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We present a novel programming language design that attempts to combine the clarity and safety of high-level

functional languages with the efficiency and parallelism of low-level numerical languages. We treat arrays as

eagerly-memoized functions on typed index sets, allowing abstract function manipulations, such as currying,

to work on arrays. In contrast to composing primitive bulk-array operations, we argue for an explicit nested

indexing style that mirrors application of functions to arguments. We also introduce a fine-grained typed effects

system which affords concise and automatically-parallelized in-place updates. Specifically, an associative

accumulation effect allows reverse-mode automatic differentiation of in-place updates in a way that preserves

parallelism. Empirically, we benchmark against the Futhark array programming language, and demonstrate

that aggressive inlining and type-driven compilation allows array programs to be written in an expressive,

“pointful” style with little performance penalty.
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1 INTRODUCTION
Recent years have seen a dramatic rise in the popularity of the array programming model. The

model was introduced in APL [Iverson 1962], widely popularized by MATLAB, and eventually

made its way into Python. There are now tens of libraries centered around 𝑛-dimensional arrays

(nd-arrays), each with its own unique strengths. In fact, this model is now so important that many
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hardware vendors often market their products by evaluating various nd-array workloads, and

publish their own libraries of array kernels (e.g., NVIDIA’s cuBLAS) or compilers for array programs

(e.g., Google’s XLA). We theorize that the nd-array model’s recent success is due to a convergence

of three factors: its reasonable expressiveness for concise, high-level specification of (relatively)

large workloads; the abundant parallelism available within the individual nd-array operations; and

the preservation of parallelism under automatic differentiation.
Preserving parallelism under automatic differentiation is a particularly important advantage. The

trouble is that the most popular automatic differentiation algorithm (the so-called reverse-mode)

inverts all data dependencies in the original program. This unfortunately turns perfectly parallel

loops that read a datum repeatedly into sequential loops that have to write to the cotangent for

that datum many times. Most modern nd-array libraries circumvent this problem by operating at a

higher level of abstraction: instead of differentiating through the individual array accesses used

to implement each operation (e.g., scalar multiply-adds in matrix multiplication), the high-level

operations themselves are replaced with new high-level operations that compute the appropriate

cotangents in bulk.
1
The result is that the reverse-AD transform for a typical nd-array program

produces another typical nd-array program, namely a sequential composition of parallel blocks.

Forcing the original program to be written at a higher level of abstraction, however, has significant

downsides. The first major flaw, in our view, is insufficient expressiveness: while composing a

program out of array operations leads to wonderfully fast and concise code when the available

array operations cover one’s needs, one faces a steep complexity and performance cliff—dropping

down to manually writing, optimizing, and differentiating new operations—as soon as they do

not. Examples of algorithms that are difficult to express efficiently in this style include differential

equation solvers, natural language processing algorithms, weather and physics simulations, and

workloads that need non-linear stencil operations. In these domains, inner loops are still regularly

written in loosely-typed, low-level Fortran or CUDA.

The model’s second major flaw is insufficient clarity: for their code size, nd-array programs are

notoriously difficult to read, reason about, and get right. Practitioners constantly complain about

“shape errors,” which are really mis-specification of the intended flow of data. Indeed, when an

entire multidimensional array is referred to by a single variable name, its internal semantics (for

instance, which dimensions are indexing what) are missing from the program—and have to be

continuously reconstructed by the programmer, which is both tedious and error-prone. Logic errors

are especially costly in two of the classic applications of array programming—stochastic simulation

and learning algorithms—because tests are less effective in these domains.

This paper introduces Dex, a new array programming language oriented around safe, efficient,

ergonomic, and differentiable typed indexing. The contributions are as follows:

• Typed indexing constitutes a novel, concise yet flexible notation for expressing array programs

(Section 2.1).

• Typing array index sets creates an analogy between arrays and functions, which in turn leads

to a fruitful convergence of array and functional programming (Section 3.3).

• We introduce an effect for associative accumulation in Dex’s effect system. The Accum effect

hits a sweet spot of expressiveness and parallelizability (Section 2.3).

• We improve upon the defunctionalization methods presented in Hovgaard et al. [2018], in

a way that allows functions to be treated as first-class objects and can deal with arrays of

functions or returning functions from conditionals (Section 4).

