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Automatic differentiation (AD) is conventionally understood as a family of distinct algorithms, rooted in two

“modes”—forward and reverse—which are typically presented (and implemented) separately. Can there be only

one? Following up on the AD systems developed in the JAX and Dex projects, we formalize a decomposition

of reverse-mode AD into (i) forward-mode AD followed by (ii) unzipping the linear and non-linear parts and

then (iii) transposition of the linear part.

To that end, we define a (substructurally) linear type system that can prove a class of functions are

(algebraically) linear. Our main results are that forward-mode AD produces such linear functions, and that we

can unzip and transpose any such linear function, conserving cost, size, and linearity. Composing these three

transformations recovers reverse-mode AD. This decomposition also sheds light on checkpointing, which

emerges naturally from a free choice in unzipping let expressions. As a corollary, checkpointing techniques

are applicable to general-purpose partial evaluation, not just AD.

We hope that our formalization will lead to a deeper understanding of automatic differentiation and that

it will simplify implementations, by separating the concerns of differentiation proper from the concerns of

gaining efficiency (namely, separating the derivative computation from the act of running it backward).

CCS Concepts: • Mathematics of computing→ Automatic differentiation.

Additional Key Words and Phrases: automatic differentiation, decomposition, transpose, partial evaluation

1 INTRODUCTION
Automatic differentiation (AD) powers not only deep machine learning, but also applications

in broader numerical computing, from robotics to molecular dynamics to weather simulation.

For example, in deep learning the task of choosing how to set the billions of parameters of a

neural network is almost always attacked with AD: a programmer writes a prediction function

representing how the network maps parameters and example inputs to predicted outputs, as well as

a scalar-valued loss function penalizing deviations from expected outputs to predicted ones. Then

to incrementally improve a given setting of the parameters, the programmer need only ask an AD

system for the gradient of the loss with respect to the parameters on some example inputs and

outputs, then update the parameters by adding a small negative multiple of that gradient. Repeat a

million times, et voilà, la singularité est proche!

AD is traditionally organized into two modes, forward-mode and reverse-mode. Each mode

has its advantages and applications. But most systems only implement one mode, or if both are

implemented, the implementations are almost entirely separate.

Do they need to be? After all, reverse-mode AD is similar to forward-mode AD, except one

computes the derivative part backward. We take this description literally: Our goal is to separate

differentiation proper from direction reversal, and identify a clear boundary between them. The

“direction reversal” is transposition, an interesting and potentially useful code transformation in

its own right. The boundary between differentiation and transposition consists of provably linear
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Fig. 1. Reverse-mode automatic differentiation as forward differentiation, unzipping, and transposition.

functions: linearity (proven by our type system) is a sufficient condition for transposability, and we

show that automatic derivatives are provably linear.

This simplifies implementations of reverse-mode AD (see Figure 1). The actual differentiation is

the province of the widely known and relatively simple (and covariant!) forward-mode transforma-

tion. Reverse mode is derived therefrom by a separate transformation that now must only confront

linearity, not derivatives. The notion of linearity we formalize here serves as a simpler and clearer

(and mechanically verifiable) input invariant for transposition than one of the form “this program

was generated by forward-mode AD, so it involves no unacceptable thing X.”

This same architecture also makes AD systems easier for a user to extend. A user wishing to

supply an efficient custom derivative for some function need only supply the forward (or reverse)

derivative; as long as it is provably linear, the reverse (resp., forward) derivative can be derived

automatically.

Reverse-mode automatic differentiation is already implemented in the proposed way in two

systems we know of: JAX
1
[Bradbury et al. 2018; Frostig et al. 2018] and Dex [Paszke et al. 2021]. Our

hope is to make the technique easier to maintain within these systems, by formalizing the provable

linearity invariant; and to make it more widely accessible outside of them by describing it on a

simple, stand-alone object language. We also hope to pave the way for exposing transposition as a

user-accessible higher-order function in its own right, by clarifying its input and output invariants.

More concretely, our contributions are that:

• We explicitly decompose reverse-mode automatic differentiation into forward mode (Sec-

tion 5), a new unzipping transformation (Section 6), and transposition (Section 7).

• We introduce a new linearly-typed intermediate language for linear computations (Section 4),

whose type system captures the provable linearity invariant. We call the language “Linear A.”

• We define and prove correctness for unzipping and transposition, and we prove that they

preserve work, code size, and provable linearity. Together with the known results on correct-

ness and work- and size-preservation for forward mode, this implies correctness and work-

and size-preservation of reverse mode when implemented this way.
2

2 PRELIMINARIES
2.1 Mathematical Differentiation Operations Corresponding to AD’s Two Modes
At its core, AD brings two particular differentiation operations from mathematical functions to

programming language functions. These two operations correspond to the forward and reverse

1
The jax.grad function is exactly a composition of three functions that implement the steps we outline in this work.

2
In our cost model, transposition and unzipping preserve work exactly, and program size up to a constant factor. Forward

mode, as usual, only preserves work up to a constant factor.
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modes. The first operation, the Jacobian-vector product (JVP), underlies forward-mode and answers

the question: if I perturb my input 𝑥 a bit in some direction 𝑣 , how does my output change? More

precisely, given a sufficiently nice mathematical function 𝑓 : R𝑛 → R𝑚 , we can define the Jacobian

at 𝑥 ∈ R𝑛 as the linear map 𝜕𝑓 (𝑥) : R𝑛 → R𝑚 such that

𝑓 (𝑥 + 𝑣) = 𝑓 (𝑥) + 𝜕𝑓 (𝑥) (𝑣) + 𝑜 (∥𝑣 ∥), ∀𝑣 ∈ R𝑛 .
We then say a Jacobian-vector product for 𝑓 is the mapping

(𝑥, 𝑣) ↦→ (𝑓 (𝑥), 𝜕𝑓 (𝑥) (𝑣)) .
This definition is compositional, in that the JVP of 𝑓 ◦ 𝑔 can be expressed by applying the JVP of 𝑓

to the result of the JVP of 𝑔. It also allows for efficient evaluation, as we make precise in the sequel.

The second core mathematical operation represented in automatic differentiation is the vector-
Jacobian product (VJP), which underlies reverse-mode. It answers a more subtle question: given

a linear function on small perturbations to a function’s output, what is the corresponding linear

function on small perturbations to the input? That is, for some fixed 𝑥 , given a vector 𝑢 ∈ R𝑚 , find

the vector𝑤 ∈ R𝑛 such that

⟨𝑢, 𝜕𝑓 (𝑥) (𝑣)⟩ = ⟨𝑤, 𝑣⟩, ∀𝑣 ∈ R𝑛,
where ⟨·, ·⟩ denotes the standard inner product. This mapping from 𝑢 to𝑤 is in fact linear, so we

can define a new linear map 𝜕𝑓 (𝑥)𝑇 : R𝑚 → R𝑛 by

⟨𝑢, 𝜕𝑓 (𝑥) (𝑣)⟩ = ⟨𝜕𝑓 (𝑥)𝑇 (𝑢), 𝑣⟩.
We then say the vector-Jacobian product for 𝑓 is the mapping

𝑥 ↦→ (𝑓 (𝑥), 𝑢 ↦→ 𝜕𝑓 (𝑥)𝑇 (𝑢)) .
This choice of definition is also compositional: the VJP of 𝑓 ◦ 𝑔 can be expressed by composing the

VJPs of 𝑓 and 𝑔, though the linear functions must be composed in reverse order as 𝜕𝑔(𝑥)𝑇 ◦ 𝜕𝑓 (𝑥)𝑇 .
Hence the name "reverse-mode"!

The VJP is the more useful operation for gradient-based optimization, like in training neural

networks. That’s because with one VJP we compute the direction in parameter space orthogonal

to the loss’s local level sets. That is, for a function 𝑓 : R𝑛 → R, the gradient is simply ∇𝑓 (𝑥) =
𝜕𝑓 (𝑥)𝑇 (1) ∈ R𝑛 . The gradient can also be computed using forward-mode, but then it requires 𝑛

evaluations, losing the asymptotic efficiency of AD.

The implementation of reverse-mode is often considered much harder than that of forward-mode,

with little shared code between the two. Yet, the “real work” of differentiation is embedded in the

linear functions 𝜕𝑓 (𝑥) and 𝜕𝑓 (𝑥)𝑇 , which are just transposes of each other.

2.2 Linearity
Linearity is the key to relating forward and reverse modes. The word “linear” actually has two

relevant meanings when discussing a programming language for numerical computations:

1. From substructural logic and linear type systems, a subprogram 𝑃 (𝑥) is substructurally linear
if it uses its argument 𝑥 exactly once.

2. From linear algebra, a (mathematical) function 𝑓 (𝑥) is algebraically linear if it is a vector
space homomorphism, i.e., if 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) and 𝑓 (𝑐𝑥) = 𝑐 𝑓 (𝑥) for scalar 𝑐 .

These two notions are not named the same by accident. Indeed, when is a polynomial, written as

a sum of products of variables (no exponentiation), algebraically linear in 𝑥? Exactly when every

nonzero monomial term uses 𝑥 exactly once. This is how, when we get to Theorem 4.1, we will be

able to prove algebraic linearity using an appropriately designed substructural type system.
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The Jacobian-vector product (JVP) map at a point is, by mathematical definition, linear alge-

braically, but it also turns out (as we will also show in Section 5) that its instantiation in AD is

linear substructurally. That substructural linearity will, in turn, allow us to mechanically transpose

(Section 7) the program for computing 𝑓 into a (also substructurally linear) program that com-

putes 𝑓 T
with the same performance. This then recovers reverse-mode AD, which computes the

vector-Jacobian-product (VJP) map.

Part of the point of this exercise is that the transposition transformation we will define in

Section 7 applies to all substructurally linear functions. Substructurally linear functions thus

form an abstraction boundary between differentiation and transposition; and transposition (of

user-defined functions) could then be exposed as a code transformation directly.

Note that there are algebraically linear functions that our type system will not accept as sub-

structurally linear, and on which our transposition transformation would fail. For example, the

function 𝑓 (𝑥) = (𝑥 ∗ 𝑥)/𝑥 is linear in 𝑥 , but it cannot be typed as linear in Linear A as written.

Moreover, attempting to transpose such a function as we do, by recurring on the subexpressions,

is doomed to failure—the subexpression . . . /𝑥 is not linear in 𝑥 in isolation, so has no transpose.

Fortunately, as we prove in Section 5, automatic differentiation never produces such functions.

3 NOTATION REFERENCE
By convention, we use an over-dot to name linear terms: ¤𝑣 . The goal is to evoke the conventional

physics notation for derivatives, since automatic differentiation is our main topic. Formally, however,

we give the dot itself no structured meaning. So, the variable ¤𝑣 is just a different variable from 𝑣 ;

any relationship it may have to 𝑣 emerges from our program transformations, rather than from

how we write it.

The double-dot ¥𝑣 connotes co-tangents (not double derivatives), i.e., linear terms that appear in

a transposed function. The nomenclature is from the reverse phase of reverse-mode AD.

The underline 𝑣 means “zero or more of these elements”; we put it below rather than above to

avoid clashing with dots: ¤𝑣 . When the same thing appears in different underlined expressions in

the same context, they are parallel. For instance, when a rule mentions both 𝑣 and 𝑣 : 𝜏 , those lists

are the same length.

The semicolon (𝑥 ;𝑦) separates non-linear entities (on the left) from linear ones (on the right).

The angle brackets ⟨𝑥,𝑦⟩ mean dot product when defining the meaning of transposition, and

delimit transposition environments when explaining its implementation.

The square brackets 𝑒 [𝑥 ;𝑦] mean evaluating an expression with values 𝑥 and 𝑦 bound to its

free non-linear and linear variables respectively.

4 LANGUAGE
We introduce Linear A, a model language of indexed linear computations. The main idea in Linear

A is that the syntax marks which values are supposed to be linear (substructurally and therefore

algebraically) and which are not. Non-linear values can be computed arbitrarily (and may happen to

be algebraically linear), but may not depend on linear values. Linear values, on the other hand, must

be computed linearly from linear inputs, but may depend on non-linear values through scaling.

This leads to the indexed-linear pattern of data flow shown in Figure 2.

