution. In step (1), similar arms (mothers) are
mapped into groups. In step (2), we combine data from
arms in each group with historical engagement data, us-
ing bootstrapping to estimate uncertainty intervals P

m
for

each group (Schomaker and Heumann 2018). In step (3),
we compute a minimax regret–optimal policy over groups,
where arms in a given group are treated as having the
same transition probabilities, greatly improving computa-
tional efficiency. Critically, we show in Section 5 that this
group-level planning is lossless — i.e., the policies we
compute are the same minimax regret–optimal policies as
would be computed if grouped arms were allowed differ-
ent transition probabilities (within the same uncertainty in-
tervals). In step (4), we map group-level policies back to

individual-level policies by computing Whittle indices for
each group m ∈ [M ], then assigning an index to each arm n
within that group based on its current state sn. Our policy is
to intervene on mothers with the top K indices.

Double oracle In step (3), we adopt a double oracle (DO)
framework (McMahan, Gordon, and Blum 2003), solving
Eq. 2 by formulating the problem as a two-player zero-sum
game between the RMAB planner and nature adversary,
where the players aim to minimize and maximize regret re-
spectively. The planner’s pure strategy space is the finite set
of all feasible RMAB policies π; the adversary has the con-
tinuous space of transition probabilities P within the uncer-
tainty intervals P

m
for all m ∈ [M ]. The algorithm main-

tains a finite pure strategy set for each player. Each iteration,
we compute a mixed strategy Nash equilibrium (MSNE) on
the game over the finite strategy sets. A mixed strategy is
a probability distribution over pure strategies. In each it-
eration, the planner oracle computes a best response pure
strategy π against the adversary’s mixed strategy; π is added
to the planner’s finite strategy set. We follow a symmetric
approach to compute a best response P for the adversary.
Upon termination, we return the final planner mixed strat-
egy, which is guaranteed, under mild conditions, to be an
ϵ-optimal minimax solution (Xu et al. 2021). In practice, we
terminate after T iterations (Lanctot et al. 2017). The key
technical challenge of using the double oracle approach is
designing planner and adversary oracles for group RMABs.

4.1 Planner Oracle: WI for Mixed Strategy
An adversary mixed strategy β contains tuples (Pi, βi)
where βi is the probability of playing pure strategy Pi. Sim-
ilarly, a planner mixed strategy α contains tuples (πi, αi)
where αi is the probability of playing pure strategy πi.

The planner oracle must compute an intervention pol-
icy π that minimizes regret with respect to a given adver-
sary mixed strategy α over environment settings Pi. Since
β and thus all Pi are fixed, and only the second term of re-
gret in Eq. 1 depends on π, minimizing regret is equivalent
to maximizing reward, to ensure that mothers engage with as
many voice messages as possible. However, existing reward-
maximizing RMAB algorithms assume a single environment
Pi, versus a mixed strategy β over multiple Pi. To address
this combinatorially hard problem, we develop a new heuris-
tic approach that computes well-performing policies π based
on strategically weighted combinations of Whittle indices.

Unfortunately, optimizing exact regret is at least
PSPACE-hard (Papadimitriou and Tsitsiklis 1999). Previous
work optimized regret of the Lagrange relaxation (Killian
et al. 2022), but relied on joint arm states which does not
scale. We introduce a decomposed notion of regret, allowing
us to optimize regret of the full RMAB in a far more scalable
way. We call this Whittle index regret: the sum of Whittle
indices played by a policy π compared to the optimal WIP.
The key is that the Whittle index is a measure of “reward
if played” — so agents who play arms with low Whittle in-
dexes in lieu of arms with high Whittle indexes will incur
large regret. As a further advantage, this regret notion natu-
rally extends to groups — since the Whittle index is a func-
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Figure 2: GROUPS pipeline for robust grouped RMABs. (1) Assign enrolled mothers (arms) to groups. (2) Estimate uncertainty
intervals over transition probabilities. (3) Novelty of this work: Compute robust minimax regret–optimal policy via double
oracle, where each oracle efficiently searches the large-scale strategy spaces by using the group abstraction. (4) To execute
policies, translate group-level indices Ĩms to arm-level intervention policy.

tion only of transition probabilities and rewards, all of which
are shared in a group under Pi — improving scaling.

Given states s, denote the set of arms pulled by policy π as
Φπ(s) = {n ∈ [N ] : πn(s) = 1} where πn(s) is the action
on arm n. The planner’s Whittle index regret Rplanner

W (s) is:

∑
(Pi,βi)

βi

[
max
κ⊆[N ]
|κ|=K

{∑
n∈κ

(Wn
Pi
(sn))

}
−
∑

n∈Φπ(s)

Wn
Pi
(sn)

]
. (3)

The first term in Eq. 3 corresponds to a planner’s optimal
mixed strategy which plays the WIP corresponding to each
setting of transition probabilities Pi in β. To minimize re-
gretRplanner

W , we seek a policy π that plays Whittle indices as
close as possible to the WIPs in the first term, which equiv-
alently maximizes the second term. How to produce a pure
strategy π that closely follows the mixed WIP policies of
the first term is the key challenge. We start by making the
first term more closely computable as a pure strategy with a
relaxation that leads to relaxed regret, by moving the expec-
tation over βi inside the max over indices:

max
κ⊆[N ]
|κ|=K

∑
n∈κ

∑
(Pi,βi)∈β

βiW
n
Pi
(sn)

 . (4)

We replace the first term of Rplanner
W (s) (from Eq. 3) with

Eq. 4 to get R̃planner
W (s). This illuminates a heuristic for the

planner oracle. Specifically, Eq. 4 can be computed exactly
by a single policy π, meaning we can make R̃planner

W (s) = 0
by finding a π equivalent to Eq. 4. To do so, we compute
Whittle indices for each pure strategy Pi, compute the βi–
weighted average index Ĩms for each group m and state s,
then follow the greedy strategy of a WIP. Since the expec-
tation over βi is pushed through the max (Eq. 4) we have
R̃planner

W (s) ≤ Rplanner
W , but we show in appendix Fig. 4 that

Algorithm 1: WI4MS (Planner Oracle)
Input Adversary mixed strategy β

1: for (Pi, βi) ∈ β do // environment and probability i
2: for {m = 1 to M} and {s ∈ S} do
3: Ĩ[m, s] += βi × COMPUTEWI(m, s, Pm

i )

4: π = WIP(Ĩ) // implements Whittle index policy
5: return π // planner pure strategy

this weighted index policy performs well, despite this relax-
ation. We call this approach Whittle Index for Mixed Strat-
egy (WI4MS), given in Alg. 1. Whittle indices are com-
puted via COMPUTEWI described in Alg. 4 in the appendix.

4.2 Adversary Oracle: RegretMax Whittle Index
The adversary oracle must find one environment P that max-
imizes regret for the planner’s current mixed strategy α over
policies {π} to maximize the number of missed calls. To
guide the search, we must address challenges both in max-
imizing regret of RMAB policies and in searching over a
continuous strategy space P

m
. Our insight is to maximize

regret by manipulating the optimal RMAB policy (a Whittle
index policy) to simultaneously minimize the values of Whit-
tle indices acted on by the planner and maximize indices that
are not.

We utilize again the notion of Whittle index regret, re-
defined for the adversary oracle:

Radversary
W = E

s

 ∑
n∈Φπ⋆

P (s)

Wn
P (s

n))
∣∣∣ π⋆

P , P


−

∑
(πi,αi)∈α

αi

(
E
s

 ∑
n∈Φπi (s)

Wn
P (s

n))
∣∣∣ πi, P

) . (5)



Algorithm 2: RegretMaxWI (Adversary Oracle)

Input: Mixed strategies (α,β), intervals P
m

,
group-mean budget KM , P = []

1: {Lm
s }m∈[M ]

s∈S = MONTECARLO(α, β) // simulation
2: KTH = FINDTHRESH(L,KM ) // returns act count of

⌈KM⌉th group-state
3: for {m = 1 to M} and {s ∈ S} do
4: obj[m, s] = min if (Lm

s ≥ KTH) else max
5: for m = 1 to M do
6: Pm = MINMAXWHITTLEBQP(obj[m], P

m
)

7: return P // Adversary pure strategy

Given an environment Pi, Eq. 5 captures the difference in
the Whittle indices collected by the optimal policy π⋆

Pi
ver-

sus the Whittle indices collected by the policies of the agent
mixed strategies πi. The WIP is a proxy for finding the most
effective arms on which to intervene; intuitively, this means
the adversary oracle should find Pi which maximizes the
Whittle indices of arms played by the optimal policy but
not played by the planner, and simultaneously minimizes the
Whittle indices of arms played only by the planner policies.