1
Such transformation rules can either be written by hand for each operation [Bradbury et al. 2018], or derived using

special-purpose techniques [Hückelheim et al. 2019].
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• We implement efficient, parallelizable automatic differentiation with full coverage of Dex,

including indexing (Section 5).

• We articulate several lessons we learned from treating AD as a first-class concern while

designing the Dex language (Section 5.3).

• We describe our strategy for achieving competitive performance (Section 6). The main

ingredients are:

– Work-efficient automatic parallelization (preserved through AD) via the Accum effect (Sec-

tion 6.1).

– Straightforward loop fusion via inlining for expressions (Section 6.2).

– Index-set-type directed compilation to elide bounds checks and make layout decisions

(Section 6.3).

2 DEX BY EXAMPLE
Dex is a strict functional language for index-oriented

2
array programming defined by a confluence

of several features:

• Typed array dimensions and indices (Section 2.1),

• A parallelism-friendly effect system (Section 2.3), and

• Work- and parallelism-preserving automatic differentiation (Section 5).

We start with building intuition and giving examples, especially in Section 2.2. A formal description

of the language can be found in Section 3.

2.1 Arrays with Typed Indexing
Dex defines two syntactic forms for manipulating arrays. The first form is used to construct arrays:

array = for i:n. expr

The for expression is similar to the build function of 𝐹 [Shaikhha et al. 2019]. The result of such a

for expression is an array constructed by repeatedly evaluating the body, expr, with i bound to

each consecutive member of the index set n. The array will thus have as many elements as n has
members. As we will see in the next few examples, n can usually be omitted, because Dex infers it

from the body.

The second form is array indexing, written using the (.) operator:

element = array.j

The index j must be a member of the array’s index set n, and array.j extracts the jth element.

These two operations are the fundamental building blocks of all Dex programs.

The magic sauce is the type of arrays. We type an array as

array : [IndexSet n] n=>a,

which exposes both the index set n and the element type a to the type system.
3
Array elements

can be any type, including functions and other arrays, but array indices have to obey an IndexSet
class constraint. More on this in Section 3.4.

As our first example, consider transposing a matrix matrix:

transposed = for i j. matrix.j.i

This expression loops over two indices (one for each dimension of matrix) in the order i then j,
but then applies them in reverse. The same pattern can be easily adapted to reorder any number of

2
“Pointful”, as opposed to point-free.

3
The type system becomes value-dependent to accommodate index sets; more in Section 3.2.
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def update (c:Complex) (z:Complex) : Complex = c + (z * z)
def inBounds (z:Complex) : Bool = complex_abs z < 2.0
def escapeTime (c:Complex) : Int =

fst (yieldState (0, zero) \(n, z).
for i:(Fin 1000).
z := update c (get z)
n := (get n) + (BToF (inBounds (get z))))

xs = linspace (Fin 300) (-2.0) 1.0
ys = linspace (Fin 200) (-1.0) 1.0
mandelbrot = for j i. escapeTime (MkComplex xs.i ys.j)

Fig. 1. Computing the Mandelbrot set in Dex.

dimensions of an 𝑛-dimensional array. Notice that we didn’t have to give iteration bounds in the

for expression—Dex’s type system infers them from the type of matrix.
We can just as easily multiply two matrices x and y.

x_times_y = for i j. sum (for k. x.i.k * y.k.j)

In this example, all the for-bound variables are again used in array indexing, meaning that their

ranges can be inferred from the types of x and y. Explicit indexing makes it straightforward to

work out the semantics of this, even if one is not already familiar with it. Reading the expression

inside out:

(1) We first construct element-wise products of vectors selected from the first dimension of the

first input (rows) and second dimension of the second input (columns): for k. x.i.k *
y.k.j.

(2) Then, we take the sum of these products by calling the function sum (which we return to

in Section 2.3).

(3) This computation is repeated for all valid indices i and j (for i j.). Since the result of sum
is a scalar, the result x_times_y of the repeated computation is a two-dimensional array (i.e.,

a matrix).

Note that we used the same index, k, for the second dimension of x as for the first dimension

of y. Dex’s type system will therefore statically check those array dimensions for equality. Typed

index sets make a whole class of shape errors easier to detect and repair in Dex.

2.2 Complete Example
Other than typed indexing and the effect system we discuss in Section 2.3, the core of Dex

looks like a strict functional programming language in the ML [Milner et al. 1997] syntactic family.