For example, the function 𝑔(𝑥 ;𝑦) = (𝑥2;𝑥2𝑦) is indexed linear. The first result of 𝑔 depends

non-linearly on 𝑥 and does not depend on 𝑦 at all; whereas the second result depends linearly on 𝑦,

but the specific linear function of 𝑦 is indexed by 𝑥 . If we tag 𝑥 and the first result as “non-linear”,

and 𝑦 and the second result as “linear”, 𝑔 will type-check as a valid function of Linear A.
3

3
It will also type-check if we tag both inputs and both outputs “non-linear,” but not with any other tagging.
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x ¤x

y ¤y

(a) Expression 𝑒 on variables x; ¤x with results y; ¤y

x ¤x

y ¤y

z ¤z

(b) Sequential composition of expressions 𝑒1, 𝑒2

Fig. 2. Dataflow diagrams of (a) a general Linear A expression 𝑒 , and (b) sequential composition of such

expressions. The non-linear results of an expression (left) depend only only on its non-linear free variables,

whereas the linear results (right, dotted) depend non-linearly on the non-linear free variables and linearly on

the linear free variables. Composition preserves this (non-)dependence pattern.

The Linear A language is not designed as a user-facing language, but rather as a sublanguage

that a given instance of automatic differentiation operates on. To wit, if one seeks to differentiate

some 𝐹 at some point 𝑥 , the value of 𝑥 determines the control flow choices in the implementation of

𝐹 , and the program corresponding to the path actually taken (sometimes called a “trace”) becomes

straight-line. Differentiating such straight-line trace programs is the core task of AD, and we

restrict Linear A to be total, functional, and first-order in order to focus our attention on it. While a

more expressive object language would certainly be preferable, the technique of AD by explicit

transposition has not been previously described even in this restricted setting; in Section 10, we

will touch on some obstacles to formalizing transposition on a Turing-complete object language.

Many differentiable array languages are DSLs of the same expressive power as Linear A, embed-

ded in a host language that provides Turing-complete metaprogramming facilities. Furthermore,

reverse-mode automatic differentiation of control flow constructs (including higher-order functions)

cannot be performed without forming a dynamic trace of the computation, and the languages

conventionally used in those traces have expressive power similar to Linear A. For example, Pearl-

mutter and Siskind [2008a] and Wang et al. [2019] represent the trace as a sequence of applications.

Similarly, Krawiec et al. [2022] propose an AD system capable of differentiating a rich higher-order

functional language, but the differentiation involves tracing an expression in a language almost

identical to the linear fragment of Linear A. Finally, the language used internally in the JAX project

Bradbury et al. [2018], which implements our presented method, is also very close to Linear A.

The main differences are that JAX has a significantly larger number of mathematical primitives,

as well as some limited control-flow operators (conditionals, and loops with a statically known

trip-count). None of these are fundamental to the presented method and for that reason we elide

them for simplicity. JAX additionally supports array types with statically known shapes, which

are isomorphic to product types in Linear A. On the other hand, Linear A is slightly richer than

JAX’s internal language, as it allows nested let-bindings to have an arbitrary expression on the

right hand side, not only immediate primitive applications.

Many details of Linear A are unconventional, so we include point-by-point rationales. We focus

on the syntax in Section 4.1, then present and discuss the type system in Section 4.2, state our cost

model in Section 4.3, and formally define our notion of indexed linearity in Section 4.4, where we

also prove that the type system enforces it. Finally, Section 4.5 defines the natural linearity erasure

transformation on Linear A, which we will occasionally need later.
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Types

𝜏, 𝜎, 𝜋 ::= R real scalar

| ⊗𝜏 tuple type

Values (extralinguistic ground constants)

𝑥, 𝑦, ¤𝑥, ¤𝑦 ::= number in R real scalar

| ⊗𝑥 tuple

𝑚,𝑛-ary Expressions 𝑒 is short-hand for 𝑒1,0 and ¤𝑒 for 𝑒0,1

𝑒𝑚,𝑛
::= ( 𝑣; ¤𝑣 ) Multi-value return; |𝑣 | =𝑚, | ¤𝑣 | = 𝑛

| let( 𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ) = 𝑒𝑜,𝑝 in 𝑒𝑚,𝑛
multi-value let; |𝑣 | = 𝑜, | ¤𝑣 | = 𝑝

| let( ⊗ 𝑤 : ⊗𝜏 ; ) = 𝑣 in 𝑒𝑚,𝑛
unpacking let for non-linear tuples; |𝑤 | = |𝜏 |

| let( ; ⊗ ¤𝑤 : ⊗ ¤𝜏 ) = ¤𝑣 in 𝑒𝑚,𝑛
unpacking let for linear tuples; | ¤𝑤 | = | ¤𝜏 |

| 𝑓 𝑜,𝑝𝑚,𝑛(𝑣; ¤𝑣) 𝑜, 𝑝-in,𝑚,𝑛-out function application; |𝑣 | = 𝑜, | ¤𝑣 | = 𝑝

Fixed-arity Expressions

𝑒1,0 ::= 𝑢, 𝑣, 𝑤, 𝑧 non-linear variable

| 𝑙 literal; 𝑙 ∈ R
| ⊗(𝑣) tuple constructor

| sin(𝑣) | cos(𝑣) | exp(𝑣) | 𝑣1 + 𝑣2 | . . . primitives for non-linear fragment

𝑒0,1 ::= ¤𝑢, ¤𝑣, ¤𝑤, ¤𝑧 linear variable

| ¤0 ¤𝜏 linear zero of type ¤𝜏
| ⊗( ¤𝑣) tuple constructor

| ¤𝑣1 + ¤𝑣2 linear addition

| 𝑣 ∗ ¤𝑣 right-linear multiplication

𝑒0,2 ::= dup( ¤𝑣) explicit fan-out for linear values

𝑒0,0 ::= drop(𝑒𝑚,𝑛) explicit drop

Definitions

𝑑 ::= def 𝑓
𝑚,𝑛
𝑜,𝑝 ( 𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ) → (𝜏 ; ¤𝜏) = 𝑒𝑜,𝑝 𝑚,𝑛-in, 𝑜, 𝑝-out function; |𝑣 | =𝑚, | ¤𝑣 | = 𝑛, |𝜏 | = 𝑜 , | ¤𝜏 | = 𝑝

Programs

𝑃 ::= 𝜖 | 𝑑, 𝑃 list of function definitions

Environments

Γ ::= 𝜖 | 𝑣 : 𝜏, Γ unordered type environment

Σ ::= 𝜖 | 𝑣 → 𝑤, Σ variable association map (for J in Section 5)

Δ ::= ⟨⟩ | ⟨𝑣 : 𝜏,Δ⟩ ordered type environment (for T in Section 7)

Contexts (for U in Section 6)

𝐸 ::= □ null context

| let( 𝑣 : 𝜏 ; ) = 𝑒𝑛,0 in 𝐸 non-linear let context, |𝑣 | = 𝑛

| let( ⊗ 𝑤 : ⊗𝜏 ; ) = 𝑣 in 𝐸 non-linear unpack context

| 𝐸1, 𝐸2 composition of contexts, by hole-substitution

Fig. 3. Syntax of Linear A. Expressions are syntactically indexed by how many non-linear and linear results

they return. A function name enters scope after its definition—no recursive function calls. The underline 𝑣

means “zero or more of these elements”; we put it below rather than above to avoid clashing with dots: ¤𝑣 .

4.1 Syntax
The syntax of Linear A appears in Figure 3. We make Linear A a first-order language by only

permitting function definitions at the top level. We make Linear A total by disallowing recursion:

function names are bound only after their definition, as given by the program order. We also

syntactically mark which values are linear vs not. In our notation, this distinction shows up as

returns, binders, and function application forms taking two lists of arguments (or formal parameters):

the non-linear arguments before the semicolon and the linear ones after.

Our function 𝑔(𝑥 ;𝑦) = (𝑥2;𝑥2𝑦) from the previous section would be written:

def g1,1
1,1
( 𝑥 : R; ¤𝑦 : R ) → (R;R) =

let( 𝑎 : R; ) = 𝑥 ∗ 𝑥 in

let( ;
¤𝑏 : R ) = 𝑎 ∗ ¤𝑦 in

(𝑎; ¤𝑏)



You Only Linearize Once 7

Note that ∗ (as well as +) are available as primitives to both linear and non-linear computations in

Linear A, just with different typing rules.

4.1.1 Tuples and Multiple Returns. We distinguish between product types (written ⊗), which are

first-class in Linear A, and multiple-value returns (written (𝑣 ; ¤𝑣)), which are the only construct

permitted to mention both linear and non-linear values together. An expression returning multiple

values cannot be bound to one variable, but must instead be bound componentwise. We enforce this

in the syntax by indexing every expression 𝑒𝑚,𝑛
by the number𝑚 of non-linear results it returns

and the number 𝑛 of linear results it returns. As a short-hand, we write 𝑒 for a one-value non-linear

expression, and ¤𝑒 for a one-value linear expression. Products, in contrast, may be bound to variables,

but must contain only linear or only non-linear values.

Multiple-value returns are a somewhat unusual syntactic choice. In our case, they are convenient,

because our transposition transformation of Section 7 will be running expressions “backwards”.

Since an expression is free to reference more than one variable from its environment, its transpose

must be able to return more than one result; and it’s more elegant to do so directly in the syntax.

4.1.2 A-Normal Form. The Linear A syntax enforces administrative normal form [Sabry and

Felleisen 1992] on expressions. Where needed, A-normal form can be enforced by standard tech-

niques; we ask the reader to indulge us when we write some transformation results without

explicitly introducing all the intermediate variables that our syntax technically requires. We do

this for clarity and brevity. Under the same aegis, we also only allow primitives to be unary or

binary, and all primitives except dup and drop return exactly one result. We likewise occasionally

abuse notation and write (; 𝑒, 𝑣) where 𝑒 may return multiple results. The intended meaning is

an expression that executes 𝑒 and returns all of its results, and also the variables 𝑣 . This can be

arranged within the syntax of Linear A by allocating fresh names to briefly hold the results of 𝑒 .

A-normal form doesmake ourwork preservation results easier. Towit, it’s possible and reasonable

to implement a differentiate-unzip-transpose AD system that operates directly on compound

expressions. Such a system would, however, need to be careful to introduce temporaries to avoid

duplicating code expressions (and therefore work); for example in rule JPrimMul in Figure 7.

A-normal form saves us from that because the intermediate names are already present.

4.1.3 Asymmetric Linear Multiply. Linear computations in Linear A model real multiplication as

linear in the right-hand argument and non-linear in the left-hand argument. (This materializes in

rule TypeLinMul in Figure 4 checking the left argument in the non-linear environment and the right

argument in the linear environment.) Which is of course immaterial, because real multiplication

commutes, but we intentionally pick one to keep the linearity of variables syntactically apparent.

Of course, multiplication is actually multi-linear, but we leave explicitly modeling this as an open

avenue for future research.

4.2 Typing
The type system for Linear A appears in Figure 4. It is a conventional substructural type system

that enforces the indexed linearity that Linear A is trying to capture.

4.2.1 Substructural Typing. The type system is linear on the linear fragment of Linear A, enforcing

that every linear variable is used exactly once, except where duplicated or dropped by explicit

dup or drop operations. We track linear duplications and deletions because they transpose to

addition and zero, respectively. Our earlier analogy between algebraic and substructural linearity

of a polynomial appears here in the rules TypeLinPlus, which requires both arguments to be linear,

and TypeLinMul, which requires exactly the right-hand argument to be linear.
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Γ; ¤Γ ⊢ 𝑒𝑛,𝑚 : (𝜏 ; ¤𝜏), |𝜏 | = 𝑛, | ¤𝜏 | =𝑚

𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ⊢ (𝑣; ¤𝑣) : (𝜏 ; ¤𝜏)
TypeRet

Γ1; ¤Γ1 ⊢ 𝑒1 : (𝜏 ; ¤𝜏) Γ2, 𝑣 : 𝜏 ; ¤Γ2, ¤𝑣 : ¤𝜏 ⊢ 𝑒2 : (𝜎 ; ¤𝜎)
Γ1 ∪ Γ2; ¤Γ1 ⊎ ¤Γ2 ⊢ let( 𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ) = 𝑒1 in 𝑒2 : (𝜎 ; ¤𝜎)

TypeLet

Γ, 𝑤 : 𝜏 ; ¤Γ ⊢ 𝑒 : (𝜎 ; ¤𝜎)
Γ ∪ {𝑣 : ⊗𝜏 }; ¤Γ ⊢ let( ⊗ 𝑤 : ⊗𝜏 ; ) = 𝑣 in 𝑒 : (𝜎 ; ¤𝜎)

TypeUnpack

Γ; ¤Γ, ¤𝑤 : ¤𝜏 ⊢ 𝑒 : (𝜎 ; ¤𝜎)
Γ; ¤Γ, ¤𝑣 : ⊗ ¤𝜏 ⊢ let( ; ⊗ ¤𝑤 : ⊗ ¤𝜏 ) = ¤𝑣 in 𝑒 : (𝜎 ; ¤𝜎)