The first challenge is to determine which arms the plan-
ner will act on in expectation. We propose a simple but ef-
fective solution which counts the number of times the arm-
state pairs are acted on during Monte Carlo simulation of the
planner’s mixed strategy. Since the adversary operates at the
group level, we then aggregate arm-state counts into group-
state counts, denoted Lm

s for each group m and state s. The
next question is which group-state indices to minimize or
maximize. Intuitively, if we reduced all indices an equal
amount, we would reduce reward but not regret since the
optimal policy, i.e., the first term of Eq. 5, would reduce the
same as the second. Thus, we need to strategically minimize
some indices, but maximize others to induce an optimal pol-
icy that plays different arms. Specifically, we choose to min-
imize the indices of the top KM = K

N/M — i.e., the budget
normalized by average group size — entries of Lm

s , approx-
imating the top K choices of the agent mixed strategy in
expectation. Then we maximize the Whittle indices of all
group-state pairs below that threshold.

The second challenge is to find transition probabili-
ties P that minimizes or maximizes the Whittle indices of
a group over its transition probability intervals. This prob-
lem has general implications, e.g., for optimistic or pes-
simistic search over uncertainty sets in online learning. We
derive a novel binary-quadratic program that, given a group
and objective for each state (min, max, or null), computes
a Pm that optimizes the indices for all states simultane-
ously, detailed in the appendix as MINMAXWHITTLEBQP
(Eq. 18). We give the full adversary oracle algorithm, RE-
GRETMAXWI, in Alg. 2 and empirically demonstrate its
good performance in the appendix Fig. 5.

5 Theoretical Regret Guarantee
In Section 4, we proposed an approach to compute a mini-
max regret–optimal strategy against an adversary choosing

the same transition probabilities for all arms in the same
group from their corresponding intervals. However, arms
within the same group may not have identical transition
probabilities. Also, it is not intuitive that a minimax regret–
optimal policy, when the adversary chooses the same transi-
tion probabilities for all the arms in a group, also minimizes
max regret when the adversary chooses different transition
probabilities for the arms in a group from their correspond-
ing intervals. In this section, we show this is true under mild
assumptions. In particular, the minimax regret–optimal strat-
egy of the planner is the same against an adversary choosing
transition probabilities at the group level as against an adver-
sary choosing transition probabilities at the individual level.

Let Π be the planner’s pure strategy space of all
individual-level policies, i.e., all choices of subsets of arms
with cardinality K. Then we define mixed strategy sets
for the planner at individual-level, ∆I(Π), and group-level,
∆M (Π), where ∆M (Π) ⊆ ∆I(Π) is a restricted set of
mixed strategies in which the planner is indifferent between
arms in the same group and state (see Appendix D.2 for def-
inition). Next, let P be the adversary’s pure strategy space,
containing all individual-level policies, i.e., choices of tran-
sition probabilities {Pn}n∈[N ] respecting the given uncer-

tainty intervals P
ϕ(n)

. Similarly, we define mixed strat-
egy sets for the adversary at individual-level, ∆I(P), and
group-level, ∆M (P), where ∆M (P) ⊆ ∆I(P) is a re-
stricted space that assigns same transition probabilities to all
arms within a group.

For X,Y ∈ {I(individual),M(group)}, the regret game
with X-level planner and Y -level adversary is noted as
X/Y . The X/Y regret of a planner’s mixed strategy α ∈
∆X(Π) against an adversary’s mixed strategy β ∈ ∆Y (P)
is:

R(α, β) :=
∑

i∈[|∆X(Π)|]

∑
j∈[|∆Y (P)|]

αiβjR(πi, Pj) ,

where αi is the ith pure strategy of the X-level planner and
βj is the jth pure strategy of the Y -level adversary. Let α⋆

X,Y

be the planner’s mixed strategy of a X/Y game, defined:

min
α∈∆X(Π)

max
β∈∆Y (P)

R(α, β) = max
β∈∆Y (P)

R(α⋆
X,Y , β)

which holds since the regret game is a two-player zero sum
game, making minimax regret equal to maximin reward. We
call this the worst-case regret for α⋆

X,Y .
We first show in Theorem 12 that, when all arms within

the same group have the same transition intervals, the mini-
max I/I regret is equal to the minimax M/I regret.
Theorem 1. The worst-case regrets of α⋆

I,I and α⋆
M,I

against an adversary operating at the individual level is
equal:

max
β∈∆I(P)

R(α⋆
I,I , β) = max

β∈∆I(P)
R(α⋆

M,I , β) .

Similarly, in Theorem 2, we show that, when all arms within
the same group have same transition intervals, the minimax
I/M regret is equal to the minimax M/M regret.

2Proofs of Theorem 1, 2, and 3 are given in Appendix E.



Theorem 2. The worst-case regrets of α⋆
I,M and α⋆

M,M
against an adversary operating at the group level is equal:

max
β∈∆M (P)

R(α⋆
I,M , β) = max

β∈∆M (P)
R(α⋆

M,M , β) .

Finally, we use these results to establish our main result in
Theorem 3 that the worst-case regret of α⋆

M,M is equal to
the worst-case regret of α⋆

I,I when (1) all arms in the same
group have the same intervals and (2) there exists a surjec-
tive function ψ that maps ∆I(P) to ∆M (P) that preserves
the regret ordering of planner and adversary strategies (for-
mal definition and example ψ given in Appendix E.1).
Theorem 3. If there exists an order-preserving map, then
the worst-case regret of α⋆

M,M is equal to that of α⋆
I,I ,

against an individual-level adversary, that is,

max
β∈∆I(P)

R(α⋆
M,M , β) = max

β∈∆I(P)
R(α⋆

I,I , β) .

Theorems 1, 2, and 3 together establish that the minimax
regret–optimal strategy is the same whether the planner
and adversary play at individual or group level. In partic-
ular, this result ensures that, under some conditions, the
minimax regret–optimal strategy obtained by our algorithm
GROUPS, which implements group-level planner and adver-
sary, is also minimax regret–optimal against an individual-
level adversary.

6 Experiments
6.1 Experiment Setup
ARMMAN maternal health domain Every week, ARM-
MAN’s automated system delivers prerecorded health mes-
sages to each enrolled mother with information tailored to
the mother’s gestational age. If mothers stop listening to
the messages, healthcare workers can deliver interventions
to try to improve mothers’ engagement. We evaluate the in-
crease in number of health messages mothers listen to using
GROUPS to target interventions compared to existing base-
lines. To construct a simulation environment, we use a real
anonymized dataset from ARMMAN’s records of weekly
program engagement data for 15,336 mothers (though we
note that ARMMAN’s larger service areas operate on the
scale of hundreds of thousands). A mother is “engaged” if
they listen to at least 30 seconds of a message that week.
Thus, states are {not engaged,engaged} with rewards
0 and 1, respectively. To create an arm–group mapping,
we run K-means clustering on the engagement data and
compute uncertainty intervals via bootstrapping followed by
multiple imputation to compute standard deviations of the
means (Schomaker and Heumann 2018). Statistics on the
uncertainty intervals and group sizes are shown in appendix
Figs. 9 and 10. For details on the dataset and consent for
collection, see appendix K.