Figure 1 shows a complete example Dex program for computing the Mandelbrot set. A few points

to pay attention to when parsing this:

• The colon : is Dex for “has type”, and introduces the mostly-optional type annotations for

variable bindings and function return values.

• The back-slash \ is a lambda function expression: \n z. body is a function that accepts

arguments n and z (in this case, references in the State effect).

• Note the syntactic overloading of the dot (.). It serves as a decimal point, as the array indexing

operator, and as the delimiter between the binders and body of for and \ expressions.

• The (Fin 1000) is an index set representing 1000 elements. We will cover Fin when we

discuss index sets in Section 3.4; in this program, it indicates that our loop should iterate

1000 times, and specifies the number of elements in the grid returned by linspace.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 88. Publication date: August 2021.
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The yieldState function is a convenience wrapper which returns the final state after running a

stateful action (using the primitive runState). We now proceed to a more in-depth discussion of

Dex’s effect system.

2.3 Effects
Pointwise transforms (maps)—the fundamental building block of array programs—are easy to write

with Dex’s for loops. But they are far from being sufficient for an expressive modern array language.

Even the simple matrix multiplication example required a sum function, which cannot be written

as a pure for expression because it must combine many different elements of the input array while

iterating across the index set.

We thus need a means for controlled communication across different iterations of a for. To that

end, we extend Dex with an effect system. The type of every expression is extended with the set of

effects its evaluation will induce. We give the flavor of Dex’s effects by discussing two different

ways to spell sum.

2.3.1 Summing as State. One of the supported effects is State, allowing arbitrary reads and updates
to a shared state, which is sufficient to make sum expressible in Dex:

sum = \x:n=>Float.
(_, total) = runState 0.0 \ref.
for i.

ref := (get ref) + x.i
total

Let us dissect this snippet line-by-line. We begin with a lambda definition that binds the vector to be

reduced to the variable x, whose type we annotate as n=>Float. Here n denotes an arbitrary index

set, since we want sum to sum over arrays of any size. Next, we apply the runState combinator,

which allows us to locally execute a stateful action within the pure function sum. runState takes
the initial value of type s for the state along with a stateful function, and applies the function once

to an appropriately-initialized mutable reference of type Ref h s.4

runState : [Data s] s -> (h:Type ?-> Ref h s -> {State h} a) -> (a, s)

Once we have the reference ref in scope, we begin looping over indices that are valid for the vector

x. At each step we retrieve the current value of the state using the get function, add to it the i-th
value in x, and update the state with the result.

get : Ref h a -> {State h} a
(:=) : Ref h a -> a -> {State h} Unit

Finally, runState returns a pair containing the result of its body and the value of the reference

once the body has been evaluated. Since the body does not have any meaningful results (it is of

type n=>Unit—an array full of unit values), we skip the first component and return the sum.

The mysterious h parameter appearing in the Ref type implements the classic rank-2 polymor-

phism trick used for Haskell’s ST monad [Launchbury and Peyton Jones 1994]. The user function

given to runState must accept an argument of type Ref h s for an arbitrary local type parameter

h, which guarantees that the reference cannot escape the block in which it is valid. The ?-> function
arrow in Dex indicates that h is an implicit argument which can be inferred from context and thus

does not have to be written out by the user.

2.3.2 Summing as Accumulation. Unfortunately, expressing sum with a State effect as above is a

mixed bag. While it does compute the correct sum, it sacrifices parallelism in the process. Whenever

the body of a for expression induces a State effect, it is possible that each loop iteration can have

4
The state has to be something we can allocate a mutable buffer for, which we model with the Data class constraint.
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arbitrary dependencies on previous iterations. A sufficiently powerful analysis might let us discover

some subset of stateful loops that are parallelizable, but such an analysis is difficult, and in the

absence of such an an analysis we are forced to pessimistically evaluate the loop sequentially.

Instead of that, Dex includes a more specific accumulation effect, which we call Accum. The
accumulation effect is similar to State in that it also exposes mutable references, but Accum
imposes two critical restrictions on them. First, updates in Accum must be additive contributions to
references with (finite-dimensional) vector space types:

(+=) : [VectorSpace w] Ref h w -> w -> {Accum h} Unit

Here VectorSpace w denotes a constraint on the (otherwise polymorphic) type w: it must be an

array n=>b for some vector space b, a pair (b, c) of vector spaces b and c, or a Float. Note that
in every vector space addition forms a monoid (is associative and has a neutral “zero” element).

