Conversational Music Retrieval with Synthetic Data
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Abstract

Users looking for recommendations often wish to improve suggestions through
broad natural language feedback (e.g., “How about something more upbeat?”).
However, building such conversational retrieval systems requires conversational
data with rich user utterances paired with slates of items that cover a diverse
range of preferences. This is challenging to collect scalably using conventional
methods like crowd-sourcing. We address this problem with a new technique to
synthesize high-quality dialog data by transforming the domain expertise encoded
in curated item collections into corresponding item-seeking conversations. The
method first generates a sequence of hypothetical slates returned by a system,
and then uses a language model to introduce corresponding user utterances. We
apply the approach on a dataset of curated music playlists to generate 10k diverse
music-seeking conversations. A qualitative human evaluation shows that a majority
of these conversations express believable sequences of slates and include user
utterances that faithfully express preferences for them. When used to train a
conversational retrieval model, the synthetic data yields up to a 23% relative gain
on standard retrieval metrics compared to baselines trained on non-conversational
and conversational datasets.

1 Introduction

Recent work has made significant advances in the ability of retrieval systems to understand natural
language queries and non-textual content (e.g., images, audio) [11} [12} 22]. However, standard
retrieval systems still struggle to retrieve items for ambiguous queries (e.g., “Music for focusing”),
where the query’s meaning may depend on the user or their context (e.g., writing, meditating). This
motivates conversational retrievers, which allow the user to provide natural language feedback (e.g.,
“How about something more upbeat?”) to steer the system to retrieve the items they are looking for.

Conversational retrievers are challenging to build because they require conversational training data
that pairs multiple turns of rich and diverse natural language feedback with retrieved items. One
possibility is to generate data in a crowd-sourced Wizard-of-Oz setup [2| [14} [18] 24]: here, one
person acts a user looking for items, while another acts as a wizard that recommends items given the
user’s queries and feedback. A key limitation of this approach is that both people need some domain
expertise: the wizard to find relevant items to suggest, and the user to provide varied and meaningful
feedback. For many domains, few people have this expertise, leading to shallow conversations.
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Item-seeking Conversation

User utterance - u,

I'm going to throw a party and want a
disco or 80s feel

Slate of results - s,

Item Collection - z, (Playlist)

J1 Sweet Child O’ Mine by Guns N’ Roses

Title: Power-up Drum & Bass Sing-i?:ngs" 4 Take On Me by A-ha
Description: Feeling tired? These Drum & Bass 4 Karma Chameleon by Culture Club
Hits provide new motivational energy.
Add some drum and bass songs to

Items - x (Songs) ‘ get the party going
A Program by Chase & Status & IRAH
A MASHUP by Reaper “Power-up 1 Program by Chase & Status & IRAH
1 Ghosts ‘n’ Stuff by deadmaus5 Drum & Bass” | © MASHUP by Reaper
J1Baddest by Vibe Chemistry A Witchcraft by Pendulum
A Witchcraft by Pendulum

: ‘ Let’s have a pop song or two in there

to break up the monotony of DNB

“Cocktail 41 Hello by Adele
wit‘l')n(;\d:::" A Tfake Me To Church by Hozier
J1 Fix You by Coldplay

Figure 1: Curated item collections (e.g., music playlists) group items (songs) into coherent collections
and provide useful metadata about them (e.g., playlist titles and descriptions). We propose a new
method that leverages this domain expertise to create item-seeking conversations that contain user
utterances with rich and diverse feedback paired with item slates that reflect this feedback.

In contrast, curated item collections (e.g., playlists, recipe books) are widely available on the internet.
These collections capture the domain expertise of their creators who pick a coherent set of items.
Moreover, they often include detailed metadata (e.g., titles, descriptions and tags) with attributes a
user may refer to in their preferences (e.g., “upbeat music”, “healthy recipes”). Motivated by these
properties, we ask: can we leverage curated item collections to generate conversations?