TypeLinUnpack

def 𝑓 ( 𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ) → (𝜎 ; ¤𝜎) = 𝑒

𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ⊢ 𝑓 (𝑣; ¤𝑣) : (𝜎 ; ¤𝜎)
TypeApp

𝑣 : 𝜏 ; 𝜀 ⊢ 𝑣 : (𝜏 ;)
TypeVar

𝜀; 𝜀 ⊢ 𝑙 : (R;) TypeLit

𝑣 : R; 𝜀 ⊢ sin(𝑣) : (R;) TypePrim1 {𝑣1 : R} ∪ {𝑣2 : R}; 𝜀 ⊢ 𝑣1 + 𝑣2 : (R;)
TypePrim2

∪{𝑣 : 𝜏 }; 𝜀 ⊢ ⊗𝑣 : (⊗𝜏 ;) TypeTup

𝜀; ¤𝑣 : ¤𝜏 ⊢ ⊗ ¤𝑣 : (; ⊗ ¤𝜏)
TypeLinTup

𝜀; ¤𝑣 : ¤𝜏 ⊢ ¤𝑣 : (; ¤𝜏) TypeLinVar

𝜀; 𝜀 ⊢ ¤0 ¤𝜏 : (; ¤𝜏)
TypeLinZero

𝜀; ¤𝑣1 : ¤𝜏, ¤𝑣2 : ¤𝜏 ⊢ ¤𝑣1 + ¤𝑣2 : (; ¤𝜏)
TypeLinPlus

𝑣1 : R; ¤𝑣2 : ¤𝜏 ⊢ 𝑣1 ∗ ¤𝑣2 : (; ¤𝜏)
TypeLinMul

𝜀; ¤𝑣 : ¤𝜏 ⊢ dup( ¤𝑣) : (; ¤𝜏, ¤𝜏) TypeDup

Γ; ¤Γ ⊢ 𝑒 : (𝜏 ; ¤𝜏)
Γ; ¤Γ ⊢ drop(𝑒) : (;)

TypeDrop

⊢ 𝑓

𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ⊢ 𝑒 : (𝜎 ; ¤𝜎)
⊢ def 𝑓 ( 𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ) → (𝜎 ; ¤𝜎) = 𝑒

TypeDef

Fig. 4. Linear A typing rules. This is a standard simply-typed system, except that it enforces that all non-linear

variables are used at least once, and all linear variables are used exactly once, up to the explicit drop and dup

operations. The TypePrim rules can be extended to a larger set of primitive differentiable maps.

Less conventionally, we also enforce that every non-linear variable is used at least once (by an

explicit drop if needed). Thus even the non-linear fragment of Linear A requires a substructural (if

not linear, per se) type system. We track drop of non-linear variables because we have to charge for

it in our cost model (see Section 4.3.1 for a more complete rationale); we do not track non-linear

duplication because we do not charge for dup.

Since our requirement for non-linear variables is to use each at least once, we often pattern-match

a non-linear type environment as Γ1 ∪ Γ2 (e.g., in TypeLet) or ∪Γ𝑖 , implying “Γ𝑖 contains exactly
the free variables of 𝑒𝑖 ; the incoming environment Γ must be the (not necessarily disjoint) union of

the Γ𝑖 .” Similarly, when speaking of the linear environment, we write ¤Γ1 ⊎ ¤Γ2 to imply that in this

case the union must be disjoint. In the end, the actual use of variables is enforced by each leaf rule

requiring that the incoming environment contain exactly the variables referenced by that leaf and

no others. In practice, one would implement such a type system by inspecting the free variables of

subexpressions rather than by guessing and checking a partition of the environment, but we elide

that consideration from the rules for the sake of brevity.
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4.2.2 Polymorphism. We define linear zero, linear addition, and linear multiplication to be type-

indexed—the same operation will type-check with different types in different places as needed

(rules TypeLinZero, TypeLinPlus, TypeLinMul). This is justified because every type that a linear

variable can have defines a unique vector space isomorphic to R𝑛 for some 𝑛. Operationally, the zero

(respectively, summation and scaling) just happens elementwise, recurring into tuples as needed.

The reason to make linear operations type-indexed like this is that drop and dup are naturally

type-indexed (i.e., drop can drop a value of any type), but they transpose to zero and addition,

respectively. We could also type-index non-linear operations, but we don’t need to, and it would

cease to be justified if Linear A were extended to include sum types. Thus, TypeLit, TypePrim1

and TypePrim2 call for the R type.

4.3 Cost Model
The vast automatic differentiation literature often makes efficiency preservation claims, but fails to

make the cost model precise. As it turns out, the cost model required for AD to preserve efficiency

is not necessarily obvious. Here, we state a model explicitly, albeit one that has been specifically

tailored to make our cost preservation claims hold. While somewhat unsatisfactory (e.g., we don’t

base it on a well-established abstract machine), we think it is still a worthwhile contribution, as it

aids the reader in judging the way our method modifies the run-time more precisely. And, apart

from the two finer points we elaborate on below, it could be considered a fairly standard model for

an eager language with call-by-value semantics.

Specifically, we choose the following call-by-value cost model for Linear A:

• Every non-linear primitive costs 1.

• Linear addition and linear multiplication each cost 1 per scalar present in the result.

• The drop operation costs the cost of its subexpression, plus 1 for every scalar of real type

(linear or non-linear) present in the argument.

• Applying a function costs evaluating its body on the values of its arguments.

• The let form costs evaluating its bound expression and then evaluating its body. This models

call-by-value evaluation.

• All other syntactic forms cost 0.

Two specific choices bear some elaboration:

4.3.1 Costly Dropping of Variables. Why do we charge for drop, when programmers generally

think that doing nothing with a variable is free? Because we need it for work to be preserved.

The fundamental problem with work preservation of reverse-mode AD is that fan-out (i.e., dup)

is intuitively costless, but transposes to addition, which is intuitively costly. We could solve that

problem by charging for dup of linear variables, but then forward differentiation wouldn’t be

(locally) work-preserving unless we charged for dup of non-linear variables as well. Instead, we

follow the observation that charging for dup should have no asymptotic effect, because usually

both duplicates would participate in some other costly operation. In order to make it so, we must

charge for drop (of both linear and non-linear variables), to make it into a costly operation; and

doing that indeed suffices for the work preservation proofs to go through. Another reason why

charging for drop instead of dup is more natural, is that drop should be uncommon, or even absent

from non-pathological programs since it is only necessary in presence of dead code.

4.3.2 Costless Tuples. Why do we not charge for constructing or unpacking tuples, or binding or

referencing variables, which would correspond to costly allocation and access of memory in a real

implementation? The main reason is that reverse-mode AD actually does increase the asymptotic

memory footprint of a program. In our system, this is visible in the ULet and UDef rules in
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Section 6, which drastically increase the lifetimes of intermediate non-linear variables (including

across function calls).

4.4 Linearity
Every well-typed Linear A expression is indexed linear when viewed as a function from its environ-

ment to its return value(s). We illustrated the dependence and linearity structure in Figure 2; now

we formalize and prove it in Theorem 4.1. Specifically, a Linear A expression 𝑒 defines a collection of

algebraically linear functions—from its free linear variables to its linear outputs—indexed by values

of its free non-linear variables. The indexing is non-trivial in general because linear multiplication

takes a non-linear argument on the left.

Theorem 4.1. Linear A expressions are indexed linear. Consider an expression 𝑒 of Linear A.
Consider also any set of well-typed values x for the non-linear variables 𝑣 free in 𝑒 , and any two sets of
well-typed values ¤x and ¤y for the linear variables ¤𝑣 free in 𝑒 ; and any scalar 𝑐 . We write 𝑒 [x; ¤x] for
the result of evaluating 𝑒 with 𝑣 bound to x and ¤𝑣 bound to ¤x. We use subscripts as indexing here, so
𝑒 [x; ¤x]𝑘 is the 𝑘-th result of evaluating 𝑒 on x and ¤x. Then:

1. The total work of evaluating 𝑒 [x; ¤x] is independent of the values x and ¤x;
2. The non-linear results are independent of ¤x, i.e., 𝑒 [x; ¤x]𝑘 = 𝑒 [x; ¤y]𝑘 for each non-linear result 𝑘 ;
3. The linear results are linear in ¤x, i.e., 𝑒 [x; ¤x + ¤y]𝑙 = 𝑒 [x; ¤x]𝑙 + 𝑒 [x; ¤y]𝑙 and 𝑒 [x; 𝑐 · ¤x]𝑙 = 𝑐 · 𝑒 [x; ¤x]𝑙

for each linear result 𝑙 .
The equality, addition and scaling here are mathematical operations over reals, and we assume the
denotation of arithmetic in Linear A to be carried out on infinite-precision reals. Given approximate
(e.g., floating-point) semantics, the equalities might not be exact.

Note that Claim 1 of this theorem, while true for Linear A, is not future-proof. A variant of the

language that supported (non-linear) conditionals or recursion would need to weaken Claim 1 to

allow work (including termination) to depend on the non-linear values x, though work should

remain independent of the linear values ¤x.

Proof. By structural induction, first on the program and then on the syntax of expressions and

function bodies. Work-independence (Claim 1) follows immediately from the lack of conditional

control flow in the language.

The proofs of Claims 2 and 3 are similar enough that we discuss them jointly. The interesting

case is multi-value let, so we consider it first. The inductive hypothesis asserts that the non-linear

values returned by the bound expression are independent of the linear free variables thereof, and

the returned linear values satisfy the additive and scaling laws. Since the set of free variables of the

body expression is a union of free variables of the entire expression and the let bound values, we

can again invoke the inductive hypothesis to arrive at the desired conclusion.

Tuple unpacking is entirely analogous to the multi-value let. Function application follows

directly from induction on the function body.
4
The drop form is trivial, and all other forms can be

verified directly because they do not have subexpressions. In particular, indexed linearity depends

upon the only primitive operations available to the linear fragment of Linear A being zero, plus,

and scaling by a non-linear constant; and the presence of actually non-linear primitives in the

non-linear fragment of Linear A is what prevents us from strengthening the linearity claims to the

non-linear variables. □

Corollary 4.2. Every closed term in Linear A returns 0 for all its linear results.
4
This is why we need the outer induction on the whole program rather than just structural induction on the syntax of a

single expression.
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Proof. If the term 𝑒 is closed, we can vacuously scale all of the free linear variables of 𝑒 without

changing the evaluation of 𝑒 . All the linear results must therefore be 0. Formally, Claim 3 gives us

𝑒 [; ]𝑙 = 2𝑒 [; ]𝑙 = 0 for every linear result position 𝑙 of 𝑒 . □

In particular, for the statement of Theorem 4.1 not to be vacuous, one must allow ¤x and ¤y to be

non-zero without asking where those non-zero values came from. This is ok, though, because we

are generally interested in open terms of Linear A, such as the bodies of Linear A functions. In that

case, we can assume the non-zero linear values are provided externally through the substitution of

free variables.

Lemma 4.3. The work a Linear A function or expression does is at least the number of real scalars
in its linear inputs, less the number of real scalars in its linear outputs.

Proof. The only linear operations in Linear A that return fewer scalar results than they consume

are + and drop, each of which costs 1 per net scalar consumed. Since all linear variables must be

either consumed or returned, the result follows. □

We state this fact here because it’s a curious general property of our cost model. We will use

it only to argue that eliminating useless code (e.g., by short-circuiting in the rule for transposing

drop(𝑒)) does not increase work (!).

4.5 Linearity Erasure
Because we will occasionally need it, we define a linearity erasure transform L on Linear A.

Linearity erasure is just what it sounds like: remove the linearity information by turning all linear

variables and expressions into non-linear ones. Syntactically, this just means

• For every type at which linear addition, multiplication, and zero are used in the program,

define a fresh function that carries that operation out in the non-linear fragment on Linear A

(using unpacking and repacking as needed);

• Replace every linear addition, multiplication, and zero with a call to the corresponding

function;

• Rename every reference to a variable produced by dup to refer to the input of that dup

instead;

• Remove all dup operations; and

• Move all the semicolons all the way to the right.

In the interest of space, we do not give rules for this transform.

Lemma 4.4. Linearity erasure preserves the semantics of an expression, and preserves work in our
cost model.

Proof. By inspection. □

5 AUTOMATIC DIFFERENTIATION
Our first step is a code transformation J performing forward-mode automatic differentiation

5
.