Second, there is no “read” operation in Accum—the value of the accumulator cannot be retrieved

until the reference goes out of scope at the end of the runAccum handler (and thus until all writes

have completed; the reference is initialized to the zero element of the vector space):

runAccum : [VectorSpace w] (h:Type ?-> Ref h w -> {Accum h} a) -> (a, w)

Together, these constraints mean that all updates to a reference in Accum are associative (up to

floating-point roundoff), and therefore functions using the Accum effect can be efficiently parallelized.

Specifically, we can partition any sequence of updates into multiple subsequences, compute partial

sums for each subsequence, and then finally combine the partial sums.

Using the Accum effect, we can implement sum in a parallel-friendly way:

sum = \x:n=>Float.
snd (runAccum \total.
for i. total += x.i)

The Accum effect turns out to be flexible enough to cover many numerical algorithms, including

automatically generated derivatives, allowing them to be parallelized efficiently (see Section 6.1).

However, since not all algorithms are compatible with the restrictions of Accum, Dex allows the
user to choose between parallel-but-write-only Accum and serial-but-flexible State.
In the full surface language runAccum is extended to support arbitrary user-defined Monoid

instances in the style of Haskell, which makes the Accum effect essentially isomorphic to the Writer
monad. However, automatic differentiation only needs accumulation on finite-dimensional vector

spaces, so for this paper we assume the more restrictive vector space constraint.

2.3.3 Reference Indexing. While the design of our effect system largely follows previous research,

with Koka [Leijen 2014] being a huge inspiration, we have extended it a bit further to include

reference indexing. Specifically, the references used by the State and Accum effects allow the

following pure operation:

(!) : Ref h (n=>a) -> n -> Ref h a

Given a reference to an array and an index, the ! operator extracts a reference to an array element.

Many linear-algebra routines often perform operations over, e.g., the rows of a matrix, and being

able to “slice” references in this way makes it especially convenient to implement such routines,

especially since chained reference indexing efficiently takes apart nested arrays. But it turns out

that it is also a crucial component for being able to express parallel patterns such as segmented

reductions or histograms (at least in a work-efficient way, see 6.1.3):

histogram = \x:n=>bins.
snd (runAccum \hist.
for i. hist!(x.i) += 1)
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Finally, reference indexing is important for the efficiency of reverse-mode automatic differentiation

in the presence of indexing. More details can be found in Section 5.3.4.

2.4 Comparisons
We conclude our informal introduction to Dex by comparing its expressiveness

5
with three other

array programming notations. Our running point of comparison is the matrix multiplication we

have already seen, this time written as a Dex function:

def matrix_multiply (x:n=>m=>Float) (y:m=>o=>Float): n=>o=>Float =
for i j. sum (for k. x.i.k * y.k.j)

2.4.1 Combinator Languages. Most of the other functional languages for array computing (e.g.

Futhark [Henriksen et al. 2017], Accelerate [Chakravarty et al. 2011], LIFT [Steuwer et al. 2017], XLA)

take a somewhat different approach than Dex. Instead of exposing the array building expressions

and encouraging explicit indexing, they usually provide a set of array combinators built into the

language that are the only way to manipulate arrays. The combinators are often modeled after

higher-order functions common between the functional programming and parallel computing

communities, such as map, scan, zip, and reduce. Since this is the currently prevailing approach

to array computing, it is the target of many of our comparisons in this paper, and we will refer to

the languages that follow this approach as array-combinator languages.
In an array-combinator language, matrix multiplication might be implemented as follows:

combinator_matrix_multiply = \x y.
yt = transpose y
dot = \x y. sum (map (uncurry *) (zip x y))
map (\xr. map (\yc. dot xr yc) yt) x

While this implementation is quite terse as well, it arguably does not explicate the meaning of

matrix multiplication quite as explicitly as the Dex version. Many simple operations, such as a dot

product, have to be expressed using multiple combinators, with explicit zipping when multiple

arguments are to be consumed. Finally, it is worth noting that this style is also available in Dex,

and the above is a valid Dex function.