In the experiments, the default parameters match the in-
tervention setup used by ARMMAN, i.e., budget K = 100,
N = 15,320 mothers, and M = 40 groups. For sensitivity
analysis, we vary the budget, horizon, and number of moth-
ers. Additional analysis varying uncertainty interval width,
number of groups, and distribution of group sizes are in-
cluded in appendix Fig. 7.

Additional domains To demonstrate wider applicability,
we include results from two additional domains. The TB
domain is constructed from an anonymized dataset of daily
adherence to tuberculosis medication (Killian et al. 2019).
States, rewards, and groups were derived analogously to the
maternal health setting; complete details are in appendix L,
including group statistics in Figs. 11 and 12. In our exper-
iments, the default setting has N = 8,350 arms, M = 60
groups, budget K = N/10, and Aσ = 3, i.e., interval
width of 3 standard deviations. We vary the budget, num-
ber of groups, and Aσ . Finally, we use the Synthetic bench-
mark domain from recent robust RMAB work (Killian et al.
2022). This domain considers three “arm types” [U, V,W ]
with different intervals, designed so that non-robust policies
incur greater regret than robust ones. We augment the do-
main to allow homogeneous groups of each arm type, where
the size and proportion of groups of each type may vary. In
our experiments, the default setting has N = 18,000 arms,
M = 36 groups, where 1/3 of groups are composed of each
of the arm types, and budget K = 100. We run sensitivity
analysis on K, the proportion of groups made up of each
arm type, and a “block group” setting which joins all arms
of a given type into a single group.

Evaluation To evaluate performance, we plan at the group
level but simulate individuals within groups independently,
where each individual undergoes state transitions based on
their own state, action, and transition probabilities. All ex-
periments use horizon H = 10 and report the average
of 30 seeds. We measure total reward with discount factor
γ = 0.9. In Fig. 3, we evaluate each approach in terms of re-
gret (Eq. 1), computed by simulating each planner strategy
against the full set of adversary pure strategies and selecting
one that maximizes regret. Note, there is no actual deploy-
ment of the proposed algorithm; all results are simulated.

Baselines First, we compare against the state-of-the-art ro-
bust RMAB method, DDLPO, for small settings in which
DDLPO can complete (Killian et al. 2022). For larger-scale
experiments with tens of thousands of arms, no other robust
methods are tractable, so we compare against several scal-
able non-robust baselines. Mate et al.’s non-robust baseline
assumes all environment parameters take the median of their
uncertainty intervals then computes a reward-maximizing
WIP; this strategy was employed in a recent real-world pilot
(Mate et al. 2022). We consider two additional non-robust
variants which assume that all parameters take the lower
bound of the uncertainty interval (pessimist) or the upper
bound (optimist), then compute a WIP strategy. Finally, ran-
dom plans a WIP strategy against an environment that is uni-
formly randomly sampled from the uncertainty intervals.

6.2 Results
Fig. 3 shows GROUPS outperforms baselines in terms of
max regret across several settings. Fig. 3(a–c) shows results
for the maternal health setting of ARMMAN. In particu-
lar, Fig. 3(c) shows that GROUPS scales past 300,000 arms,
representing more than a 1000× increase over the robust
state-of-the-art to meet a key need of real-world deploy-
ment settings. Moreover, across experiments, the max re-
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Figure 3: Max regret (lower is better) incurred by GROUPS, our robust solution approach, compared to non-robust baselines
across various settings. (a–c) Maternal health. For (c), the number of arms is increased by multiplying each group size by a
constant factor, i.e., 1, 10, and 20, but M is constant. (d–f) TB. For (d), budgets are 5%, 10%, and 15% of N . (g–i) Synthetic.
For (h), the x-axis is the fraction of groups of arm type U — the fraction of type V is always 0.33, and the remaining fraction are
type W. For (i) the x-axis denotes the arm type that has been combined into a single group of 6000 arms, where the other two
types are split across 12 groups each of size 500. In the maternal health and TB settings, regret can be interpreted, in real-world
terms, as the maximum preventable missed health messages and doses, respectively, across the uncertainty space.

gret of GROUPS is nearly half that of the non-robust strat-
egy used in Mate et al. (2022). In other words, our simula-
tions demonstrate that compared to the best non-robust strat-
egy GROUPS could prevent mothers from missing thou-
sands of pregnancy-related health messages, each con-
taining potentially life-saving care information.

On the TB domain (Fig. 3(d–f)), we see again that
GROUPS performs well across various strategies for group-
ing and computing uncertainty, even with very imbalanced
group sizes. On the synthetic domain (Fig. 3(g–i)), across
various budgets and grouping strategies, the non-robust
baselines vary in performance and are sometimes worse
than random, demonstrating the need for reliable robust
policies. Moreover, Table 1 shows that GROUPS even
outperforms the state-of-the-art DDLPO in terms of regret
on the synthetic benchmark dataset for problems sizes
small enough for DDLPO to complete (i.e., N < 100). The
superior performance of GROUPS is due to our Whittle-
based policies which specialize to two-action settings, in
contrast to the more general but highly stochastic deep
learning–based policies of DDLPO.

Supported by Theorem 3, GROUPS scales significantly
without incurring additional regret. In Appendix I,
we demonstrate the significant runtime improvement of
GROUPS as M decreases, holding N constant. The scala-
bility of our approach is critical for robust RMAB solutions

Table 1: Regret of GROUPS vs. robust method DDLPO on
Synthetic. We set M = N and K = 1 to match the evalua-
tion in Killian et al. (2022). GROUPS incurs less regret.

GROUPS DDLPO

N = 6 0.64± 0.05 1.00± 0.06
N = 9 0.47± 0.06 0.98± 0.05
N = 12 0.45± 0.06 0.88± 0.05

to actually be deployed in real-world, low-resource settings.

7 Conclusion
The GROUPS algorithm we introduce presents several key
advances to make RMABs more useful in practice, enabling
simultaneous scaleup and robustness to uncertainty. We are
working with ARMMAN to deploy GROUPS to positively
impact maternal health, demonstrating the real-world capa-
bilities this work enables. Most notably, our simulation ex-
periments demonstrate that our robust planning method
could help ARMMAN prevent mothers from missing
1000s of health messages, a promising result that we hope
to translate into practice to help deliver life-saving health in-
formation to otherwise under-served mothers.
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A A Note on Language
Throughout this paper, we use the term “mother” to refer
to pregnant women and people, birthing women and people,
or postnatal women and people. We note that “mother” is
gendered language that also typically refers to someone who
has already given birth, which may not be the case for newly
pregnant women and people who are enrolled in maternal
health programs but have not yet given birth.

We stand by the need to provide compassionate medical
care for trans and non-binary patients, and recognize that
the word “mother” may not reflect the identity of all peo-
ple. Some recent calls advocate the language “birthing per-
son” or “birthing women and people” over “mother” (Rioux
et al. 2021; Green and Riddington 2020). Others point out
that language such as “birthing person” may be dehuman-
izing and go against best practices in health communication
of making communication easy to understand for patients
with low literacy or education or are communicating in their
non-native language (Gribble et al. 2022).

For the above reasons and to keep our writing concise, in
this paper we use “mother” while recognizing that the term
is imperfect. We hope to move to healthcare language that is
inclusive of all who are in need of those services. We also
highlight the need to reevaluate other related terminology
such as “maternal health” to move towards more inclusive
language, and thus more inclusive care.

B Ethical Considerations
As our system aims to improve engagement with maternal
health information, this deployment must be carefully trialed
with guardrails developed before a large-scale deployment.
We are collaborating with ARMMAN to carry out these tri-
als and develop such guardrails. We recognize the system’s
recommendations are influenced by historical data, a poten-
tial source of bias, especially when data is scarce. A benefit
of our method is to be robust to such scarcity-induced bias,
a key step forward toward responsible deployment.