Specifically, J transforms the non-linear fragment of Linear A into the full language as follows. For

any purely non-linear 𝑒 in Linear A, and input x, J (𝑒) [x; ¤x] has non-linear results computing the

same output as 𝑒 [x; ], and linear results computing the directional derivative of 𝑒 at the point x in

the direction ¤x. We illustrate the data flow produced by J in Figure 5. Here we view the expression

𝑒 as a function from its free variables 𝑣 to its results. A code example appears in Figure 6.

5J corresponds to the jax.jvp transform from JAX.



12 A. Radul, A. Paszke, R. Frostig, M. Johnson, D. Maclaurin

x

y

𝑒

(a) Original expression 𝑒

x ¤x

y ¤y

𝑒
𝐽𝑒 |

x

(b) Differentiated expression J (𝑒)

x ¤x

y ¤y

z ¤z

𝑒1
𝐽𝑒1 |x

𝑒2

𝐽𝑒2 |y

(c) Sequence of J (𝑒)s

Fig. 5. Dataflow diagrams of (a) a purely non-linear expression in Linear A and (b) its derivative, plus (c) a

derivative made of a sequential composition stacked vertically. The primal (non-linear) results of a derivative

depend only only on its primal (non-linear) inputs, whereas the tangent results depend non-linearly on the

primal (non-linear) inputs and linearly on the tangent (linear) inputs. Note the distinction between J , the

code transform we define, and 𝐽 , the Jacobian of an expression 𝑒 .

def f1,0
1,0
( 𝑢 : R; ) → (R; ) =

let( 𝑣 : R; ) = sin(𝑢) in
let( 𝑤 : R; ) = − 𝑣 in
(𝑤;)

J−−−−→

def fJ
1,1

1,1( 𝑢 : R; ¤𝑢 : R ) → (R;R) =
let( 𝑣 : R; ) = sin(𝑢) in
let( 𝑑𝑢 : R; ) = cos(𝑢) in
let( ; ¤𝑣 : R ) = 𝑑𝑢 ∗ ¤𝑢 in
let( 𝑤 : R; ) = − 𝑣 in
let( ; ¤𝑤 : R ) = − ¤𝑣 in
(𝑤; ¤𝑤)

Fig. 6. Example of forward differentiation with J , transforming 𝑓 (𝑢) = − sin(𝑢) on the left into J (𝑓 ), which
computes both the original 𝑓 and its directional derivative. The input function 𝑓 must be coded in Linear A

as all non-linear. The result uses both the linear and non-linear fragments of Linear A.

To compute a forward derivative end-to-end, we need to supply the initial direction of differ-

entiation (1 for an R → R𝑚 primal function). Since we cannot write a non-zero linear literal in

well-typed Linear A program, we have to use the linearity erasure transform L from Section 4.5.

For 𝐹 : R→ R𝑚 ,

𝐹 (𝑥), 𝑑
𝑑𝑥

𝐹 (𝑥) = L(J (𝐹 )) (𝑥, 1; ).

Part of the point of this whole exercise is that J will be very familiar to students of automatic

differentiation; it’s just a forward-mode transformation that computes tangents in tandem with

primals. The rules in Figure 7 are completely standard, with the one wrinkle that the derivative is

emitted into the linear fragment of Linear A. Ergo, the result being well-typed (substructurally) in

Linear A means that we have a proof that the derivative of a function is algebraically linear (with

respect to the direction in which the derivative is taken).

This is the first step in our separation of concerns: differentiation proper is confined to the

relatively simple J , whereas arranging to run the derivative backward to obtain reverse-mode AD

is the province of U and T (in Section 6 and Section 7, respectively). The latter two know only

about linearity, not about differentiation, nor about any special relationship between the non-linear

(primal) and the linear (tangent) computations. The type system of Linear A is the abstraction

boundary that lets differentiation and transposition be implemented independently.
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J(Σ | 𝑒) ⇝ 𝑒′

𝑣 distinct

J(𝑣 → ¤𝑣 | (𝑣;)) ⇝ (𝑣; ¤𝑣)
JRet

J(Σ1,𝑢 → ¤𝑤 | 𝑒1) ⇝ 𝑒′
1

J(Σ2,𝑢 → ¤𝑧, 𝑣 → ¤𝑣 | 𝑒2) ⇝ 𝑒′
2

¤𝑣, ¤𝑤, ¤𝑧 fresh 𝑢 : 𝜏 free in both 𝑒1 and 𝑒2

J(Σ1 ⊎ Σ2 ⊎ {𝑢 → ¤𝑢 } | let( 𝑣 : 𝜎 ; ) = 𝑒1 in 𝑒2)
⇝ let( ; ¤𝑤 : 𝜏, ¤𝑧 : 𝜏 ) = (; dup( ¤𝑢)) in let( 𝑣 : 𝜎 ; ¤𝑣 : 𝜎 ) = 𝑒′

1
in 𝑒′

2

JLet

J(Σ, 𝑤 → ¤𝑤 | 𝑒) ⇝ 𝑒′ ¤𝑤 fresh 𝑣 not free in 𝑒

J(Σ, 𝑣 → ¤𝑣 | let( ⊗ 𝑤 : ⊗𝜏 ) = 𝑣 in 𝑒)
⇝ let( ⊗ 𝑤 : ⊗𝜏 ) = 𝑣 in let( ⊗ ¤𝑤 : ⊗𝜏 ) = ¤𝑣 in 𝑒′

JUnpackA

𝑣 distinct

J(𝑣 → ¤𝑣 | 𝑓 (𝑣;)) ⇝ 𝑓 J(𝑣; ¤𝑣)
JApp

J(𝑣 → ¤𝑣 | 𝑣) ⇝ (𝑣; ¤𝑣)
JVar

𝑣 distinct

J(𝑣 → ¤𝑣 | ⊗𝑣) ⇝ (⊗𝑣; ⊗ ¤𝑣)
JTup

J(𝜀 | 𝑙) ⇝ (𝑙 ; 0R)
JLit

J(𝑣 → ¤𝑣 | sin(𝑣)) ⇝ (sin(𝑣) ; cos(𝑣) ∗ ¤𝑣)
JPrimSin

𝑣1, 𝑣2 distinct

J(𝑣1 → ¤𝑣1, 𝑣2 → ¤𝑣2 | 𝑣1 ∗ 𝑣2) ⇝ (𝑣1 ∗ 𝑣2; 𝑣1 ∗ ¤𝑣2 + 𝑣2 ∗ ¤𝑣1)
JPrimMul

J(Σ | 𝑒) ⇝ 𝑒′

J(Σ | drop(𝑒)) ⇝ drop(𝑒′)
JDrop

J(𝑓 ) ⇝ 𝑓 J

J(𝑣 → ¤𝑣 | 𝑒) ⇝ 𝑒′ ¤𝑣 fresh
J(def 𝑓 ( 𝑣 : 𝜏 ; ) → (𝜎 ; ) = 𝑒) ⇝ def 𝑓 J( 𝑣 : 𝜏 ; ¤𝑣 : 𝜏 ) → (𝜎 ;𝜎) = 𝑒′

JDef

Fig. 7. Forward-mode automatic differentiation in Linear A. The constructed expression 𝑒 ′ emits primal

and tangent results together as a multi-value return. The argument Σ maps primal variable names to the

corresponding tangent variable names. Note in the result of rule JPrimMul, the multiplication on the left is

non-linear, whereas the two multiplications on the right are right-linear. Several near-redundant rules are

omitted; see text.

5.1 Details
5.1.1 Non-linear Input. We define J to operate only on the purely non-linear subset of Linear

A. This avoids perturbation confusion problems: all linear variables in Linear A refer to the same

perturbation. We can still get nested AD by alternating J and the linearity erasure transform L.

5.1.2 Introducing dup. The non-linear fragment of Linear A allows variables to be referenced

multiple times, but the linear fragment does not. Ergo, whenever a non-linear variable is re-used,

we must introduce dup operations on the corresponding linear variables. The JLet rule in Figure 7

spells this out: the rule detects which variables 𝑢 are repeated; constructs the needed fresh variables

¤𝑤, ¤𝑧; introduces the duplication operations ¤𝑤, ¤𝑧 = dup( ¤𝑢); and takes care that the tangent of 𝑢 in 𝑒1

is ¤𝑤 , whereas in 𝑒2 it’s ¤𝑧.
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One instance seeming sufficient, Figure 7 omits similar manipulations for the other rules. The

full system has a rule JUnpackB for the case where the tuple variable 𝑣 does appear free in the body

𝑒; it differs from JUnpackA only in that the binding for 𝑣 is propagated to the recursive call, and

the tangent ¤𝑣 is duplicated for its appearance in the transformed body. Likewise, JRet, JApp, JTup,

and JPrimMul have variants that add the necessary dup calls if any of the non-linear 𝑣 repeat.

5.1.3 Other Omissions. We also omit rules for the other non-linear primitives. They differ from

JPrimSin and JPrimMul only in the derivatives they must insert into the result; we trust that

a unary and a binary example are adequately clear. Finally, there are no rules for linear syntax

because J operates on the non-linear fragment of Linear A.

5.1.4 Extra Non-linear Computations. Note that J in general introduces non-linear computations

that are not needed for the original non-linear program—these are the actual partial derivatives.

For example, in JPrimSin we see a new cos(𝑣). This is bound to a non-linear variable, but used only
by the linear result of J (sin). Figure 1 elided these extra non-linear computations, hiding them

in the red arrows between the blue primal blocks and orange derivative blocks. Our downstream

unzipping transformation U treats them as part of the blue blocks, since they are non-linear.

5.1.5 Tangent Types. The rules in Figure 7 depend on assuming that any Linear A type 𝜏 is also

a suitable type for its tangent. As we have defined Linear A to have only real scalars and nested

tuples thereof, this proposition is costless; but the correct choice of tangent type becomes more

interesting in a language with sum types. One conventional choice is to still use 𝜏 itself as the type

of tangents to 𝜏 , though that loses the information that both the primal and the tangent value are

necessarily the same variant. Retaining that information requires a dependent type system; we

look forward to the community working out a satisfying one for this purpose.

5.2 Formalization
Our theorem about forward differentiation is conventional. The interesting thing about it is that

the J transformation puts the derivative into the linear fragment of Linear A. We therefore have

a proof obligation that automated derivatives are substructurally linear; but otherwise this is a

repetition of known results that forward differentiation is correct, and work-preserving up to a

constant factor.

Theorem 5.1. Automatic differentiation is total, correct, and work-preserving. Consider an
expression 𝑒 , well-typed in Γ; {} in the non-linear fragment of Linear A. Let x be well-typed values for
the (necessarily non-linear) free variables 𝑣 : 𝜏 of 𝑒 . Allocate fresh names ¤𝑣 of types 𝜏 for the tangents,
and let ¤x be well-typed values for them. Then:

1. 𝑒 ′ = J (𝑣 → ¤𝑣 |𝑒) exists and is well-typed in Γ; ¤𝑣 : 𝜏 in Linear A;
2. 𝑒 ′ does no more than a constant times more work than 𝑒 . The constant does not depend on 𝑒 , but

does depend on the set of primitives and their derivative rules;
3. The non-linear outputs of 𝑒 ′[x; ·] are equal to the outputs of 𝑒 [x; ]; and
4. The linear outputs of 𝑒 ′[x; ¤x] are equal to the matrix-vector product of the Jacobian of 𝑒 at x

with the vector ¤x, provided this is true of the primitive derivatives.
To define the Jacobian for Claim 4, we view the expression 𝑒 as a function from its free variables 𝑣 to
its results.

We assume these claims hold for all the primitives in a given implementation of Linear A. In

particular, the constant in Claim 2may not actually be well-determined in a large and user-extensible

AD system, because it depends on the cost behavior of every primitive derivative on every set

of arguments. We content ourselves in this paper with proving that J composes those primitive
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derivatives correctly, in the sense of introducing no correctness or work errors that are not present

in the primitive set already.

Proof. The proof proceeds by structural induction on the program. We work out the JLet rule

as a template for the others. The first subtlety is that there may be some non-linear variables, 𝑢

in the notation, that are free in both the bound expression 𝑒1 and the body 𝑒2. To construct the

parallel linear expression, we must insert explicit dups for their corresponding linear variables

¤𝑢. This is notated as let( ; ¤𝑤, ¤𝑧 ) = (; dup( ¤𝑢)) in in JLet, implying one let and one dup per

duplicated variable among the ¤𝑢. This duplication is also why the map from primal variables to

their corresponding tangent variables may be non-trivial and needs to be maintained explicitly.

Work preservation (Claim 2) follows because the dups introduced by JLet cost 0 in our cost model.