2.4.2 Einstein Notation. Another interesting reference point is the Einstein notation, for instance

as realized in the domain-specific language for the first arument to the function numpy.einsum.
This function has been hugely successful in recent years and is one of the more popular functions,

especially in the field of machine learning. It generalizes a wide variety of linear algebra operations,

including matrix multiplication:

def matrix_multiply(x, y):
return np.einsum('ik,kj->ij', x, y)

But, as it turns out, it is also very close to the Dex notation! Notice how the ik and kj index

sequences exactly follow the Dex indexing expressions, while the ij output annotation is exactly

the order of for binders. Hence, Dex can be seen as a sort of generalized Einstein notation, thanks to
type inference automatically binding dimension sizes to loop indices. But Dex is also more flexible,

because it is not limited to loops that first multiply and then sum dimensions in the standard

semiring of real numbers. Both of those extensions are similar in spirit to the extensions explored

by projects such as Tensor Comprehensions [Vasilache et al. 2018].

2.4.3 C-style Imperative Languages. The de-facto language for low-level numerical computations is

C, which benefits from a large body of research on optimization techniques, especially for numerical

5
While expressiveness and efficiency can be at odds, we defer the discussion of performance implications until Section 6.
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programs [Bondhugula et al. 2008; Grosser et al. 2012]. A straightfoward matrix multiplication

routine in C might look something like this:

void matrix_multiply(
float* x, int x_rows, int x_cols, float* y, int y_cols, float* out) {
for(int i = 0; i < x_rows; i++) {
for(int j = 0; j < y_cols; j++) {

for(int k = 0; k < x_cols; k++) {
out[i][j] += x[i][k] * y[k][j]; }}}}

Indeed, the inner loop body is almost identical with what we wrote in Dex, and has the same

benefit of explicitness about how the dimensions of the input arrays are handled. However, by

statically inferring the loop bounds, Dex is able to eliminate almost all of the syntactic noise—even

more than the foreach syntax available in Java and C++. On top of that, Dex’s effect system exposes

the parallelism available in this code, making automatic parallelization relatively straightforward

(see Section 6.1.1), and Dex’s AD system breaks neither the parallelism nor the total work when

differentiating through such computations (see Section 5.3).

3 THE DEX LANGUAGE
We now transition to describing Dex more formally and in more detail. The structure of the rest of

the paper mirrors the architecture of the Dex compiler:

(1) Dex parses the surface language, elaborates syntactic sugar, and infers omitted type annota-

tions, producing core IR. We describe the core IR in Section 3.1; we do not discuss parsing

and desugaring since they are standard.

(2) We give the type system in Section 3.2. Type inference uses a bidirectional algorithm insipred

by Peyton Jones et al. [2007], but we omit discussing it in the interest of space.

(3) Dex simplifies (Section 4) the core IR into a restricted subset that omits higher-order functions.

(4) As part of simplification, Dex differentiates (Section 5) all functions that appear as arguments

to differentiation operators—the compiler treats AD as a subroutine of simplification. This is

both logical, since differentiation is a higher-order function itself, and convenient, since it

permits Dex’s AD to consume post-simplification IR but emit core IR, and rely on continuing

simplification to clean up after it (e.g., see Section 5.3.2).

(5) Dex optimizes the simplified and differentiated IR with standard techniques and generates

LLVM bytecode for final compilation for CPU or GPU (Section 6). Parallelism is extracted

automatically (Section 6.1).

3.1 Core Dex IR
While the full Dex language supports many features (e.g. algebraic data types, dependent pairs, type

classes, implicit arguments, automatically synthesized arguments, etc), we focus our exposition here

on the essential core of the language. Figure 2 presents a simplified version of the core intermediate

representation (IR). This is the central data structure in the Dex compiler.

The core IR is very close to the surface language, although it is somewhat compressed and requires

explicit type annotations on all binders. Incompletely annotated Dex surface terms are elaborated

into this representation with a bidirectional type inference algorithm inspired by Peyton Jones et al.

[2007].

Most of the core language has fairly standard semantics. We have already discussed the for
expression (Section 2.1) and the effect system (Section 2.3), andwewill introduce the view expression
in Section 3.3 (which provides an alternate way to construct values of array types). One notable

limitation of the Dex language is that let bindings are non-recursive, and as such it is impossible
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Values (including types)