Thus, some of the key ethical considerations are in how
GROUPS may be used to optimize resource allocation in
real world settings. We discussed how we, specifically, will
work toward responsible deployment with our partners, as
well as how GROUPS represents a new capability in RMAB
planning, by allowing one to encode uncertainty due to, e.g.,
data scarcity. However, we must also consider the impact
of a system like GROUPS on society more broadly. For in-
stance, with such a scalable and inherently black box op-
timization tool such as GROUPS, there may be a tempta-
tion to allow the scheduling and delivery of interventions
to become fully automated. This could negatively impact,
e.g., the availability of work for humans who may have pre-
viously scheduled or delivered the interventions, or nega-
tively impact intervention recipients who perhaps could re-
ceive unwanted interventions with little option for human-
mediated recourse. To avoid these negative impacts, we
stress that our system should be seen as a supplemental tool
on the toolbelt of intervention schedulers, to be considered
among a range of existing criteria and expertise, rather than
a replacement solution.

C Limitations
Our work takes a major step forward in scaling up RMAB
solutions to perform robustly under uncertainty. However, it
accomplishes this, in part, by taking advantage of the de-
composable nature of the Whittle index and Whittle index
regret, which both require the binary-action setting typi-
cally considered for RMABs. This could be limiting in do-
mains where planners need to optimize over a suite of dif-
ferent types of interventions, rather than deciding between
only {act, not act} for each arm. We note though, that our
methods could be extended to the multi-action setting with,
e.g., multi-action notions of the Whittle index (Glazebrook,
Hodge, and Kirkbride 2011), and corresponding notions of
multi-action index regret.

The scalability of our method also relies on the existence
of a reasonable number of groups within data. We validate
that our method runs hundreds of times faster than the state
of the art when there are ∼ 10 arms and groups (Fig. 8).
We also show that our method runs in about 15 minutes for
the real maternal health dataset which has ∼ 15K arms and
40 groups (Fig. 6). However, even our method may have
difficulty scaling if there were, e.g., tens of thousands of
groups in the data. Yet, in that case, the planner could create
a smaller number of groups, each with more arms per group.
Then uncertainty of each group might increase, but the plan-
ner could still use GROUPS to plan and achieve good per-
formance. We demonstrate an example of such a tradeoff
between number of groups and performance in Fig. 3(e).
GROUPS performs better than the baselines across all cases.

D Additional Notation and Preliminaries
The number of mothers in group m ∈ [M ] is equal to γm.
The total number of mothers is equal to N =

∑
m∈[M ] γm.

Further, Sm = ×n∈[γm]Sm
n (resp. Am = ×n∈[γm]Am

n ) de-
notes the set of different state-profiles (resp. action-profiles)
of the mothers in group m. An element of Sm (resp. Im)
is denoted as sm = (smn )n∈[γj ] (resp. am = (amn )n∈[γm]).
Finally, S = ×m∈[M ]Sm (resp. A = ×m∈[M ]Am) denotes
the different state-profile (action-profile) of all the N
mothers, and s denotes an element of S.

A policy π is a map from S to A, such that for each
s ∈ S, π(s) has at most K actions as 1 (intervention)
and the remaining are 0 (no-intervention). In particular,
π maps a strategy profile of the N mothers to an action
profile with at most k intervention actions. We use Π
to denote the set of all such policies. We note that Π
is equal to the set of pure strategies of the planner. Let
α ∈ ∆I(Π) ( respectively β ∈ ∆I(P)) be a mixed strategy.
Then we use Pα(π) ( resp. Pβ(P )) to denote the proba-
bility of choosing π ∈ ΠI (resp. P ∈ PI ) under α (resp. β).

Finally, we often use (α⋆
X,Y , β

⋆
X,Y ) to denote the min-

imax maximin regret strategies of the planner and adver-
sary respectively, when the planner plays mixed strategies
from ∆X(Π) and the adversary plays mixed strategies from
∆Y (P) (see Section 5 for the definitions of ∆X(Π) and
∆Y (P)), and X,Y ∈ {M, I}. Note that α⋆

X,Y is the plan-



Table 2: Notation table

Notation Description
[N ] Set of N natural numbers {1, . . . , N}
[a, a] A real interval denoting all values of a such that a ≤ a ≤ a
N Number of women (arms)
K Number of interventions (service calls) that can be made each round
M Number of groups
Sn Set of states (engagement status) of arm n ∈ [N ]; Sn = {0, 1} (non-engaging state and engaging state)
SN Combinatorial set of states over all arms
s Vector of states of all arms
An Set of actions (intervention decisions) on arm n ∈ [N ]; An = {0, 1} (no-intervention and intervention)
AN Combinatorial set of actions over all arms
Pn
s,a,s′ Probability of transitioning from state s to s′ on action a for an individual n
P

m
Uncertainty intervals for all transition probabilities for group m

πi Planner’s i-th pure strategy (Whittle index policy)
Pi Adversary’s i-th pure strategy (instantiation of Pm for all m)
α Planner’s mixed strategy
β Adversary’s mixed strategy

G(π, P ) Expected reward when planner plays a pure strategy π and adversary plays a pure strategy P
R(π, P ) Expected regret when planner plays a pure strategy π and adversary plays a pure strategy P

ner’s minimax strategy and β⋆
X,Y is the adversary’s maximin

strategy.

D.1 Permutations on Π and P
Let Gm be the set of all permutations of [γm], where a
permutation is a bijective map from [γm] to [γm]. We
use σm to denote the elements of Gm. Further, let G =
G1 × · · · × GM . We use σ = (σ1, . . . , σM ) to denote an
element of G; note that here σm ∈ Gm.

Let a = (amn )n∈[γm],m∈[M ] be an action profile.
Then for a σ = (σ1, . . . , σM ) ∈ G, define σ(a) =
(amσm(n))n∈[γm],m∈[M ]. In particular σ permutes the actions
corresponding to the mothers in group m according to σm.
Now we show how a σ ∈ G defines bijective maps on P
and Π. For every σ ∈ G define the map ϕσ : Π → Π
(respectively ψσ : P → P) as follows: denote ϕσ(π)
as π′ (resp. ψσ(P ) as P ′), then π′(s) = σ(π(s)) (resp.
(P ′)mn = Pm

σm(n)). We make the following observation
which will be helpful later on.
Observation 1. For all π ∈ Π, P ∈ P , and σ ∈ G the
following holds R(π, P ) = R(ϕσ(π), ψσ(P )).

The following observation follows from the fact that for
every σ ∈ G, ϕσ and ψσ define bijective maps on Π and P
respectively.
Observation 2. Let α ∈ ∆I(Π) and β ∈ ∆I(P) be mixed
strategies of the planner and adversary respectively. Then
for any σ ∈ G the following holds:

R(α, β) =
∑
π,p

Pα(ϕσ(π))·Pβ(ψσ(P ))·R(ϕσ(π), ψσ(P )) .

Next, we define permutations which are transpositions.
We say σm ∈ Gm is a transposition if there exists n, n′ ∈

[γm] such that σm(n) = n′ and σm(n′) = n, and for all
ℓ /∈ {n, n′}, σm(ℓ) = ℓ. We say σ = (σ1, . . . , σM ) ∈ G
is a transposition if for all m ∈ [M ], σm is a transposition.
We note that every σ ∈ G can be expressed as a composi-
tion of finitely many transpositions. We note the following
observation.
Observation 3. Let σ ∈ G be a transposition. Then for ev-
ery π ∈ A and P ∈ P , ϕσ(ϕσ(π)) = π and ψσ(ψσ(P)) =
P .

D.2 Mixed Strategies that Do Not Distinguish
Between Mothers in the Same Group

We say a mixed strategy α of the planner is indifferent to-
wards mothers from the same group if for all π, π′ ∈ Π
such that there is a σ ∈ G satisfying π′ = ϕσ(π), Pα(π) =
Pα(π

′). We use ∆M (Π) to denote such mixed strategies.
If we define the probability of intervening on mother n

under a mixed strategy α as follows

Pα(intervene n) =
∑
π∈Π

Pα(π)
∑
s∈S

1{aπs,n = 1}

then it is easy to see that for an α ∈ ∆M (Π) and
mothers n, n′ in the same group Pα(intervene n) =
Pα(intervene n′).

