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1 INTRODUCTION
Software developers write code nearly everyday, ranging from
simple straightforward tasks to challenging and creative tasks. As
we have seen across domains, AI/ML based code writing assistants
are on the rise in the field of computer science. We refer to them as
code generation tools or ML enhanced software developing tooling;
and it is changing the way developers write code [2, 10]. As we
think about how to design and measure the impact of intelligent
writing assistants, the approaches used in software engineering and
the considerations unique to writing code can provide a different
and complementary perspective for the workshop. In this paper,
we propose a focus on two themes: (1) measuring the impact of
writing assistants and (2) how code writing assistants are changing
the way engineers write code. In our discussion of these topics,
we outline approaches used in software engineering, and how the
disciplines of prose writing and code writing can learn from each
other. We aim to contribute to the development of a taxonomy of
writing assistants that includes possible methods of measurement
and considers factors unique to each domain (e.g. prose or code).

2 MEASURING THE IMPACT OF WRITING
ASSISTANTS IN SOFTWARE ENGINEERING

Many companies have recently developed publicly available code
generation tools including Copilot from Github [6], AlphaCode
from Alphabet’s DeepMind [9], and CodeWhisperer from Amazon
[1]; as well as internal tools from companies such as Meta [2] and
Google [12]. To better understand the impact of these tools, a num-
ber of metrics have been leveraged to understand how developers
interact with code writing assistants and how it impacts the code
that is written, including:

Behavioral metrics: These include daily completions per user
(DCPU), the raw number of accepted suggestions per developer per
day [15], coding iteration time, persistence (the ratio of accepted
completions unchanged) [16] and the percentage of new code gen-
erated from accepting ML code completion suggestions [12]. These
measures provide feedback on performance of the ML model, its
impact to workflows and output, and can be applied to a wide range
of code writing assistants, beyond the coding use case.

Attitudinal measures: These include user sentiment such as
perceived utility [4] and perceived productivity [13].

Some approaches have combined both logs-based measures with
attitudinal measures to better understand interaction patterns. For
example, Mozannar et al [10] developed a taxonomy for interac-
tions with code writing assistants (Copilot) by asking participants
to label logs based metrics to capture their intent when working
with the code writing assistant. Other approaches have used both
log-based and attitudinal measures to identify where behaviors

and perceptions are aligned or conflict. For example, researchers
showed that developers feel more productive when using ML-based
assistance, even if they aren’t always faster at producing code [13].

While these metrics give us some insight into how code writing
assistants are changing the way engineers write code, they are only
part of the story. Recent research has started to explore how code
writing assistants are altering workflows and mindsets.

3 HOW CODEWRITING ASSISTANTS ARE
CHANGING THEWAY DEVELOPERS
WRITE CODE

ML enhancement in software development tooling aims to improve
the efficiency and productivity of software developers by 1) reduc-
ing developer workloads; 2) reducing task time; and 3) mitigating
human errors. The introduction of code writing assistants into de-
veloper tooling is also starting to shift the way engineers think
about writing code. For example, Barke et al [3] have looked at
how developers interact with Copilot, and identified two modes of
working with ML-based assistance: acceleration (where the devel-
oper used Copilot to execute planned actions, staying in flow, with
a focus on accelerating their development) and exploration (where
the developer used Copilot to help plan next steps and explore pos-
sible paths forward). Other research has also looked at interactions
and initial experiences with Copilot, describing how the process
of writing code has changed as a result of Copilot, and is moving
toward reviewing code [5]. This comes with new challenges, for
example that debugging code written by ML enhanced developer
tooling may be harder than debugging code written by the engineer
[11].

These studies highlight the shifts in how code writing assistants
are fundamentally changing how engineers write code. However,
this is just the beginning, there is more to understand about how
engineering workflows are impacted by assistants. Under explored
areas at the intersection of human-AI collaboration and engineering
are creativity and collaboration, which are starting to be explored
in recent prose writing research. For example, Ippolito et al, [7]
examined how participants (experienced authors) interacted with a
writing assistant for creative writing tasks, finding that the authors
enjoyed brainstorming and adding details aided by the writing as-
sistant, but did not want to “offload the creative process” to it. The
authors also highlight challenges of using writing assistants for
creative writing, for example the assistants have trouble maintain-
ing a style and voice, and suggestions often reverted to “tropes and
repetition”. Additionally, Lee et al, [8] explored how GPT-3, a large
language model (LLM), can be evaluated as a writing collabora-
tor and discuss opportunities for using metrics to understand how
writers use writing assistants.



In preparation for a discussion on how software engineering can
leverage approaches and insights from other forms of writing, par-
ticularly in the realm of creativity, it is important to consider how
coding differs from prose writing. For example, code has to follow
a more rigid structure, it has also been described as more “brittle”
compared to natural languages, since small modifications could
have large implications, and finally it should successfully build and
run, without introducing bugs [14]. Acknowledging these differ-
ences, recent research has started to look at human-AI collaboration
in the context of code translation [14].

Similar to grammatical correctness, structural requirements and
dependencies for code writing may influence how we think about
creativity in code writing assistants for developers. Approaches on
how to further explore the influence of code writing assistants on
creativity and novelty in the context of software engineering could
help inform future research and design.

4 CONCLUSION
In this paper, we propose measurements for evaluating the impact
of writing assistants and how they are changing the way we write,
from the perspective of software engineering. If invited to attend
this workshop, we are well suited to contribute perspectives on code
writing assistants in the context of software engineering: its impact
on coding and how to measure this impact. We would benefit from
discussing how writing assistants have changed other disciplines:
how they have been used and evaluated in . As the workshop in-
volves a collaboration creation of a taxonomy of writing assistants,
we believe including measurement approaches would be a valuable
addition. Additionally, exploring the similarities and differences in
prose writing compared to code, will spark ideas for future research
and collaboration.
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