𝑣, 𝜏 ::= 𝑥 variable

| 𝑙 literal

| Type | Unit | Int | Float base types

| Fin 𝑣 finite index set

| 𝜏 → 𝜖 𝜏 function type

| 𝜏 ⇒ 𝜏 array type

| 𝜏 × 𝜏 pair type

| Either 𝜏 𝜏 sum type

| Ref 𝜏 𝜏 reference type

| \𝑥 :𝜏 . 𝑒 function

| view 𝑥 :𝜏 . 𝑒 table view

| (𝑣, 𝑣) pair constructor

| Left 𝜏 𝑣 | Right 𝜏 𝑣 sum type constructors

| case 𝑣 of Left 𝑥 → 𝑣 𝑥 value case expression

Right 𝑥 → 𝑣 𝑥

Contexts

𝐸 ::= • hole

| let 𝑥 : 𝜏 = 𝑒 in 𝐸 let context

Expressions

𝑒 ::= 𝑣 value

| let 𝑥 : 𝜏 = 𝑒1 in 𝑒2 let expression

| 𝑣 𝑣 function application

| 𝑣.𝑣 table indexing

| for 𝑥 :𝜏 . 𝑒 table builder

| fst 𝑣 | snd 𝑣 pair projections

| case 𝑣 of Left 𝑥 → 𝑒 case expression

Right 𝑥 → 𝑒

| 𝑣 ! 𝑣 reference slicing

| runState 𝑣 𝑣 | get 𝑣 | put 𝑣 𝑣 State operations

| runAccum 𝑣 | 𝑣 += 𝑣 Accum operations

| 𝑣 + 𝑣 | 𝑣 * 𝑣 arithmetic operations

| linearize v v linearization

| transpose v v transposition

Effects

𝜖 ::= Pure no effects

| State 𝜏, 𝜖 state effect

| Accum 𝜏, 𝜖 accumulator effect

Fig. 2. Dex core IR. Dex’s type system is value-dependent; here we distinguish 𝜏 and 𝑣 only to hint whether a
given value is expected to have type Type or any type, respectively, as they are not actually different in the
Dex grammar.

to express recursive functions in both the surface language and core IR. This restriction is quite

important for the ideas presented here. Among other reasons, it lets us ensure that the normalization

procedure outlined in Section 4 terminates. While this limitation might seem significant, in our

experience with Dex, the for iterator abstraction provides enough expressive power for quite

a wide range of applications. Compared to general recursion, for is both quite familiar to the

scientific computing community and much easier to compile to the flat parallelism required by

modern hardware accelerators. As a simple substitute for recursion and fixed-point iteration, the

full language additionally includes a while loop, which we omit here as an entirely conventional

language construct, albeit with interesting implications for AD.

Contexts, denoted 𝐸, represent sequences of let bindings with a hole in the place of the final

result. These are used during the simplification and linearization passes, and are not a part of

the surface language. We write 𝐸 [𝑒] for completing a context 𝐸 with an open term 𝑒 to obtain an

expression. Contexts may also be composed, which we write 𝐸1 ◦ 𝐸2, by inserting 𝐸2 into the hole

of 𝐸1; this concatenates the let bindings.

3.2 Type System
In Dex, we use a form of value dependent types [Swamy et al. 2011], and hence our core language is

separated into two syntactic categories: values and expressions. Values approximately correspond

to the fully reduced terms that can be implicitly lifted to appear in types.
6
So, while we do not

allow arbitrary expressions in types, we do allow arbitrary expression results, provided they are

bound to a variable. This makes type checking quite straightforward, as type equality remains

syntactic (up to alpha-equivalence). The downside is a small loss in precision: when two terms that

reduce to the same value are bound to different variables, this can cause type mismatches between

subsequent values that lift those variables into their types. In typical Dex programs, however, this

implicit lifting is used only for array shapes, and those are fortunately usually each lifted just once

in the program, diminishing the importance of this drawback.

6
One notable exception is the “value case” construct, which is generally not considered work-free. We include it as a value

on a technicality: we need it to represent the result of simplifying a case of function type (see rule SCase in the extended

version). We do not recognize “value case” values when parsing user code, defaulting to case expressions. In particular,

value case does not occur in types.
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𝜖, 𝑥 :𝜏1, Γ ⊢ 𝑒 : 𝜏2 ⊢IdxSet 𝜏1
𝜖, Γ ⊢ (for 𝑥 :𝜏1 . 𝑒) : (𝜏1 ⇒ 𝜏2)

TypeFor

Pure, 𝑥 :𝜏1, Γ ⊢ 𝑒 : 𝜏2 ⊢IdxSet 𝜏1
𝜖, Γ ⊢ (view 𝑥 :𝜏1 . 𝑒) : (𝜏1 ⇒ 𝜏2)