E Proofs of Theorem 1, 2, and 3
We refer the reader to Section D for additional notations and
missing definitions used in the proof. Additionally, we now
define order-preserving maps, that we will use in the proof
of Theorem 3.

E.1 Order-Preserving Maps
To prove Theorem 3 from Section 3, we require the assump-
tion that there is a map ψ : ∆I(P) → ∆M (P) such that



1. For every α1, α2 ∈ ∆M (Π) and β ∈ ∆I(P),
R(α1, β) > R(α2, β) iff R(α1, ψ(β)) > R(α2, ψ(β)),
and

2. For every α ∈ ∆M (Π) and β1, β2 ∈ ∆I(P)R(α, β1) >
R(α, β2) iff R(α,ψ(β1)) > R(α2, ψ(β1))

While (1) and (2) may not hold for general mixed strategies
in ∆I(Π), it is likely to be true for mixed strategies in
∆M (Π), since these strategies do not distinguish between
mothers from the same group. Next, we describe a possible
candidate map.

First we define a map ϕ : P → P . Let P ∈ P be a
pure strategy of the adversary which assigns different tran-
sition probabilities to the mothers in the same group, and for
pure strategy p let Pm,n

s,a,s′ be the probability of the mother
n in group m transitioning from state s to s′ under action
a. We define ϕ(P ) = P̂ as follows, P̂ assigns the same
transition probability to all the mothers in a group by av-
eraging the transition probabilities of the mothers in that
group. In particular, P̂m,n

s,a,s′ = P̂m
s,a,s′ =

∑
m∈[γm] p

m,n
s,a,s′ .

Notice that the pure strategy ϕ(P ) of the adversary is in-
different to mothers in the same group. Further, for a P ∈
P , let ϕ−1(P ) = {P ′ ∈ P | ϕ(P ′) = p}. Now let
β ∈ ∆I(P). Then ψ(β) = β′ is defined as follows:
Pβ′(P ) =

∑
P ′∈ϕ−1(p) Pβ(P

′). Since, ϕ−1(P ) ̸= ∅ only
if p assigns the same transition probability to all the moth-
ers in a group. Hence, we have ψ(β) ∈ ∆M (P).

E.2 Proof of Theorem 1
We require the following proposition to prove the theorem.
Proposition 1. Suppose the minimax maximin regret strate-
gies (α⋆

I,I , β
⋆
I,I) is such that there exists a permutation σ ∈

G satisfying Pβ(P ) = Pβ(ψσ(P )) for every P ∈ PI . Then
there exists a planner mixed strategy α′ ∈ ∆I(Π) such that
Pα(ϕσ(π)) = Pα(π) for every π ∈ Π, and (α′, β⋆

I,I) are
minimax maximin regret strategies of the planner and ad-
versary respectively at the individual level.

Proof. Suppose there exists πm, πℓ ∈ ΠI such that
ϕσ(πm) = πℓ but Pα(πℓ) < Pα(πm). First, we show in
this case that R(πm, β⋆

I,I) = R(πℓ, β
⋆
I,I).

R(πℓ, β
⋆
I,I)

=
(i)

∑
p∈P

Pβ⋆
I,I

(P ) ·R(πℓ, P )

=
(ii)

∑
p∈P

Pβ⋆
I,I

(ψσ(P )) ·R(πℓ, ψσ(P ))

=
(iii)

∑
p∈P

Pβ⋆
I,I

(P ) ·R(πm, P )

= R(πm, β
⋆
I,I)

In the above equations: (i) follows from the definition of re-
gret of a pure strategy πℓ on the adversary’s mixed strat-
egy β⋆

I,I , (ii) follows as σ is a permutation (also see Ob-
servation 2) and from Observation 1 we have R(πm, P ) =
R(πℓ, ψσ(P )) for all P ∈ P , and (iii) follows by us-
ing Pβ⋆

I,I
(P ) = Pβ⋆

I,I
(ψσ(P )) for all P ∈ P . Now con-

struct a mixed strategy α′ such that Pα′(πm) = Pα′(πℓ) =

Pα(πm)+Pα(πℓ)
2 , and for all π ∈ ΠI such that π ̸= πm and

π ̸= πℓ we have Pα′(π) = Pα(π). Since R(πm, β⋆
I,I) =

R(πℓ, β
⋆
I,I), it is easy to see that (α′, β) is a minimax max-

imin regret strategies at the individual level, and from con-
struction Pα′(πm) = Pα′(πℓ).

Proof of Theorem 1. If α⋆
I,I ∈ ∆M (Π) then the The-

orem follows. Hence, assume there are πm, πℓ ∈ Π
and a permutation σ ∈ G such that ϕσ(πm) = πℓ but
Pα(πm) > Pα(πℓ). Here, we use the subscript m and ℓ to
denote more and less. Observe that we may assume without
loss of generality that σ is a transposition (see App. D).
This is because any permutation in σ ∈ G can be expressed
as a composition of transpositions. Hence, assuming σ is a
transposition, we have ϕσ(πℓ) = πm.

Let (α⋆
I,I , β

⋆
I,I) be a minimax maximin regret strategies,

that is, β⋆
I,I is a regret maximizing mixed strategy of adver-

sary against α⋆
I,I , that is

β⋆
I,I ∈ argmax

β∈∆I(P)

R(α⋆
I,I , β) .

Construct β′ such that Pβ′(P ) = Pβ⋆
I,I

(ψσ(P )) for all
P ∈ P . Note that since σ is a transposition, we also have
Pβ′(ψσ(P )) = Pβ⋆

I,I
(P ) for all P ∈ P . Hence, as β⋆

I,I

is regret maximizing for the adversary against the planner’s
mixed strategy α⋆

I,I , we have R(α⋆
I,I , β

′) ≤ R(α⋆
I,I , β

⋆
I,I).

First, we argue that R(α⋆
I,I , β

′) = R(α⋆
I,I , β

⋆
I,I). Sup-

pose R(α⋆
I,I , β

′) < R(α⋆
I,I , β

⋆
I,I). Then writing the regret

expressions for R(α⋆
I,I , β

′) and R(α⋆
I,I , β

⋆
I,I) we have∑

p

∑
π

Pβ′(ψσ(P )) · Pα⋆
I,I

(π) ·R(π, P ) (6)

<
∑
p

∑
π

Pβ⋆
I,I

(P ) · Pα⋆
I,I

(π) ·R(π, P )

Substituting R(π, P ) = R(ϕσ(π), ψσ(P )) for all π, P (see
Observation 1) we have∑

p

∑
π

Pβ⋆
I,I

(ψσ(P )) · Pα⋆
I,I

(π)R(ϕσ(π), ψσ(P )) (7)

<
∑
p

∑
π

Pβ⋆
I,I

(P ) · Pα⋆
I,I

(π)R(π, P )

Let α′ be the mixed strategy of planner such that
Pα′(ϕσ(π)) = Pα⋆

I,I
(π). Substituting this in the above equa-

tion we have∑
p

∑
π

Pβ⋆
I,I

(ψσ(P )) · Pα′(ϕσ(π)R(ϕσ(π), ψσ(P )) (8)

<
∑
p

∑
π

Pβ⋆
I,I

(P ) · Pα⋆
I,I

(π)R(π, P )

From Observation 2 we have,∑
p

∑
π

Pβ⋆
I,I

(ψσ(P ))·Pα′(ϕσ(π)) ·R(ϕσ(π), ψσ(P ))

(9)

= R(α′, β⋆
I,I)



Hence R(α′, β⋆
I,I) < R(α⋆

I,I , β
⋆
I,I). This contradicts

the minimax theorem which states that α⋆
I,I is the re-

gret minimizing mixed strategy of the planner against
the adversary’s mixed strategy β⋆

I,I . Hence, we have
R(α⋆

I,I , β
′) = R(α⋆

I,I , β
⋆
I,I). We note that the above

equations also show that α′ is the regret minimizing mixed
strategy for the planner in response to adversary’s mixed
strategy β′.