Non-linear correctness (Claim 3) follows from the inductive hypothesis because we reconstruct

the non-linear part of the computation exactly in the result J (𝑒). Linear correctness (Claim 4) is a

calculation:

J (𝑒) [x; ¤x] = J (𝑒2) [x
2
, 𝑒1 [x; ]; ¤x

2
,J (𝑒1) [x

1
; ¤x

1
]] definition of J (𝑒)

=

(
𝐽𝑒2 |x

2
,𝑒1 [x;]

)
( ¤x

2
,J (𝑒1) [x

1
; ¤x

1
]) induction on 𝑒2

=

(
𝐽𝑒2 |x

2
,𝑒1 [x;]

) (
¤x
2
,

(
𝐽𝑒1 |x

1

)
( ¤x

1
)
)

induction on 𝑒1

=

(
𝐽𝑒 |

x

)
( ¤x). chain rule on 𝑒2 ◦ 𝑒1

The chain rule is for the composition of multivariate functions 𝑒2 ◦𝑒1 augmented with side inputs x
2

and their tangents ¤x
2
. Here we somewhat abuse our own notation, writing ( 𝐽𝑒 | ·) for the Jacobian

of 𝑒 at a point, J (𝑒) [·; ·] for the linear results of evaluating J (𝑒), and 𝑒 [·; ] with no linear inputs

for the non-linear results of evaluating 𝑒 . The reader must also understand the index 1 to refer to

variables free in 𝑒1 and 2 to refer to those free in 𝑒2, with any overlap among linear ones taken care

of by the above-mentioned chain of let and dup.

Induction on the program (including previously processed definitions) comes in when checking

JApp, because we rely on correctness of the transformed callee for correctness of the transformed

call site. The handling of JUnpack is analogous to JLet, and the other rules are straightforward. □

6 UNZIPPING
We cannot directly transpose arbitrary Linear A programs. Why not? In the transposed result we

are trying to run the non-linear part forward and the linear part backward. However, the first

sub-expression of a general Linear A program may produce both linear and non-linear results. Do

we run that subexpression before or after the remainder?

Fortunately, the non-linear part of a Linear A expression cannot depend on any of its linear

inputs. Ergo, it should be possible to hoist it above the linear part (this section) to just transpose

the latter (Section 7).

We begin by defining what we want:

Definition 6.1 (Linear B). Linear B is a sublanguage of Linear A with two restrictions:

• All functions and expressions of Linear B must return either all-linear or all-nonlinear

results—no mixing.

• Expressions of Linear B that produce non-linear results must not read linear variables, not

even to drop them.
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U(𝑒) ⇝ 𝐸;𝑒′; ¤𝑒′

U((𝑣; ¤𝑣)) ⇝ □; (𝑣;); (; ¤𝑣)
URet

U(𝑒1) ⇝ 𝐸1;𝑒
′
1
; ¤𝑒′

1
U(𝑒2) ⇝ 𝐸2;𝑒

′
2
; ¤𝑒′

2

U(let( 𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ) = 𝑒1 in 𝑒2) ⇝ 𝐸1, let( 𝑣 : 𝜏 ; ) = 𝑒′
1
in 𝐸2; 𝑒

′
2
; let( ; ¤𝑣 : ¤𝜏 ) = ¤𝑒′

1
in ¤𝑒′

2

ULet

U(𝑒) ⇝ 𝐸;𝑒′; ¤𝑒′

U(let( ⊗ 𝑤 : ⊗𝜏 ; ) = 𝑣 in 𝑒) ⇝ let( ⊗ 𝑤 : ⊗𝜏 ) = 𝑣 in 𝐸; 𝑒′; ¤𝑒′
UUnpack

U(𝑒) ⇝ 𝐸;𝑒′; ¤𝑒′

U(let( ; ⊗ ¤𝑤 : ⊗ ¤𝜏 ) = ¤𝑣 in 𝑒) ⇝ 𝐸; 𝑒′; let( ⊗ ¤𝑤 : ⊗ ¤𝜏 ) = ¤𝑣 in ¤𝑒′
ULinUnpack

⊢ 𝑓 .nonlin(·;) → (𝜏, 𝜎 ;) 𝑢, 𝑤 fresh

U(𝑓 (𝑣; ¤𝑣)) ⇝ let( 𝑢 : 𝜏, 𝑤 : 𝜎 ; ) = 𝑓 .nonlin(𝑣; ) in □; (𝑢;); 𝑓 .lin(𝑤; ¤𝑣)
UApp

𝑒 non-linear with no sub-expressions

U(𝑒) ⇝ □;𝑒 ; (;)
ULeaf

¤𝑒 linear with no sub-expressions

U( ¤𝑒) ⇝ □; (;); ¤𝑒
ULinLeaf

U(𝑒) ⇝ 𝐸;𝑒′; ¤𝑒′

U(drop(𝑒)) ⇝ 𝐸; drop(𝑒′) ; drop( ¤𝑒′)
UDrop

U(𝑓 ) ⇝ 𝑓 .nonlin, 𝑓 .lin

U(𝑒) ⇝ 𝐸;𝑒′; ¤𝑒′ 𝑤 : 𝜋 are all the names bound by 𝑣 and 𝐸 and read by ¤𝑒′ 𝑢 fresh

U(def 𝑓 ( 𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ) → (𝜎 ; ¤𝜎) = 𝑒) ⇝ def 𝑓 .nonlin( 𝑣 : 𝜏 ; ) → (𝜎, ⊗𝜋 ; ) = 𝐸(𝑒′, ⊗(𝑤)),
def 𝑓 .lin( 𝑢 : ⊗𝜋 ; ¤𝑣 : ¤𝜏 ) → (; ¤𝜎) = let( ⊗ 𝑤 : ⊗𝜋 ) = 𝑢 in ¤𝑒′

UDef

Fig. 8. Unzipping converting Linear A to Linear B. Unzipping transforms a mixed linear and non-linear

expression 𝑒 into a shared non-linear context 𝐸, a non-linear result expression 𝑒 ′, and a linear result expression
¤𝑒 ′. Note that we always unzip recursively, because Linear B does not allow non-linear expressions to read

linear variables, even to drop them. Most language primitives are handled by the generic rules ULeaf and

ULinLeaf.

Figure 8 gives the transformation U6
that “unzips” any Linear A expression or function into

a pair of Linear B expressions or functions—one that computes only linear results and one that

computes only non-linear results. Figure 9 shows the unzip of an example function.

The result ofU on an expression is a bit subtle: we wish forU to split the input expression 𝑒

into a non-linear fragment 𝑒 ′ and a linear fragment ¤𝑒 ′. However, 𝑒 may compute a (non-linear)

intermediate value that will be used for both linear and non-linear results. To allow 𝑒 ′ and ¤𝑒 ′ to both
use that value without having to recompute it,U(𝑒) also produces a context 𝐸 of let bindings, which

represent all the intermediate (non-linear) computations that 𝑒 ′ and ¤𝑒 ′ may share. All the actual

work of the non-linear fragment ends up in the context 𝐸. The rule UDef exposes the variables

6U is not surfaced as a public API in JAX, but it is used internally by the AD implementation. The relevant implementation

can be found in the file jax/interpreters/partial_eval.py.
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def fJ
1,1

1,1( 𝑢 : R; ¤𝑢 : R ) → (R;R) =
let( 𝑣 : R; ) = sin(𝑢) in
let( 𝑑𝑢 : R; ) = cos(𝑢) in
let( ; ¤𝑣 : R ) = 𝑑𝑢 ∗ ¤𝑢 in
let( 𝑤 : R; ) = − 𝑣 in
let( ; ¤𝑤 : R ) = − ¤𝑣 in
(𝑤; ¤𝑤)

U−−−−→

def fJ.nonlin1,0
2,0
( 𝑢 : R; ) → (R, ⊗R; ) =

let( 𝑣 : R; ) = sin(𝑢) in
let( 𝑑𝑢 : R; ) = cos(𝑢) in
let( 𝑤 : R; ) = − 𝑣 in
let( 𝑡 : ⊗R; ) = ⊗ (𝑑𝑢) in
(𝑤, 𝑡 ;)

def fJ.lin1,1
0,1
( 𝑡 : ⊗R; ¤𝑢 : R ) → (;R) =

let( ⊗ 𝑑𝑢; ) = 𝑡 in
let( ; ¤𝑣 : R ) = 𝑑𝑢 ∗ ¤𝑢 in
let( ; ¤𝑤 : R ) = − ¤𝑣 in
(; ¤𝑤)

Fig. 9. Example of unzipping. On the left we have the derivative J (𝑓 ) of 𝑓 (𝑢) = − sin(𝑢) from Figure 6, and

on the right the non-linear and linear functions it unzips to, J (𝑓 ).nonlin and J (𝑓 ).lin. In AD terminology,

J (𝑓 ).nonlin is the forward phase, which computes the original function 𝑓 and returns all the intermediates,

or the tape, (in this case the variable 𝑑𝑢) needed for the derivative. The function J (𝑓 ).lin is called the

linearization in Frostig et al. [2021]. It consumes the tape produced by the forward phase and computes (in

substructurally and therefore algebraically linear fashion) the forward derivative of 𝑓 ; in Figure 10 (Section 7)

we will transpose it to obtain the reverse phase for computing the derivative of 𝑓 in reverse mode.

bound by 𝐸 as outputs of the emitted non-linear fragment 𝑓 .nonlin, so they can be read without

recomputation by the linear fragment 𝑓 .lin.
The context 𝐸 is the “tape” (as it is often called [Griewank and Walther 2008]) that gives reverse-

mode AD its work-preservation. In the example of Figure 9 it consists of the single variable 𝑑𝑥 . One

of our contributions is disentangling the construction of the tape from AD proper. The time-space

tradeoff the tape represents is handled by the unzipping transformation, and neither (forward)

differentiation nor transposition need concern themselves with it.

6.1 Relation to Partial Evaluation
Unzipping can be seen as a form of partial evaluation (PE). Specifically,U symbolically partially

evaluates 𝑓 with respect to its non-linear arguments, leaving 𝑓 .lin as the residual. The first

difference with traditional PE [Jones et al. 1993] is that we do not require concrete values for the

non-linear arguments of 𝑓 . This is because our goal for unzipping is not to use static information

to make the residual faster, but simply to separate the linear fragment so it can be transposed.

The second difference is that U always produces exactly two specializations of any function

definition, whereas general partial evaluation may produce arbitrarily many. This is because we

are always unzipping exactly the linear from the non-linear variables of every function, and Linear

A does not permit the same function definition to be used with different arguments being treated

linearly or non-linearly (even if the underlying computation is mathematically linear in different

sets of its inputs).

We hope this identification of unzipping with partial evaluation may spur further advances

in both PE and AD. In particular, checkpointing strategies developed for memory efficiency by

the AD community might prove useful for general-purpose partial evaluation in memory-limited

settings. In our system, checkpointing materializes thus: our ULet rule remains correct (though

no longer work-preserving) if modified not to save a non-linear intermediate, and recompute it in

the linear expression instead. Our transposition transformation T (Section 7) will then retain the

non-linear recomputation while reversing the direction of the linear computation, implementing

checkpointing. Perhaps similar ideas can be applied to partial evaluation more broadly.
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6.2 Formalization
Given an expression 𝑒 well-typed in Γ; ¤Γ in Linear A, our transformation U(𝑒) produces a context
𝐸 (syntax in Figure 3), a non-linear expression 𝑒 ′, and a linear residual expression ¤𝑒 ′. We need the

free non-linear variables𝑤 of the expression ¤𝑒 ′, with their types 𝜋 . Then we define

• The tape 𝑤 . These are variables carrying the needed non-linear information from Γ and 𝐸 to

¤𝑒 ′.
• The non-linear partial 𝐸(𝑒 ′,𝑤). This is the expression formed by allocating fresh variables 𝑢

for the results of 𝑒 ′ and plugging let( 𝑢; ) = 𝑒 ′ in (𝑢,𝑤 ;) into the hole in 𝐸. The non-linear

partial is a purely non-linear expression that returns the results of 𝑒 ′ together with the tape.

• The reconstruction 𝐸(𝑒 ′,𝑤 ; ¤𝑒 ′). Given fresh variables 𝑢 and ¤𝑢 for all the results of 𝑒 , this is the

expression let(𝑢,𝑤 ; ) = 𝐸(𝑒 ′,𝑤) in let( ; ¤𝑢 ) = ¤𝑒 ′ in (𝑢; ¤𝑢) that should be equivalent to 𝑒
if the non-linear partial and the residual are correct. Note that here we bind𝑤 to themselves:

the point is that we arrange for the context 𝐸 not to be in scope in ¤𝑒 ′, and carry all the needed
information explicitly in the tape𝑤 .