There are two key features missing in item collections: (1) multiple turns with slates of items to
recommend to the user, and (2) user utterances describing their feedback for each slate. We solve
these problems in two steps: First, we observe that, in an ideal conversation, each turn should
make a coherent change that brings the user closer to their target slate. Following Gopfert et al. [8]],
we represent items, collections, and slates as vectors in a shared embedding space, and generate a
sequence of slates by pivoting around item collections towards the target slate. Second, we use a dialog
inpainting language model [5]] to generate conversational user utterances that express preferences for
each slate by prompting the model with metadata from corresponding item collections (Figure|[I).

We use this approach to create a dataset of 10,000 synthetic music-seeking conversations that
cover a breadth of domain expertise, from conversations about Japanese pop music to those about
electro-swing music. In a qualitative evaluation, we find a majority of the data contain believable
sequences of slates with user utterances that faithfully express preferences for them. We also evaluate
this data quantitatively by measuring its impact on training conversational music retrievers. Our
proposed approach yields up to a 23% relative Hits@10 gain compared to baselines trained on
non-conversational and conversational datasets.

Related work. Traditional recommender systems [[15} [16] use matrix factorization techniques to
personalize results from large quantities of user log data. In contrast, conversational or interactive
recommender systems [3]] can reduce their dependence on logs by allowing users to interact with
them and provide direct feedback. However, because of a lack of conversational training data,
conversational recommenders are often trained using reinforcement learning techniques [3. 17,128} [30]
or using supervised learning on scripted dialogue flows [9]. A notable exception is the ReDial
dataset [18]], a large conversational movie recommendation dataset collected by paid experts in a
Wizard-of-Oz setting. Our work also benefits from recent advances in conversational systems [4! (6,
260, 27,127, 129, [29]], retrieval modeling [13} 25]], and content modeling [10} [11 19} 21]].

2 From Curated Item Collections to Item-Seeking Conversations

Curated item collections contain substantial domain expertise: they not only group items (songs)
z € X into coherent collections (playlists) z C &, but also provide valuable metadata about each



collection ¢(z) (playlist titles and descriptions). However, they lack two key features present in an
item-seeking conversation: a sequence of slates of items s; C X" presented to the user in each turn ¢
(instead of a fixed collection of items), and corresponding user utterances u; that express a preference
for each slate (instead of the non-conversational metadata). We address these problems by using a
dataset of item collections Z to first generate sequences of slates and then generate user utterances
for them.

Generating sequences of slates. We are guided by following desirable properties on the slates a
user might see in an ideal conversation: (P.1) a slate, s;, should maintain continuity with its previous
turn’s s;_1 (if the user first asked for party music, they are more likely to ask for pop music than
meditation music); (P.2) the change between subsequent slates should be coherent, corresponding
to natural language feedback from the user—we expect that an item collection z, approximates this
change; and finally, (P.3) each turn should bring the user closer to their target slate s* (if the user
ultimately wants good party music, we expect slates to include more high energy music in later turns).

To realize these properties, we follow Gopfert et al. [8]] and represent items z, item collections z; and
slates s; as vectors (Z, Z; and S;) in a shared embedding space R<¢. We use P.1 and P.2 to model §; as a
linear combination: §; = aS;_1 + 8%, and use P.3 to choose « and /3 to minimize the distance to §*
We sample Sy and s* from Z to ensure that sequences start and end in coherent slates. Empirically,
we found that sampling z; from shrinking neighborhoods of s* works welﬂ we plan to further
explore this in future work. Finally, we can retrieve the items in s; using the item neighbors of s;.