Now construct β̃ such that

Pβ̃(P ) =
Pβ⋆

I,I
(P ) + Pβ′(P )

2
=
Pβ⋆

I,I
(P ) + Pβ⋆

I,I
(ψσ(P ))

2
.

We now argue that (α⋆
I,I , β̃) is a minimax maximin regret

strategies at the individual level, that is, α⋆
I,I is regret min-

imizing against β̃, and β̃ is regret maximizing against α⋆
I,I .

Since σ is a transposition, this implies Pβ̃(P ) = Pβ̃(ψσ(P ))

for all p ∈ P . Further, as R(α⋆
I,I , β

′) = R(α⋆
I,I , β

⋆
I,I), we

have R(α⋆
I,I , β

⋆
I,I) = R(α⋆

I,I , β̃), and hence, β̃ is a regret
maximizing mixed strategy of the adversary against α⋆

I,I ,
that is,

β̃ ∈ argmax
β∈∆I(P)

R(α⋆
I,I , β) .

Also, a similar argument, as from Equations 6 to 9, shows
that R(α⋆

I,I , β
′) = R(α′, β′), and hence α⋆

I,I is a regret
minimizing mixed strategy for the planner in response to ad-
versary’s mixed strategy β′. This follows from the minimax
theorem and that α′ is the regret minimizing mixed strategy
for the planner in response to adversary’s mixed strategy β′.
This together implies α⋆

I,I is the regret minimizing mixed
strategy for the planner in response to adversary’s mixed
strategy β̃. In particular, (α′, )

Now we use Proposition 1, which shows that there exists
a α̃ such that Pα̃(πm) = Pα̃(πℓ),

β̃ ∈ argmax
β∈∆I(P)

R(α̃, β)

and R(α̃, β̃) = R(α⋆
I,I , β̃) = R(α⋆

I,I , β
⋆
I,I). We can repeat

this process finitely many times to show to construct a mixed
strategy α such that for any two policies π, π′ ∈ A, if there
exists a σ such that ϕσ(π) = π′ then Pα(π) = Pα(π

′),
and maxβ∈∆I(P)(R(α, β)) = R(α⋆

I,I , β
⋆
I,I). Since α ∈

∆M (Π), we have, without loss of generality α = α⋆
M,I .

E.3 Proof of Theorem 2
Let (α⋆

M,M , β
⋆
M,M ) be a minmax-maximin regret strategies

at the group level. Further, let π, π′ ∈ Π be such that
Pα⋆

M,M
(π) > Pα⋆

M,M
(π′), and there exists a σ ∈ G such

that π′ = ϕσ(π). Let α be an planner mixed strategy such

that Pα(π) = Pα(π
′) =

Pα⋆
M,M

(π)+Pα⋆
M,M

(π′)

2 . First ob-
serve that since β ∈ ∆M (P), R(π, β) = R(π′, β). It fol-
lows from this that (α, β) is also a minmax regret solution
at the group level. We can repeat this process finitely many
times to show that for any two policies π, π′ ∈ Π, if there
exists a σ such that ϕσ(π) = π′ then Pα(π) = Pα(π

′).

E.4 Proof of Theorem 3
Let (α⋆

M,M , β
⋆
M,M ) be a minimax-maximin regret strategies

at the group level. Also, let β⋆ be the regret maximizing
strategy of the adversary at the individual level against the
planner’s mixed strategy α⋆

M,M , that is

β⋆ = argmax
β∈∆I(P)

R(α⋆
M,M , β)

Further, let (α⋆
I,I , β

⋆
I,I) be a minimax-maximin regret strate-

gies at the individual level. In particular, from the minimax
theorem

β⋆
I,I = max

β∈∆I(P)
R(α⋆

I,I , β)

Hence, we wish to show R(α⋆
M,M , β

⋆) = R(α⋆
I,I , β

⋆
I,I).

Now let (α⋆
M,I , β

⋆
M,I) be a minimax-maximin regret strate-

gies, when the planner plays at group level (from ∆M (Π))
and the adversary plays at the individual level (from
∆I(P)). Hence, again from the minimax theorem

β⋆
M,I = max

β∈∆I(P)
R(α⋆

M,I , β)

Recall from Theorem 1, we have

R(α⋆
I,I , β

⋆
I,I) = R(α⋆

M,I , β
⋆
M,I)

Hence, to prove the theorem it is sufficient to show that
R(α⋆

M,M , β
⋆) = R(α⋆

M,I , β
⋆
M,I). Since (α⋆

M,I , β
⋆
M,I)) is a

minimax-maximin strategy regret strategies, when the plan-
ner plays at group level (from ∆M (Π)) and the adversary
plays at the individual level, we have

R(α⋆
M,M , β

⋆) ≥ R(α⋆
M,I , β

⋆
M,I)

Suppose for contradiction

R(α⋆
M,M , β

⋆) > R(α⋆
M,I , β

⋆
M,I) (10)

Now we have the following two equations:

R(α⋆
M,M , β

⋆) ≥ R(α⋆
M,M , β

⋆
M,I) (11)

R(α⋆
M,M , β

⋆
M,I) ≥ R(α⋆

M,I , β
⋆
M,I) (12)

Equation 11 follows from β⋆ being the regret maximiz-
ing strategy of the adversary at the individual level against
the planner’s mixed strategy α⋆

M,M , and Equation 12 fol-
lows from the minimax theorem and α⋆

M,I , β
⋆
M,I being the

minimax maximin regret strategies when the planner plays
at the group level and the adversary plays at the individ-
ual level. Now corresponding to Equations 11 and 12 as-
suming there is an order preserving map (see App. E.1)
ψ : ∆I(P) → ∆M (P), we have

R(α⋆
M,M , ψ(β

⋆)) ≥ R(α⋆
M,M , ψ(β

⋆
M,I)) (13)

R(α⋆
M,M , ψ(β

⋆
M,I)) ≥ R(α⋆

M,I , ψ(β
⋆
M,I)) (14)

Equation 13 follows from property 1 of the order preserving
map, and Equation 14 follows from property 2. From Equa-
tions 10, 13 and 14, we have

R(α⋆
M,M , ψ(β

⋆)) > R(α⋆
M,I , ψ(β

⋆
M,I)) (15)



Finally we use property 2 of the order preserving map to
claim the following two equations,

R(α⋆
M,M , ψ(β

⋆)) = R(α⋆
M,M , β

⋆
M,M ) (16)

R(α⋆
M,I , ψ(β

⋆
M,I)) = max

β∈∆M (P)
R(α⋆

M,I , β) (17)

Both equations require property 2 of the order-preserving
map. Additionally, Equation 16, follows because β⋆ (resp.
β⋆
M,M ) is regret maximizing for adversary at the individ-

ual level (resp. at the group level) against planner’s strategy
α⋆
M,M , and Equation 17 follows because β⋆

M,I is regret max-
imizing for adversary at the individual level against plan-
ner’s strategy α⋆

M,I . Hence, from Equations 15, 16 and 17,
we have

R(α⋆
M,M , β

⋆
M,M ) > max

β∈∆M (P)
R(α⋆

M,I , β)

The above equation contradicts the worst-case minimality of
α⋆
M,M , when both players play at the group level. Hence, we

have R(α⋆
M,M , β

⋆) ≥ R(α⋆
M,I , β

⋆
M,I).

F Minimizing/Maximizing Whittle Indices
The binary quadratic program for simultaneously maximiz-
ing and/or minimizing the Whittle indices over one or more
states of a group, given a set of interval parameter ranges on
the transitions probabilities [P s,a,s′ , P s,a,s′ ], named MIN-
MAXWHITTLEBQP is given as follows:

min
Ws′

∑
s′∈I(S)

θs′Ws′ Primary objective

min
V s′

∑
s′∈I(S)

V s′(s′,Ws′) Secondary objective

s.t.