Theorem 6.2. Unzipping is total, correct, and work-preserving. Consider any Linear A ex-
pression 𝑒 well-typed in Γ; ¤Γ with𝑤 and 𝜋 as above. Then

1. 𝐸; 𝑒 ′; ¤𝑒 ′ = U(𝑒) exist;
2. The non-linear partial 𝐸(𝑒 ′,𝑤) is well-typed in Γ; {} in Linear B;
3. The residual ¤𝑒 ′ is well-typed in𝑤 : 𝜋 ; ¤Γ in Linear B; and
4. The reconstruction 𝐸(𝑒 ′,𝑤 ; ¤𝑒 ′) is well-typed in Γ; ¤Γ in Linear A and computes the same result

with the same work as 𝑒 .

Proof. The proof consists of our usual structural induction. One subtlety is well-typedness of

the non-linear partial 𝐸(𝑒 ′,𝑤) when 𝑒 is a mixed let expression (rule ULet). We can hoist 𝐸2
and 𝑒 ′

2
past the linear variables ¤𝑣 because recursive unzipping will ensure that 𝐸2 and 𝑒 ′

2
do not

read any linear variables. We also need to check that the non-linear partial uses every non-linear

variable at least once. By assumption, any non-linear variable 𝑣 from Γ appears in either 𝑒1 or 𝑒2.

By induction, 𝑣 therefore appears in either the non-linear partial of 𝑒1 or of 𝑒2. If 𝑣 appears in 𝐸1, 𝑒
′
1
,

𝐸2, or 𝑒
′
2
directly, then 𝑣 appears in either 𝐸 or 𝑒 ′. Otherwise, 𝑣 must either appear in the tape𝑤

1

due to being free in ¤𝑒 ′
1
, or in𝑤

2
due to being free in ¤𝑒 ′

2
. Therefore, 𝑣 is free in ¤𝑒 ′, because the latter

only binds ¤𝑣 , which cannot shadow 𝑣 , being linear variables. Hence we will add 𝑣 to the𝑤 , and it

will again appear in the non-linear partial 𝐸(𝑒,𝑤) of 𝑒 . A similar argument covers the non-linear

variables 𝑣 bound by the let. Checking variable consumption for the residual is a simpler variation

of the same argument.

Some notes: The UDef rule coordinates with the UApp rule to transport the tape in a single

variable of tuple type rather than increasing the size of every call site by the number of intermediate

values of the function. The UApp rule relies on program ordering, because we read the type of the

unzipped callee 𝑓 .nonlin in order to annotate the type of the call site.
7
To enforce the invariant

that non-linear expressions of Linear B do not consume linear variables, we explicitly unzip drop

expressions in rule UDrop. The proof of claim 4 requires induction on the program to assert that

any functions called by 𝑒 compute the correct values, but is otherwise straightforward. □

7
This is trivial for Linear A as presented, because it does not admit recursion; but this point becomes more subtle if recursion

is permitted. Unzipping in a recursive language must be able to construct recursive types to represent the tapes of recursive

computations. This can be accomplished by indirection: for each function 𝑓 , allocate a fresh name 𝜋𝑓 for the type of the

tuple carrying the tape. Then unzipping can use that name fill in type annotations of call sites of 𝑓 before 𝑓 is unzipped,

and unzipping 𝑓 provides the definition of 𝜋𝑓 (which may refer to 𝜋𝑓 if 𝑓 is recursive).
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def fJ.nonlin1,0
2,0
( 𝑢 : R; ) → (R, ⊗R; ) =

let( 𝑣 : R; ) = sin(𝑢) in
let( 𝑑𝑢 : R; ) = cos(𝑢) in
let( 𝑤 : R; ) = − 𝑣 in
let( 𝑡 : ⊗R ) = ⊗ (𝑑𝑢) in
(𝑤, 𝑡 ;)

def fJ.lin1,1
0,1
( 𝑡 : ⊗R; ¤𝑢 : R ) → (;R) =

let( ⊗ 𝑑𝑢; ) = 𝑡 in
let( ; ¤𝑣 : R ) = 𝑑𝑢 ∗ ¤𝑢 in
let( ; ¤𝑤 : R ) = − ¤𝑣 in
(; ¤𝑤)

T−−−−→

def fJ.nonlin1,0
2,0
( 𝑢 : R; ) → (R, ⊗R; ) =

let( 𝑣 : R; ) = sin(𝑢) in
let( 𝑑𝑢 : R; ) = cos(𝑢) in
let( 𝑤 : R; ) = − 𝑣 in
let( 𝑡 : ⊗R ) = ⊗ (𝑑𝑢) in
(𝑤, 𝑡 ;)

def fJ.linT
1,1

0,1( 𝑡 : ⊗R; ¥𝑤 : R ) → (;R) =
let( ⊗ 𝑑𝑢; ) = 𝑡 in
let( ; ¥𝑣 : R ) = − ¥𝑤 in
let( ; ¥𝑢 : R ) = 𝑑𝑢 ∗ ¥𝑣 in
(; ¥𝑢)

Fig. 10. Completing our running example by transposing the derivative. On the left, we have the forward

phase J (𝑓 ).nonlin and residual J (𝑓 ).lin of 𝑓 (𝑢) = − sin(𝑢) from Figure 9. On the right, we transpose

just the linear residual J (𝑓 ).lin to obtain the reverse phase T (J (𝑓 ).lin), which computes the derivative

of 𝑓 in reverse mode.

7 TRANSPOSITION

To JVP, or VJP? That is the question:

Whether ’tis nobler in the mind to suffer

The slings and arrows of outrageous re-implementation,

Or to take up Arms against a Sea of troubles,

And by transposing, end them.

We turn to our main focus: transposing linear functions. Recall that our ultimate goal is to

derive reverse-mode automatic differentiation from forward mode, without having to duplicate

derivative rule implementations. We do this through the notion of transposition. Every linear

function 𝑓 : R𝑛 → R𝑚 has a unique transpose 𝑓 T
: R𝑚 → R𝑛 defined by consistency with respect

to dot product:

⟨𝑥, 𝑓 T (𝑦)⟩ = ⟨𝑓 (𝑥), 𝑦⟩. (1)

For a given nonlinear function 𝐹 : R𝑛 → R𝑚 and input 𝑥 ∈ R𝑛 , this is exactly the relationship

between the forward derivative 𝑑𝐹 : (𝑦 ∈ R𝑛) ↦→ (𝐽 𝐹 |𝑥 )𝑦 and the reverse derivative 𝑑𝐹 T
: (𝑧 ∈

R𝑚) ↦→ 𝑧 (𝐽 𝐹 |𝑥 ), where 𝐽 𝐹 |𝑥 is the Jacobian of 𝐹 at 𝑥 .

Concretely, to compute a gradient of 𝐹 : R𝑛 → R at x ∈ R𝑛 , we differentiate 𝐹 with J to produce

𝐹 J
, unzip it into the linear and non-linear components 𝐹 J.nonlin, 𝐹 J.lin, transpose the latter

to 𝐹 J.linT , and supply 1 ∈ R as an initial gradient to the linear erasure thereof:

∇𝐹 |𝑥 =

(
let( 𝑦;𝑑𝑥 ) = 𝐹 J.nonlin(𝑥 ; ) in L(𝐹 J.linT) (𝑑𝑥, 1; )

)
.

An example transposition is given in Figure 10. We use the double-dot notation ¥𝑣 as a mnemonic

for cotangent variables (not second-order derivatives). Each cotangent variable holds a partial

derivative of the final result of 𝐹 with respect to something, which are propagated in the opposite

order from the primal computation. We assign no formal meaning to the dots themselves: ¥𝑣 is just
a different variable than ¤𝑣 , even though we mean for it to carry the cotangent corresponding to ¤𝑣 .
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7.1 Details
7.1.1 Input to Transposition. We transpose a function that’s well-typed in Linear B with the T
transformation

8
given in Figure 11. Recall from Definition 6.1 that Linear B is the sub-language of

Linear A where all expressions must return either all-linear or all-non-linear results. We restrict

to Linear B because general Linear A functions are free to interleave linear with non-linear com-

putations, but we transpose only the strictly linear fragment. Converting an arbitrary Linear A

expression into Linear B was the purpose of the unzipping transformation U of Section 6.

7.1.2 Transposition Environments. To read the transposition rules, it helps to view an expression

as a function from its environment to its results, and to think of its environment as ordered. So, if ¤𝑒
consumes the linear variables of an ordered type environment ¤Δ, the transpose ¥𝑒 must produce

one result corresponding to each variable in ¤Δ. Likewise, for every result of ¤𝑒 , ¥𝑒 must consume a

corresponding free variable. The transform T carries names for these (cotangent) variables in a

second ordered type environment ¥Δ.
We use the notation ¤Δ, ¥Δ and angle brackets to emphasize that they are ordered vectors instead

of the unordered mappings ¤Γ, ¥Γ, and match the order of the relevant expression results. When

we compose and decompose expressions and their corresponding ordered environments, it may

be necessary to insert shuffling operations to maintain this ordering invariant. These shuffles are

uninteresting and expressible using only let and multi-value return, both of which cost 0 in our

model, so we leave them implicit. The ordering is irrelevant for type-checking, so we freely use ¤Δ
and ¥Δ as typing environments as well.

7.1.3 Omitted Rules. Figure 11 omits the rules TUnpack and TLinUnpack for non-linear and linear

tuple unpacking, because they are identical to the corresponding multiple-value let rules, mutatis

mutandis. There are no specific rules for transposing an expression that produces non-linear results

because it transposes to itself (rule TNonLin). Linear B requires non-linear expressions to have no

linear sub-expressions (not even through drop), so transposition need not traverse them.

7.1.4 Benefit from Explicit drop and dup. Nowwe have the payoff from requiring all linear variables

to be explicitly consumed: without that, T ( ¤𝑒) would have to return zeros for variables in ¤Δ that were

not free variables of ¤𝑒 , and would later have to do work to add those zeros to the real cotangents.

The payoff to requiring linear variables to be consumed exactly once is that rules do not need

to introduce additions to merge the results of transposed sub-expressions—those cotangents are

already guaranteed to correspond to different variables, and the summations are produced by the

TDup rule.

7.2 Formalization
The goal of transposition is to transform a linear function 𝑓 into its transpose 𝑓 T

, as defined by

pulling back the dot product (1). We now prove that it does so, and that 𝑓 T
isn’t more expensive

than 𝑓 .

Theorem 7.1. Transposition is total, correct, and amortized work-preserving. Consider a
linear Linear B expression ¤𝑒 , well typed in non-linear and linear environments Γ, ¤Γ. Fix an ordering
of variables in ¤Γ to form ¤Δ. Let x and ¤x be well-typed values corresponding to the free non-linear
and linear variables in ¤𝑒 , respectively. Let ¥x be values matching the types of the (linear) results from

8T is available in JAX as the jax.linear_transpose function. Note that JAX does not distinguish between linear and

non-linear expressions in its language, so the relevant typing judgements are reconstructed on the fly during transposition.