Generating user utterances. Once we have a sequence of slates, we need to generate correspond-
ing user utterances: suppose that s;_; contained “80s Sing-Alongs” songs and s; ‘“Power-Up Drum
& Bass” songs; us should contain feedback like “Now drum and bass songs to get the party going”.
To achieve this, we use a dialog inpainter [5]—a T5-based language model trained to predict missing
utterances in a conversation. We set up the conversation with system utterances that describe each
slate s; using the corresponding collection’s metadata ¢(z;)—e.g., “I’ve added songs described as
sick party drum and bass songs.”—and use a dialog inpainter to fill in the “missing” user utterances

Application to conversational retrieval. Our ultimate goal is to build a conversational item re-
triever where users can interact with the system by providing feedback over multiple turns. Given
a user utterance u; and the history of previous utterances and slates H; = (u1,81,...,ut—1,S¢-1),
a conversational retriever predicts a new slate of items that ranks the user’s target s* highest%]
We model the task by learning a ranking function p, : X — R using a dual encoder architec-
ture [[7, 113} 120]], which has shown to be effective on similar tasks. Dual encoders independently
embed queries ¢ and targets x into dense vectors, and compute the ranking function using cosine
similarity: p(z;q) = embed(z) - embed(q). We follow prior work [5 23] and use item metadata to
provide (u:, H) as a query, and sample items from s; to be the target (see Appendixfor model
input details).

3 Evaluation

Our evaluation aims to validate two claims: (1) our approach generates high quality synthetic data,
and (2) training on the synthetic data improves retrieval performance. We use our approach to generate
10,000 music-seeking conversations from 19,156 expert-curated playlists (Z) from a proprietary
dataset. Each conversation consists of six turns, where each turn ¢ has a user utterance u; and slate s;.
The retrieval corpus X consists of 381,331 songs from the same dataset.

3.1 Dataset Quality

We begin by qualitatively evaluating the synthetic data. One author manually rated over 100 turns on
a three point scale according to the following questions: (1) how believable is the turn, with respect
to the target?, (2) how well-phrased is the user utterance?, and (3) how well does the user utterance

3 and f3 can be solved in closed-form when the vectors in the embedding space are of unit-norm.
4See Appendix for further details on the embedding space and sampling procedure.

SSee Appendix for examples of the templates used to generate the system utterances.

%We assume that the user’s target is fixed throughout the conversation.
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Figure 2: Left: Qualitative evaluation of over 100 turns from the synthetic data. Right: Retrieval
performance on the test set of the synthetic data.

match their preference? We want sequences of slates that are realistic, user utterances that resemble
those of real users, and user utterances that faithfully represent the preferences for the slates. We find
that the majority of turns are high quality on each of the dimensions, suggesting that the synthetic
data is sufficiently high quality to use for training data (Figure 2).

3.2 Retrieval Performance

We now measure the quantitative impact of the synthetic data when used to train conversational
retrievers. We first describe the experimental setup. See Appendix [C|for more details.

Evaluation Dataset. As there is no existing data for the conversational music retrieval task, we
evaluate on a test set of the synthetic data, which consists of 856 conversations. We report a standard
retrieval metric, Hits@ 10, by comparing the song ranking at each turn with the target slate, excluding
songs that have been seen in the history up to that turn. Hits@10 is 1 iff any of the top-10 retrieved
songs are labeled relevant. All models use the same conversation history from the dataset, as opposed
to building conversation history using model predictions from previous turns.

Model implementation. We initialize our dual encoder from a pretrained T5 1.1-Base check-
point [23] and finetune on the synthetic data by randomly sampling a turn ¢ for each conversation,
and using ¢; = (u¢, H;) as a query and a randomly sampled song from s; as a target. We train the
model using a contrastive loss with in-batch negatives. At inference time, we precompute the song
embeddings and use nearest neighbor search to retrieve the top 10 songs for each query g;.