Qs′(s, a,Ws′) = R(s)−Ws′C(a) + γT (s, a, ·)⊺V s′(·,Ws′)

V s′(s,Ws′) ≥ Qs′(s, a,Ws′)

V s′(s,Ws′) ≤ Qs′(s, a,Ws′) + b(s, a, s′)M

∀s ∈ S, a ∈ A, s′ ∈ I(S)∑
a∈A

b(s, a, s′) = |A| − 1

∀s ∈ S, s′ ∈ I(S)

Ws′ = γ
[
T (s′, 1, ·)⊺V s′(·,Ws′)− T (s′, 0, ·)⊺V s′(·,Ws′)

]
∀s′ ∈ I(S)

T (s, a, s′′) ∈ [P s,a,s′′ , P s,a,s′′ ]

∀s ∈ S, a ∈ A, s′′ ∈ S
(18)

Where I(S) is the set of all states for which the users wants
to jointly optimize Whittle indices, θs′ ∈ {−1, 0, 1} is the
“sense” for the corresponding index to optimize, i.e., 1 to
minimize, −1 to maximize, or 0 to not optimize the index
for that state (note that θ corresponds to obj in Alg. 2), Ws′

is the Whittle index for state s′, V and Q are the state and
state-action value functions, respectively, C(a) = a is the

Algorithm 3: Double Oracle
Input: Grouped RMAB simulator and parameter uncer-
tainty intervals P

m
for all groups.

Parameters: Number of iterations T
Output: Agent mixed strategy α

1: P0 = {P0}, with P0 selected at random
2: Π0 = {πB1 , πB2 , . . .}, where πBi are baseline and

heuristic strategies
3: for epoch e = 1, 2, . . . , T do
4: Solve for (αe, βe), mixed Nash equilibrium of regret

game with strategy sets Pe−1 and Πe−1

5: πe = WI4MS(βe)
6: Pe = REGRETMAXWI(αe)
7: Pe = Pe−1 ∪ {Pe},Πe = Πe−1 ∪ {πe}
8: return αe

cost of an action, b is a binary variable that serves to enforce
one of the Q constraints on V to be tight (ensuring the value
function is solved, and thus Whittle index is valid), M is a
large number, e.g., 104, T are variables that hold the tran-
sition probabilities, R(s) = s is the reward, and γ is the
discount factor. Note that all T ⊺V terms are quadratic, since
both T and V are variables in this optimization.

G Double Oracle and Whittle Index
Algorithms

The outer loop of the double oracle algorithm is given in
Alg. 3. We also give COMPUTEWI in Alg. 4, our binary-
search based method for computing the Whittle index, given
transition probabilities for a group Pm and a state s. Note
also that COMPUTEWI could be implemented by using
MAXWHITTLEBQP, and a small wrapper function to ad-
just the input appropriately. That is, MAXWHITTLEBQP
expects intervals over transition parameters P

m
, but com-

puting the Whittle index only requires some choice of Pm

in the intervals. Thus the wrapper needs to encode Pm as
intervals, which can be accomplished by copying each tran-
sition probability of Pm to an interval with the same upper
and lower bound, for each s, a, s′. Then, to get the Whit-
tle index for a certain state of the group m, the wrapper
should pass in a sense that negative-one-hot encodes the
desired state. E.g., if one wants to compute the index for
state s = 1 for an arm with two states, the wrapper should
pass in a sense θ = [0,−1]. With the above described in-
puts, specifically since the intervals will have the same upper
and lower bound, the quadratic terms in the MAXWHITTLE-
BQP will become constant, effectively turning the binary
quadratic program into a binary linear program that does not
search over transition probabilities for the best Whittle in-
dex, but simply returns the Whittle index of the given tran-
sition probabilities. This represents a new way to compute
Whittle indices that could also be of general interest.

H Evaluating Each Oracle
Planner oracle We verify empirically that the planner or-
acle, described in Section 4.1, produces high quality best re-



Algorithm 4: Compute Whittle Index (ComputeWI)
Input: Group m, state sI , transition probabilities Pm for
group m, tolerance ϵ.
Output: Whittle indexWm(sI)

1: ub, lb = INITBSBOUNDS(Pm) // Return upper and
lower bounds on Wm(sI) given Pm, e.g., 1, 0.
// Now binary search for the Whittle index

2: while ub− lb > ϵ do
3: λ = ub+lb

2
4: a = VALUEITERATION(Pm, sI , λ) // Run value it-

eration for the MDP defined by Pm with λ-adjusted
reward function r(s, a, λ) = s − aλ, and return cor-
responding π⋆(sI)

5: if a=0 then
6: ub = λ // Charging too much, decrease
7: else if a=1 then
8: lb = λ // Can charge more, increase
9: Wm(sI) =

ub+lb
2

10: return Wm(sI)

sponses, i.e., reward-maximizing RMAB intervention poli-
cies π, across various problem sizes and intervals. As base-
lines, we compare against: No action (NA) which simu-
lates the policy that takes action a = 0 on all arms at all
time steps, representing a lower bound on reward; Ran-
dom which takes action a = 1 on K randomly cho-
sen arms each round; and Brute Force which enumerates
the entire feasible RMAB policy space, simulates the aver-
age reward of each policy, then returns the reward of the
best-performing policy. Brute force can only be computed
for small problem sizes, since its computation cost is ex-
ponential in N and K. We evaluate on test data gener-
ated by, for each seed, randomly sampling transition inter-
vals [Pm

s,a,s′ , P
m

s,a,s′ ] ∀c, s, a, s′, and randomly sampling a
mixed nature strategy. Results, shown in Fig. 4, are reported
as the average reward over ten random seeds. Our approach,
WI4MS performs nearly as well as brute force for the small
problem size, and outperforms all baselines as the problem
size increases to the scale of the maternal health intervention
problem.

Adversary oracle We verify empirically that the adver-
sary oracle, described in Section 4.2, produces high qual-
ity best responses, i.e., regret-maximizing environments P ,
across various problem sizes and intervals. As baselines,
we compare against: Random which selects an P by uni-
formly randomly samplingPm ∈ P

m ∀m ∈ [M ] and Brute
Force which (1) discretizes the adversary’s pure strategy
space into D = 3 uniformly spaced values for each inter-
val [Pm

s,a,s′ , P
m

s,a,s′ ], (2) enumerates all possible combina-
tions of the discrete environment setting, denoted Pd, (3)
simulates the average regret induced by each Pd by simulat-
ing the optimal WIP against Pd and simulating some input
planner mixed strategy α against Pd, then taking the dif-
ference, (4) then returns the regret of the best-performing
Pd. Brute force can only be computed for small problem
sizes, since its computation cost is exponential in N , K,

and D. For instance, even for N = 2,K = 1, and D = 3
brute force enumerates ∼60k choices of Pd. We evaluate on
test data generated by randomly sample transition intervals
[Pm

s,a,s′ , P
m

s,a,s′ ] ∀c, s, a, s′. Also, since our adversary ora-
cle implementation requires as input both a planner mixed
strategy α and its corresponding mixed adversary β of some
MSNE (see Alg. 2), we generate inputs to the oracle by first
randomly generating agent and adversary pure strategy sets
according to the sampled [Pm

s,a,s′ , P
m

s,a,s′ ], then running one
iteration of the double oracle using these strategy sets to gen-
erate the required α and β. Results, shown in Fig. 5, are re-
ported as the average reward over ten random seeds. Our ap-
proach, REGRETMAXWI performs nearly as well as brute
force for the small problem size, and vastly outperforms the
naive random baseline even as the problem size increases to
the scale of the maternal health intervention problem.
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Figure 4: Evaluating planner oracle best response quality
(WI4MS). Objective is to maximize reward (higher is bet-
ter). No Action simulates the policy that takes action a = 0
on all arms at all time steps, representing a lower bound on
reward. Random takes action a = 1 on K randomly chosen
arms each round. Brute Force enumerates the entire feasible
RMAB policy space, simulates the average reward of each
policy, then returns the reward of the best-performing pol-
icy. Brute force can only be shown for small problem sizes,
since its computation cost is exponential in N and K. Our
approach WI4MS performs well across all problem sizes.