The transform assumes that the given function can be typed according to the type system presented here and any failure to

infer a valid type is reported to the user as an error.
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T( ¤Δ, ¥Δ | ¤𝑒) ⇝ ¥𝑒

T( ⟨ ¤𝑣 : ¤𝜏 ⟩, ⟨¥𝑣 : ¤𝜏 ⟩ | (; ¤𝑣)) ⇝ (; ¥𝑣)
TRet

¤Δ2 = ⟨ ¤𝑤 : ¤𝜎 ⟩ T ( ⟨ ¤𝑤 : ¤𝜎, ¤𝑣 : ¤𝜏 ⟩, ¥Δ | ¤𝑒2) ⇝ ¥𝑒2 T( ¤Δ1, ⟨¥𝑣 : ¤𝜏 ⟩ | ¤𝑒1) ⇝ ¥𝑒1 ¥𝑣, ¥𝑤 fresh

T( ¤Δ1 ⊎ ¤Δ2, ¥Δ | let( ; ¤𝑣 : ¤𝜏 ) = ¤𝑒1 in ¤𝑒2) ⇝ let( ; ¥𝑤 : ¤𝜎, ¥𝑣 : ¤𝜏 ) = ¥𝑒2 in (; ¥𝑒1, ¥𝑤)
TLetLin

T( ¤Δ, ¥Δ | ¤𝑒2) ⇝ ¥𝑒2 {𝑣 } non-empty

T( ¤Δ, ¥Δ | let( 𝑣 : 𝜏 ; ) = 𝑒1 in ¤𝑒2) ⇝ let( 𝑣 : 𝜏 ; ) = 𝑒1 in ¥𝑒2
TLetNonLin

T( ⟨ ¤𝑣 : ¤𝜏 ⟩, ⟨¥𝑣 : ¥𝜏 ⟩ | 𝑓 .lin(𝑣; ¤𝑣)) ⇝ 𝑓 .linT(𝑣; ¥𝑣)
TApp

𝑒 non-linear

T(𝜀, 𝜀 | 𝑒) ⇝ 𝑒
TNonLin

T( ⟨ ¤𝑣 : ¤𝜏 ⟩, ⟨¥𝑣 : ¤𝜏 ⟩ | ¤𝑣) ⇝ ¥𝑣
TLinVar

T(𝜖, ⟨¥𝑣 : ¤𝜏 ⟩ | 0 ¤𝜏 ) ⇝ drop( ¥𝑣)
TLinZero

¥𝑤 fresh

T( ⟨ ¤𝑣 : ¤𝜏 ⟩, ⟨¥𝑣 : ⊗ ¤𝜏 ⟩ | ⊗( ¤𝑣)) ⇝ let( ⊗ ¥𝑤 : ⊗ ¥𝜏 ) = ¥𝑣 in (; ¥𝑤)
TLinTup

T( ⟨ ¤𝑣1 : ¤𝜏, ¤𝑣2 : ¤𝜏 ⟩, ⟨¥𝑣 : ¤𝜏 ⟩ | ¤𝑣1 + ¤𝑣2) ⇝ dup( ¥𝑣)
TLinAdd

T( ⟨ ¤𝑣2 : ¤𝜏 ⟩, ⟨¥𝑣2 : ¤𝜏 ⟩ | 𝑣1 ∗ ¤𝑣2) ⇝ 𝑣1 ∗ ¥𝑣2
TLinMul

T( ⟨ ¤𝑣 : ¤𝜏 ⟩, ⟨¥𝑣1 : ¤𝜏, ¥𝑣2 : ¤𝜏 ⟩ | dup( ¤𝑣)) ⇝ ¥𝑣1 + ¥𝑣2
TDup

{ ¤𝑣 } are the free variables of ¤𝑒
T( ⟨ ¤𝑣 : ¤𝜏 ⟩, 𝜖 | drop( ¤𝑒)) ⇝ (; 0 ¤𝜏𝑖 )

TDropLin

T(𝑓 .lin) ⇝ 𝑓 .linT

T( ⟨ ¤𝑣 : ¤𝜏 ⟩, ⟨¥𝑣 : ¤𝜎 ⟩ | 𝑒) ⇝ 𝑒′ ¥𝑣 fresh
T(def 𝑓 .lin( 𝑣 : 𝜏 ; ¤𝑣 : ¤𝜏 ) → (; ¤𝜎) = 𝑒) ⇝ def 𝑓 .linT( 𝑣 : 𝜏 ; ¥𝑣 : ¤𝜎 ) → (; ¤𝜏) = 𝑒′

TDef

Fig. 11. Linear B transposition. Linear B is the subset of Linear A where all functions and expressions return

only linear or only non-linear results, and non-linear expressions do not read linear variables. Transposition

leaves non-linear expressions as they are, but order-reverses linear expressions: a linear expression ¤𝑒 with
𝑛 free linear variables and𝑚 linear results becomes a linear expression ¥𝑒 with𝑚 free linear variables and 𝑛

results computing the (linear-algebraic) transpose of ¤𝑒 .

¤𝑒 , and let 𝐿in and 𝐿out be the number of scalars present in the linear inputs ¤x and (linear) results ¥x,
respectively. Let W[¤𝑒] denote the amount of work done to execute ¤𝑒 . Let ¥Δ be an ordered environment
giving variable names and types for the cotangents ¥x of the (linear) results of ¤𝑒 . Then

1. ¥𝑒 = T ( ¤Δ, ¥Δ| ¤𝑒) exists and is well-typed in Linear B, in environments Γ; ¥Δ, and emits linear results
corresponding to ¤Δ;

2. W[¥𝑒] + 𝐿in ≤ W[¤𝑒] + 𝐿out; and
3. ⟨¤x, ¥𝑒 [x; ¥x]⟩ = ⟨ ¤𝑒 [x; ¤x], ¥x⟩.
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Claim 2 is the amortized work preservation criterion for transposition. The amortization correc-

tions 𝐿in and 𝐿out are the number of scalar linear inputs consumed by the original and transposed

expressions, respectively. To see intuitively why a correction is needed, consider transposing a

function that takes a single argument and fans it out (with dup) 𝑛 times. In our cost model, this

function does no work, because dup is free; but its transpose must perform 𝑛 summations, and thus

pay 𝑛. We restore work preservation by crediting an extra (𝑛 + 1) − 1 for the 𝑛 excess inputs the

transposition consumes.

Another intuition for the amortization argument is that producing 𝐿out results obliges the caller

to eventually pay 𝐿out to drop or use them. A transposition that reduces that burden on the caller

should get credit it can use to amortize the additional summations it has to do internally, and

vice versa. These corrections cancel when Linear A expressions are composed, so transposition is

exactly work-preserving internally, and the discrepancy only shows up for the end-to-end Linear A

computation.

Claim 3 is the correctness criterion for transposition: ¥𝑒 pulls dot product in the output space of ¤𝑒
back(ward) along ¤𝑒 to its input space, which is exactly the mathematical definition of transposition

of linear operators.
9
Note that on the left-hand side of Claim 3, the ¤x are treated as extra-linguistic

values and ¥x are fed in as linear inputs to ¥𝑒 , whereas on the right-hand side, the ¥x are extra-linguistic
and the ¤x are fed in as linear inputs to ¤𝑒 .

While we state our results on transposition in terms of vector spaces over the familiar field R of

real numbers, one can straightforwardly extend them to a variant of Linear A modeling modules

over any ring R. If R is not commutative, one needs to introduce a second linear scaling primitive

¤𝑒 ·𝑒 , corresponding to scalar right-multiplication in R-modules. Scalar left- and right-multiplication

then transpose to each other. Our dot-product notation also becomes non-commutative, and Claim

3 becomes two claims: ⟨¤x, ¥𝑒 [x; ¥x]⟩ = ⟨ ¤𝑒 [x; ¤x], ¥x⟩ and ⟨¥𝑒 [x; ¥x], ¤x⟩ = ⟨¥x, ¤𝑒 [x; ¤x]⟩. Augmenting R with

sufficient structure to define differentiation, and adjusting forward differentiation to correctly

compute derivatives, is left as an exercise for the enterprising reader.

Proof of Claim 1. Well-typing of transposition follows by structural induction on the syntax of

Linear B. The most interesting rule is TLetLin. The expression ¤𝑒 is well-typed in Γ; ¤Δ by assumption,

so we can split the incoming environment ¤Δ into a distinct union of the variables ¤Δ1 free in ¤𝑒1
and ¤Δ2 free in ¤𝑒2 (except for the ¤𝑣 bound in this let form). The results of the overall expression ¤𝑒
are the same as those of the body ¤𝑒2, so we can transpose ¤𝑒2 with respect to the augmented linear

environment ¤Δ2 ⊎ ⟨𝑣 : 𝜏⟩ (up to a permutation) and the same expected results ¥Δ. This gives us the
transposed body ¥𝑒2, which by induction is well-typed in Γ; ¥Δ, and produces results corresponding

to ¤Δ2 ⊎ ⟨𝑣 : 𝜏⟩ (up to a permutation). We now need to split them into the ¥𝑣 corresponding to the ¤𝑣 ,
which will be read by ¥𝑒1, and the ¥𝑤 corresponding to ¤Δ2, which we will return from the result ¥𝑒 .

We now have the arguments needed to transpose the bound expression ¤𝑒1: its linear environment

¤Δ1 and variables ¥𝑣 corresponding to its results. They line up correctly because the original expression
¤𝑒 was well-typed as a let. Transposing ¤𝑒1 gives us ¥𝑒1, which reads the ¥𝑣 from its environment and

produces results corresponding to ¤Δ1. Our result expression ¥𝑒 binds the ¥𝑣 from ¥𝑒2 so ¥𝑒1 can read

them, and splices the results corresponding to ¤Δ1 and
¤Δ2 into results corresponding to

¤Δ. The result
¥𝑒 uses all the variables from ¥Δ exactly once because the body ¥𝑒2 does.
The other rules proceed similarly. One subtlety worth noting is that in TLetNonLin, we assume

that all free linear variables of ¤𝑒 are in fact free in the body ¤𝑒2, and none occur in the bound

expression 𝑒1. This rule is why Linear B expressly forbids non-linear expressions from consuming

linear variables, which they might otherwise do with drop. □

9
In the language of algebraic geometry, if ¤𝑒 implements a pushforward of 𝑒 , then ¥𝑒 implements a pullback of 𝑒 .
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Proof of Claim 2. Work preservation needs induction on the program as well as the syntax

of expressions. The proof amounts to checking that the work corrections do, indeed, cancel. We

again consider TLetLin first. If we denote by | · | the number of linear scalars present in some set

of variables, we compute

W[¤𝑒] = W[¤𝑒1] +W[ ¤𝑒2] cost of let

≥ W[¤𝑒1] +W[¥𝑒2] + (| ¤Δ2 | + | ¤𝑣 |) − | ¥Δ| induction on ¤𝑒2
≥ W[¥𝑒1] + | ¤Δ1 | − | ¥𝑣 | +W[¥𝑒2] + (| ¤Δ2 | + | ¤𝑣 |) − | ¥Δ| induction on ¤𝑒1
= W[¥𝑒] + | ¤Δ| − | ¥Δ|, ¥𝑣𝑖 correspond to ¤𝑣𝑖

as desired.

Handling TApp is where we need to use induction on the program being transposed. To wit, in

this case, W[¤𝑒] equals the work𝑤 done to evaluate (the body of) the function 𝑓 .lin being called,

andW[¥𝑒] equals the work𝑤 T
of 𝑓 .linT , and the corrections correspond as well. An induction

only on expression syntax would not give us the needed premise that 𝑤 ≥ 𝑤 T + correction, but

induction on the program does, because Linear B has no recursion.

We also find it instructive to attend to work preservation of TDup. The term dup( ¤𝑣) itself does
no work in our cost model, but the addition it transposes to does work equal to | ¤𝑣 |, the number

of real scalars in the variable. This is what we needed those corrections for: dup( ¤𝑣) produces 2| ¤𝑣 |
results, while the addition only produces | ¤𝑣 | results, so the corrected work is conserved. Similar

reasoning applies to TAdd and TLit.

The rule TDrop is where the inequality in work preservation may be strict: we short-circuit

the subexpression 𝑒 , just emitting zero cotangents for its free linear variables. The resulting work

W[0T( ¤𝜏𝑖 ) ] is zero, corrected to | ¤𝑣 |. To argue work preservation, we must invoke Lemma 4.3 to

conclude thatW[drop( ¤𝑒)] ≥ | ¤𝑣 |, and thus lower-bound the corrected work of the pre-transposition
expression at | ¤𝑣 | as well. □

Proof of Claim 3. Correctness is also an induction on the program and the syntax of expressions.

To give a flavor for the leaf-node behavior of transposition, let’s prove correctness of TLinAdd and

TDup. For type-compatible ¤𝑣1, ¤𝑣2, and ¥𝑣 ,

⟨( ¤𝑣1, ¤𝑣2), dup( ¥𝑣)⟩ = ⟨¤𝑣1, ¥𝑣⟩ + ⟨¤𝑣2, ¥𝑣⟩ = ⟨¤𝑣1 + ¤𝑣2, ¥𝑣⟩.

Read from left to right, this is exactly the correctness equation for TDup, and from right to left for

TLinAdd. Note that this simple proof critically depends on the distributivity of multiplication over

addition, also known as the linear factoring rule, which is crucial for the efficiency of reverse-mode

autodiff (see e.g. Brunel et al. [2019]).