Baselines. We compare against two dual encoders trained on variants of the query:
NonConversational, where the query ¢ is the playlist title and seed songs from the playlist,

and NoHistory, where query ¢ &ef u; for a randomly sampled turn ¢. We also compare against two
dual encoders trained on variants of the synthetic dataset: RandomSequence, where the slates s;
are equal to a randomly sampled playlist z; at each turn ¢, and UserTemplates, where the user
utterances are templated instead of generated by the inpainter. The training target is a randomly
sampled song z from the playlist (NonConversational) or from s; (all others). While the training
sets differ between the baselines, all baselines are evaluated on the same set of queries, including the
conversation history, at test time.

Figure [2] (right) compares our model to baselines. We observe that our model achieves up to a
23% relative gain over the best baseline on Hits@10 averaged over turns. The gains over the
UserTemplates model suggest it is useful to train on conversational user utterances rather than
templated user utterances. Moreover, the gains over the NoHistory model suggest that training with
a conversation history is also useful. Overall, the results suggest that our model is better able to
use natural language feedback to improve retrieval. As future work, we are interested in scaling
up the qualitative evaluation of the synthetic data and evaluating the retrieval performance on real
conversational item retrieval datasets.

4 Discussion

We introduced a general technique to convert item collections into synthetic conversations and
demonstrated the benefits of building conversational retrieval models trained on such data for the



music domain. In the future, we plan to more extensively evaluate our models and explore how to
incorporate user information—either from user logs or explicit user intent—to further personalize
conversational retrieval systems. Finally, while language models are known to propagate the harmful
biases in their training data [1], by synthetically generating data we have the opportunity to filter and
mitigate these biases—this is an important direction for future work.
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Appendix

A Data Generation Details

We provide additional implementation details for generating sequences of slates and generating user
utterances described in Section 21

A.1 Slate Sequence Generation

We generate six turns for each conversation using hyperparameters that we found generated rea-
sonable sequences in preliminary experiments. We randomly sample the starting point Sy from the
neighborhood of the target §* using a neighborhood of size k = 256, using the softmax of similarity
to the target as the sampling distribution. To ensure that the starting point is not too close to the target,
we also require that Sg is not in the top 50 neighbors of s*. We then sample z; from the neighborhood
of §*, decreasing k each turn until £ = 1 on the last turn to ensure that the conversation reaches the
user’s target slate. Specifically, we sample from neighborhood sizes of {128, 64, 32, 16, 1}) and
use the softmax over the similarity to the previous turn’s slate s;_; as the sampling distribution to
encourage each z, to be relevant to the previous slate. Finally, we sample the top 20 items that are
neighbors of s, to retrieve the items in the slate s, for each turn. We are interested in understanding
the sensitivity of our approach to these hyperparameters in future work.
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Preference System Utterance Template

More Of course! Let me also add some songs described as $description. How can 1
improve the vibe?
Got it, I will also add some songs described as $description. Describe how I can
improve the vibe.
Sure, I will also add some songs described as $description. How can I improve
this playlist now?
Definitely, let me also add more songs described as $description. What else can
I do to make this playlist better?
Ok, let me go ahead and also add some songs described as $description. How
can I improve this playlist specifically?

Less Got it, let me remove some songs described as $description. How would you
like to improve this playlist now?
Sure, I will remove some songs described as $description. How can I improve
the vibe?
Ok, let me remove some songs described as $description. What else can I do to
make this playlist better?
Of course! T will remove some songs described as $description. How can 1
improve this playlist now?
Sounds good. Let me remove songs described as $description. Describe how 1
can improve the vibe.

Table 1: Examples of templates used to instantiate system utterances. We fill in $description with the
description for playlist z;.

A.2 Utterance Generation

After generating sequences of slates, we use a dialog inpainter to generate corresponding user
utterances. The dialog inpainter takes as input a sequence of system utterances. We create the system
utterances by filling in templates with metadata for each item collection z;. We include examples
of the templates used for the system utterances to generate music-seeking conversations in Table[I]
We support two types of preferences—more or less—which we determine based on the value of the
weight /3 in the linear combination (i.e., positive 5 means more).

B Model Inputs

We describe how we represent the inputs to the non-conversational and conversational dual encoders.