I Runtime Scalability of GROUPS
In Fig. 6 we demonstrate the runtime improves achieved
by our GROUPS robust planning method as the number
of groups M decreases, with number of arms N held con-
stant. Given Thm 3, this demonstrates that we can achieve
large scaling up of our robust planning without losing per-
formance, under some mild assumptions, e.g., similarity of
groups of arms.

J Experiment Setup Details
All algorithms were implemented in Python 3.7.4 and math-
ematical programs were solved using Gurobi version 9.0.3
via the gurobipy interface (Gurobi Optimization 2021). Ex-
periments were run on a cluster running CentOS with In-
tel(R) Xeon(R) CPU E5-2683 v4 @ 2.1 GHz with 8GB of
RAM and four processors.
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Figure 5: Evaluating adversary oracle best response qual-
ity. Objective is to maximize regret (higher is better). Our
approach, RegretMaxWI, performs nearly as well as a dis-
cretized brute force algorithm for small problems, and con-
tinues to perform far better than naive strategies for larger
problems where brute force is intractable.

Figure 6: Run time scalability of GROUPS. Holding the
number of arms N constant, the runtime of GROUPS im-
proves significantly as the number of groups M decreases.

To compute regret, we simulate each planner strategy
against the full set of the adversary’s pure strategies (i.e.,
environment parameter settings, including both those com-
puted by the adversary oracle as well as baseline responses
pessimist, median, optimist, and random) to determine that
which maximizes regret.

K ARMMAN Consent for Data Collection
and Analysis

In this section, we provide information about consent related
to data collection, analyzing data, data usage and sharing.
We highlight that this work is part of a long-standing re-
search collaboration with ARMMAN, with continuous anal-
ysis of data performed in close consultation with ARMMAN
researchers.

K.1 Secondary Analysis and Data Usage
This study falls into the category of secondary analysis. To
evaluate the performance of the algorithms, we use unlinked,
anonymized data generated during the course of implemen-
tation of the program, i.e., previously collected engagement
trajectories of different beneficiaries participating in the ser-
vice call program. The proposed algorithms are evaluated
via a simulation-based method discussed in Section 6. This

paper does not involve deployment of the proposed algo-
rithm or any other baselines to the service call program.

K.2 Consent for Data Collection and Sharing
The consent for collecting data is obtained from each of the
participants of the service call program. The data collection
process is carefully explained to the participants to seek their
consent before collecting the data. The data is anonymized
before sharing with us to ensure anonymity. Data exchange
and use was regulated through clearly defined exchange
protocols including anonymization, read-access only to re-
searchers and restricted use of the data for research purposes
only.

K.3 Universal Accessibility of Health Information
To allay further concerns: this simulation study focuses on
improving quality of service calls. Even in the intended
future application, all participants will receive the same
weekly health information by automated message regard-
less of whether they are scheduled to receive service calls
or not. The service call program does not withhold any in-
formation from the participants nor conduct any experimen-
tation on the health information. The health information is
always available to all participants, and participants can al-
ways request service calls via a free missed call service. In
the intended future application our algorithm may only help
schedule additional service calls to help beneficiaries who
are likely to drop out of the program.

L Domain Descriptions
Maternal health The data used in this paper are
anonymized, aggregated summary statistics of engagement
behavior of mothers enrolled in ARMMAN’s mMtira pro-
gram, and does not contain any demographic information.

From the full dataset of 23,008 mothers, we chose a sub-
set of 15,336 mothers from this cohort who have a least one
record of intervention, then computed summary statistics
(i.e., frequentist transition probabilities) over that subset. To
create an arm–group mapping, we run K-means clustering
on those probabilities, and compute uncertainty intervals via
bootstrapping followed by multiple imputation to compute
standard deviations of the means (Schomaker and Heumann
2018).

We now describe how we set up the environment set-
tings used for each simulation variant. As mentioned, the
experiments in Figure 3(g)–(i) use the summary engagement
statistics from ARMMAN. To vary the simulated number of
mothers in Figure 3(i), we begin with the groupings from
the summary data but scale up the number of mothers in
each group by a factor of 10 and 20 to reach 153.2K and
306.4K mothers, respectively, with budget scaled accord-
ingly to K = 1000 and K = 7000.

Statistics on the uncertainty intervals and group sizes for
the summary ARMMAN dataset are displayed in Figures 9
and 10, respectively.

TB Derived from data obtained from (Killian et al. 2019),
which contains anonymous records of daily adherence to tu-
berculosis (TB) medication. We used the 8,350 records with
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Figure 7: More experimental results evaluating the regret (lower is better) incurred by GROUPS, our robust solution approach,
compared to non-robust baselines across a variety of problem settings. Regret is interpreted, in real-world terms, as the max-
imum preventable missed messages across the uncertainty space. The problem setting used by ARMMAN, which we use as
default values, are K = 100, H = 10, N = 15,320, actual group size, and M = 40 groups. Experiment (a) uses real data
obtained from (Mate et al. 2022); (b) and (c) use randomly sampled data, as described in section L. Each result is averaged over
30 random seeds.
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Figure 8: Run time scaling of DDLPO (Killian et al. 2022)
vs GROUPS. GROUPS is hundreds of times faster than
DDLPO.

at least 30 days of adherence data. Though not collected in
a grouped RMAB setting, we augmented the data to have
groups by running K-Means grouping on the passive tran-
sition probabilities, and simulated uncertainty intervals for
passive and active transitions as Aσ standard deviations of
the mean of group centers. We then simulated uncertainty
intervals: (1) for the passive transition probabilities as Aσ

standard deviations (default Aσ = 3) about each group cen-
ter and (2) for the active transition probabilities by adding
a random value η ∼ N(0.3, 0.3) to the corresponding pas-
sive transition (i.e., always preferable to act), and creating
an uncertainty interval about the mean 1.5× width of the
passive uncertainty (i.e., less knowledge of active transitions
vs. passive). These specific values were chosen to calibrate
uncertainties to roughly match those of the maternal health
domain, for which uncertainty statistics were available.

Statistics on the uncertainty intervals and group sizes for
the TB dataset are displayed in Figures 11 and 12, respec-
tively.

Synthetic A benchmark domain from Killian et al. (2022)
comprised of three “arm types” [U, V,W ], each with their
own intervals, designed so that non-robust policies have
higher regret than robust ones. Specifically,

Tn
s=0 =

[
0.5 0.5
0.5 0.5

]
, Tn

s=1 =

[
1.0 0.0

1− pn pn

]
(19)

where
pU ∈ [0.00, 1.00]
pV ∈ [0.05, 0.90]
pW ∈ [0.10, 0.95]

.

We augment the domain to allow homogeneous groups of
each arm type, where the size and proportion of groups of
each type may vary.

Randomly sampled data Used in Figure 3(b)–(c), we
randomly generate transition probabilities and group sizes,
drawn from normal distributions. We ensure that these tran-
sition probabilities are valid, that is that the probability tran-
sitioning to (or remaining in) the good state (s′ = 1) with
intervention (a = 1) is always higher than the probability
of not intervening (a = 0), and similarly that the probabil-
ity when starting in the engaging state (s = 1) is always
higher than the probability of starting in the not engaging
state (s = 0).
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Figure 9: Statistics on the uncertainty intervals from the AR-
MMAN data, averaged over 40 groups. Left shows the distri-
bution of interval widths over all 40 groups. Right shows the
distribution of interval midpoints over all 40 groups. Some
uncertainty intervals are wider than 0.8, but the majority
have width below 0.4. Uncertainty intervals of most groups
are in the range [0.3, 0.7].
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Figure 10: Distribution of group sizes for the ARMMAN
data.
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Figure 11: Summary statistics on the uncertainty intervals
from TB data obtained from (Killian et al. 2019), averaged
over 60 groups. Left shows the distribution of interval widths
over all groups. Right shows the distribution of interval mid-
points over all groups. In general, transition probability me-
dians are closer to 1 for this domain than the ARMMAN
domain.
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Figure 12: Distribution of group sizes for TB adherence data.