Transposition on interior AST nodes is exemplified by TLetLin. To begin the calculation, we

stipulate the disjoint partition of ¤x into ¤x
1
corresponding to ¤Δ1 and ¤x

2
corresponding to ¤Δ2; and a

similar (but not necessarily disjoint) split of x into x
1
and x

2
. To simplify notation, we name the

intermediate quantities ¤z, ¥z, and ¥x
2
, as, respectively, the forward evaluation of the bound expression

¤𝑒1, the corresponding backward evaluation of the transposed body ¥𝑒2, and the residual results of ¥𝑒2
which correspond to the free linear values ¤x

2
:

¤z = ¤𝑒1 [x
1
; ¤x

1
]

¥z ⊎ ¥x
2
= ¥𝑒2 [x

2
; ¥x] .
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Then we conclude the correctness proof for TLetLin by calculation:

⟨ ¤𝑒 [x; ¤x], ¥x⟩ = ⟨ ¤𝑒2 [x
2
; ¤z ⊎ ¤x

2
], ¥x⟩ 1-step evaluation of ¤𝑒

= ⟨¤z ⊎ ¤x
2
, ¥𝑒2 [x

2
; ¥x]⟩ induction on ¤𝑒2

= ⟨¤z, ¥z⟩ + ⟨¤x
2
, ¥x

2
⟩ partitioning dot product

= ⟨¤x
1
, ¥𝑒1 [x

1
; ¥z]⟩ + ⟨¤x

2
, ¥x

2
⟩ induction on ¤𝑒1

= ⟨¤x, ¥𝑒1 [x
1
; ¥z] ⊎ ¥x

2
⟩ unpartitioning dot product

= ⟨¤x, ¥𝑒 [x; ¥x]⟩. 1-step (un)evaluation of ¥𝑒
Other syntactic forms proceed similarly, and more simply. TApp again requires induction on the

whole program being transposed. □

Corollary 7.2. If we transpose an expression ¤𝑒 twice, the result is equivalent to ¤𝑒 and does at most
the same amount of work.

8 CODE SIZE
When implementing practical compilers, the size of the (intermediate) program representation is

also an important consideration alongside its ultimate runtime, because it limits the runtime and

memory cost of the compiler itself. We thus emphasize that our transformations increase code size

only linearly, because they turn function definitions and function calls into new definitions and

calls, without duplicating or inlining function bodies.

We can argue this formally by modeling the size |𝑃 | of a Linear A program 𝑃 simply as “every

node in the grammar from Figure 3 has size 1”. We then deduce

Theorem 8.1. Erasure, differentiation, unzipping, and transposition are size-preserving.
There exist constants 𝑐L , 𝑐T , 𝑐U , 𝑐J such that for any Linear A program 𝑃 ,

|L(𝑃) | ≤ 𝑐L |𝑃 |,
|J (𝑃) | ≤ 𝑐J |𝑃 |,
|U(𝑃) | ≤ 𝑐U |𝑃 |, and
|T (𝑃) | ≤ 𝑐T |𝑃 |,

where L, J , U, and T are the erasure, differentiation, unzipping, and transposition transformations
defined in Sections 4.5, 5, 6, and 7, respectively.

Proof. Mostly by inspection, but there is one subtlety. In rule UApp (Section 6), the type 𝜎 of the

tape of the applied function 𝑓 appears in the emitted let binding. In Linear A as presented, 𝜎 will

have size proportional to the number of non-linear intermediates in 𝑓 , which may be asymptotically

larger than the call site being transformed. This is, however, easy to fix: just augment the type

system with synonyms, and annotate that binding with a synonym for the tape instead. When

function calls are nested, this amounts to retaining structure sharing in the tape types.

The same phenomenon is also why linearity erasure L (Section 4.5) has to introduce dedicated

functions for vector space operations on arbitrary types, instead of inlining them. □

The constant 𝑐J depends on the set of primitives and their derivatives defined for Linear A, but

𝑐L , 𝑐U and 𝑐T are absolute, given by the size of the expressions constructed by our rules for L, U
and T , respectively. It is necessary to count variable references in program size (even though we

model them with zero runtime cost), because for instance J introduces calls to dup for repeated

references to (non-linear) variables.
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9 RELATEDWORK
Most of the material presented here can be found in one form or another in existing work, but

the composition of individual pieces is novel. The AD architecture we describe was sketched out

briefly in Frostig et al. [2021] and again in Paszke et al. [2021], and is in use in the JAX and Dex

projects [Bradbury et al. 2018; Frostig et al. 2018]. Transposition as a program transformation

has been previously explored by Piponi [2009]. Unzipping is an instance of partial evaluation—a

technique widely known and explored [Futamura 1983; Jones et al. 1993]—with the difference that

we are interested not only in the residual program, but also in the program formed by operations

that are considered “statically computable”. Automatic differentiation itself has seen rapid growth

in recent years, especially for functional languages, which we attempt to briefly summarize below.

Forward-mode differentiation is significantly simpler to embed in existing programming lan-

guages, for example by the means of templates [Piponi 2004], operator overloading [Walther et al.

2003] and Haskell-style typeclasses or ML-style functors [Elliott 2009; Karczmarczuk 1998]. The

true difficulty, both conceptually and implementation-wise, arises for reverse mode.

Initially, reverse-mode autodiff development was focused on imperative languages. In particular,

the implicit reuse of values in the original computation was consistently translated to destructive

mutation. This made higher-order differentiation more difficult, and meant that it generally did

not have a natural non-monadic translation into pure functional languages. This challenge was

overcome by Pearlmutter and Siskind [2008b], with the introduction of reverse mode as an aug-

mentation of the original program with “backpropagator” closures replacing the tape. As shown by

Wang et al. [2019] a similar transformation can be performed by expressing the non-local control

using delimited continuations, manifested by the shift and reset operators. Furthermore, Brunel

et al. [2019] use a similar method to perform provably correct reverse-mode differentiation over

lambda calculus extended with linear negation. Especially interestingly, they already make the

connection between linear logic and algebraic linearity that underlies the work presented here.

Finally, Krawiec et al. [2022] outline a provably correct and efficient implementation of AD in a

higher-order language, at a cost of requiring an extra-linguistic monadic translation.

The purpose of the monadic translation of Krawiec et al. [2022] is to stage out a program,

expressing the linearization of primal evaluation at a given point, as the primal is running. But,

since control flow is dependent only on the non-linear values, the staged program never uses

control flow or higher-order functions itself (linearization of only the branches taken gets inlined).

In fact, it uses a language almost identical to the linear part of Linear A.

That approach can be factorized through the lens taken in our work. Krawiec et al. [2022]

describes reverse-mode AD in two phases. The first phase simultaneously: traces the metalanguage

into a representation without control flow and higher-order functions (our Linear A); performs

forward mode AD (our J ); and partially evaluates (like our unzipping U, but specializing the

linear function to exact values, instead of separating non-linear compute). In the second phase,

transposition is implemented as an evaluator function that traverses the staged linear program.

Complementing the previous implementation-focused work, multiple explorations of autodiff

semantics have been developed. Many of those give up the asymptotic efficiency guarantees,

which are critical for practical implementations of autodiff, but they do help shed light onto the

underlying theory. Elliott [2018] outlines a minimal autodiff system for a language following

category theoretical foundations. Similarly to our work he also extensively reasons about the

linearity of derivatives, including the introduction of a linear function type. Abadi and Plotkin

[2019] describe consistent operational and denotational semantics for autodiff in a first-order

language, while Huot et al. [2020] extend it to a higher-order language using diffeology semantics.
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Mazza and Pagani [2021] outline semantics for a higher-order language with conditionals that are

consistent with the mathematical notion of differentiation everywhere except for a measure 0 set.

10 DISCUSSION AND FUTUREWORK
Extensibility. Decomposing reverse-mode AD can lead to fewer AD rules overall. Consider a

language with 𝑁 primitives,𝐻 of which are higher-order (think control flow) and 𝐿 are linear. If the

two AD modes are separate, then a system implementer has to provide 𝑁 + 𝑁 rules—one for each

primitive for each mode. However, in our case, 𝑁 +𝐻 +𝐿 suffice: one still implements forward-mode

for all primitives, but unzipping acts over all first-order primitives uniformly, and transposition

only deals with linear primitives. Many first-order array languages support tens or even hundreds

of primitives, most of which are both first-order and non-linear, leading to significant savings.

As a corollary, with our approach, an AD system user who wants to customize AD behavior on

a subprogram only needs to provide the custom forward-mode implementation, as the customized

reverse-mode implementation can be derived for them automatically.

Control flow. Data-dependent control is the most glaring omission from Linear A. While Linear

A remains useful as a model of the straightline computation results from tracing at a given primal

point, adding “if” or “case” (and loops or recursive functions) would broaden it to a model of the

whole surrounding numerical language.

Control would be a substantial extension: control flow means that different branches may

compute different intermediate values, so one must also extend the type system to allow sum

types (which were not necessary in Linear A). Having sum types, one must then concern oneself

with defining the tangent type of a sum. It would be most satisfying to use a dependent type

system, so as to preserve the invariant that only non-linear variables may have sum types, and

linear computations operate only on products of R. Which product, however, can depend on a

previous non-linear computation. Such a type system would also capture the constraint that the

value tangent to a non-linear sum must inhabit the same variant.

Multilinearity. Linear A does not model multilinearity. To wit, multiplication is actually linear

separately in both arguments, whereas its model in our system treats the first argument non-linearly.

More generally, a function like 𝑓 (𝑥,𝑦, 𝑧) ↦→ 𝑧 (𝑥 + 𝑦) can be viewed as linear in 𝑧, or as linear in

(𝑥,𝑦) jointly. Our linear languages force the user to choose one, or to duplicate the function if both

interpretations are necessary; whereas it would be more satisfying to be able to encode all of those

linearity properties in a type system at once.

Multilinearity seems to be an important ingredient in two other directions of generalization. First,

a program containing independent derivatives will have components that are independently linear;

which can be important to track, especially if those derivatives interact (e.g., if they are nested).

This is important to address in order to give a satisfying, linearity-aware typing to in-language

automatic differentiation (as opposed to the extra-linguistic transformations we dealt with here).

Second, multilinearity is part of extending these ideas to higher-order functions. When asking

what it means for a function-returning function such as 𝑓 : R→ (R→ R) to be linear, a natural

answer seems to be that the final result should be linear in both inputs separately, i.e., multilinear.

However, any system covering higher-order functions should be able to give a linear type to curried

addition as well, where the final result is linear in both arguments jointly.

Partial evaluation. We have observed that our unzipping transformation U is an instance

of partial evaluation. Unzipping has a time-space tradeoff: for each non-linear intermediate, U
can either store the result on the tape (to minimize work), or emit code in the linear residual

that recomputes it (to reduce memory pressure by the emitted program). The AD community has

devoted considerable attention to this tradeoff under the heading of checkpointing AD; perhaps

there are ideas there that could be ported to general partial evaluation in memory-limited settings.
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Array size polymorphism. One of the limitations of Linear A as defined is that the size of

any tuple is syntactically apparent, so it is not possible to write size-polymorphic (i.e., “array

processing”) functions in Linear A. Array-size-polymorphic functions are of course critical in

practice, but are mostly orthogonal to the transformations we introduced here. We leave a full

formalization to future work, with the comment that JAX resolves array size polymorphism at trace

time (in our terms, during metaprogramming of Linear A), whereas Dex handles it by extending

the internal representation with constructs that deal with it directly.

Sparsematrix algorithms. In a different direction, indexed linear functions are a representation
for matrices. Indeed, they are a maximally expressive representation for matrices, that can encode

any structured (or unstructured) sparsity pattern whatever. This statement is not very deep: the

sine qua non of a sparse matrix representation is to be able to compute matrix-vector products𝑀𝑥 ;

the function that closes over the matrix𝑀 and computes that product with a vector 𝑥 it accepts as

argument is algebraically linear; and it seems obvious that any such function can be written to

type-check as linear in 𝑥 in some reasonable variant of Linear A (perhaps extended with control

flow as needed).

From this lens, our contribution is a universal sparsity-preserving transposition operation

for sparse matrix representations (as well as a formalization of the intuition that an automatic

derivative is a sparse representation of the Jacobian of the differentiated function). Are there any

other sparse-matrix operations that can be rendered universal as code transformations on Linear A?

Can sparse-matrix algorithms for, say, matrix multiplication be fruitfully recovered from a known

code transformation (e.g., simplification or partial evaluation) applied to the composition of the

corresponding indexed linear functions? Can new sparse-matrix algorithms or representations be

derived more simply or robustly from this direction?

11 CONCLUSION
We presented a decomposition of reverse-mode automatic differentiation into three distinct program

transformations: forward-mode differentiation, unzipping, and transposition. The interface between

these transformations is a (substructural) linear type system for checking (algebraic) linearity.

Automatic derivatives type-check as linear, unzipping separates the linear and non-linear parts of a

computation, and transposition runs the linear part backward to efficiently compute its transpose.

This decomposition clarifies and simplifies automatic differentiation systems, by separating the

mind-bending direction-reversal needed for reverse-mode AD from the actual differentiating. This

decomposition also sheds light on checkpointing strategies—the decision of whether to save an

intermediate value or recompute it is entirely the province of the unzipping transformation, which

amounts to performing partial evaluation in a way that trades off run-time computation for lower

memory usage. Transposition handles any set of choices mechanically.
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