B.1 Non-conversational dual encoder

We use a non-conversational dual encoder to learn the joint embedding space to generate the sequences
of slates in Section 2} We also use this model as one of the baselines in Section[3.2] Here, we discuss
how we represent the inputs, the query g and the targets z, to the dual encoder.

The query ¢ is a textual representation of an item collection z, generated using item collection
metadata and item metadata for a sample of "seed" items in z. The target x is a textual representation
of a random sampled item in z, generated using the item metadata.

Concretely, for music retrieval, the query input is as follows:

playlist_title [SEP] seed_song_title by artist_names from album_title

In our experiments, we use five seed songs and concatenate a description of each seed song to the end
of the query with a separator token. Similarly, the target input is defined as:

song_title by artist_names from album_title



B.2 Conversational dual encoder

We now discuss how we represent the inputs to the conversational dual encoder. Recall that we
define the conversation history at turn ¢ as H; = (uq,s1,...,u;—1,8¢-1). For the conversational

def . .
dual encoder, query ¢ = (u;, H;), where u; is the user utterance at turn . The target x is a sampled
item from the slate s;.

To construct the query, we observe that the user utterances u are already text. We then represent slate
s textually using the metadata associated with the top-k items from s. Finally, we concatenate the
textual representation of each term in H; with the utterance u;. Note that we use reverse concatenation
(i.e., the last turn occurs at the beginning of the query and the first turn occurs at the end of the query),
so that the position of the last utterance u, is independent of the turn ¢. The targets use the same
representation as the non-conversational model (Section [B.T].

Specifically, for the conversational music retriever, the query input, at time ¢ is as follows:

utterance, [SEP] song_description,.; [SEP] utterancey.; ... [SEP] song_description; [SEP] utterance,

Where "utterance" represents the user utterance v and "song_description" represents a textual descrip-
tion of the song sampled from the slate s that matches the target input encoding. In our experiments
we use the top 3 songs from the slate s at each turn and concatenate the song descriptions with a
separator token (shown with the top 1 song for space).

C Retrieval Experiment Details

We provide additional details for the retrieval results in Section

C.1 Data preprocessing

One failure mode of the dialog inpainter is occasionally copying text from the input prompts. We want
to reduce these cases as it can lead to user utterances that are less conversational and less realistic. To
account for this, we filter the test split of the synthetic data to remove conversations that have a high
substring overlap between a user utterance and the system utterances (i.e., longest common substring
is greater or equal to 75 characters). This filters about 14% of conversations, resulting in a test set of
856 conversations.

C.2 Baselines

We include the templates used to instantiate the user utterances for the UserTemplates baseline in
Table 2] We assign preferences as described in Appendix [A.2]

Preference User Utterance Template

More Add some songs described as $description.
Can you also add some songs described as $description.
I want more songs that can be described as $description.
Can I have some songs described as $description.
More $description.

Less Fewer songs described as $description.
Please no songs described as $description.
I don’t want songs described as $description.
Remove songs described as $description.
Less $description.

Table 2: Examples of templates used to instantiate user utterances for the UserTemplates baseline.
We fill in $description with the description for playlist z.



C.3 Training details

We finetune all models (including baselines) from a T5.1.1-Base checkpoint for 500k steps with
constant learning rate 0.001, dropout rate 0.1, and batch size 512. We use TPUv3 chips to train the
non-conversational model and TPUv4 chips to train our model and all other baselines.

C.4 Evaluation details

We use a query token length of 1024 tokens and a target token length of 128 tokens and preprocess
the input as described in Section [B.Z] for all models. We use the validation set of the synthetic data
to select the best checkpoint for our model and baselines. We run inference using the full retrieval
corpus, and select the checkpoint that achieves the highest Hits@ 10 averaged over turns. We report
Hits @10 results using the best checkpoint for each model over the test set of the synthetic data.
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