TypeView

Γ ⊢ 𝑣1 : (𝜏1 ⇒ 𝜏2) Γ ⊢ 𝑣2 : 𝜏1

𝜖, Γ ⊢ (𝑣1 .𝑣2) : 𝜏2
TypeIndex

Γ ⊢ 𝑣1 : Ref ℎ (𝜏1 ⇒ 𝜏2) Γ ⊢ 𝑣2 : 𝜏1

𝜖, Γ ⊢ (𝑣1!𝑣2) : Ref ℎ 𝜏2
TypeSlice

Γ ⊢ 𝑣 : Ref ℎ 𝜏

State ℎ, 𝜖, Γ ⊢ get 𝑣 : 𝜏
TypeGet

Γ ⊢ 𝑣1 : Ref ℎ 𝜏 Γ ⊢ 𝑣2 : 𝜏

State ℎ, 𝜖, Γ ⊢ put 𝑣1 𝑣2 : Unit
TypePut

Γ ⊢ 𝑣1 : 𝜏1 Γ ⊢ 𝑣2 : (Ref ℎ 𝜏1 → (State ℎ, 𝜖) 𝜏2) ⊢Data 𝜏1
𝜖, Γ ⊢ runState 𝑣1 𝑣2 : (𝜏2 × 𝜏1)

TypeRunState

Fig. 3. Subset of Dex’s typing rules for arrays and effects. The judgement ⊢IdxSet 𝜏 denotes a membership
of type 𝜏 in the type-class IdxSet. The remaining rules and type-class definitions can be found in the
supplementary material. For type checking, we model effects as capabilities in the spirit of Brachthäuser
et al. [2020].

The most interesting typing rules for the core language are presented in Figure 3. The typing

judgement 𝜖, Γ ⊢ 𝑒 : 𝜏 can be read as “given the capability to perform effects 𝜖 , expression 𝑒

evaluated in an environment with variables of types Γ produces a result of type 𝜏 .” Note that effects

can also appear in types, but only on the right-hand side of a function type 𝜏1 → 𝜖 𝜏2.

While we only present the rules for type-checking here, the surface language of Dex supports

extensive type-inference. We expect that inference plays a crucial role in enhancing the usability of

the language, especially in presence of array shapes in types, but we omit the inference rules from

this work due to space constraints.

3.3 Duality of Functions and Arrays
We chose => as the array type constructor for its similarity to the function type constructor ->.
Indeed, functions and arrays are almost perfectly analogous. Both are language constructs with

abstraction and application, and both have the same reduction rule: (\x. expr) y reduces to

[x->y]expr just as well as (for x. expr).y does (at least when expr is pure). The only real

difference is in when the abstraction body is evaluated. In the case of functions, this happens at

each application site, whereas in the case of for expressions it happens eagerly when the array is

first defined.

Arrays are in fact just a representation for a fully memoized function: the application of an array

computes the element by looking it up in memory. Conversely, functions can be seen as “lazy” or

“compressed” arrays that compute the elements just-in-time as they are requested. Functions also

do not require their argument type to be enumerable, whereas precomputing an array forces that

requirement on us. Likewise, if the body of a function has an effect, that effect occurs when the

function is called, whereas a for expression executes all the effects for all the iterations immediately

(when relevant, the order defined to be is the element order of the index set).

In some cases, it is useful to produce a value of type n=>a without fully memoizing it; this can be

used to model views or slices of an existing (memoized) array without unnecessary memory copies.

We thus include in the core IR a table view expression

view i:n.expr,

which has the same type as for i:n.expr but is evaluated lazily, each time the result is indexed,

rather than eagerly. Note, however, that because array indexing is expected to not carry any effects,

the body of a view has to be pure.
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The utility of view expressions is arguable in the surface language, but it turns out to be a very

useful tool in the compiler implementation. We often use view to represent arrays that would be

wasteful to materialize in full. This is especially important in implementing automatic differentiation

with the right efficiency guarantees, because it allows us to avoid materializing arrays full of zero

values for certain tangent expressions (see Zero[𝜏] in Figure 6). As we will see later (Section 4,

rule SFor), having such a lazy array type is also useful for creating “array coercions” that will be

used throughout the simplification pass. Finally, one more interesting use case is interfacing with

(immutable) foreign-memory. expr can turn an index type into an offset used to dereference a

pointer underlying an imported array, while having sufficient flexibility to represent a variety of

data layouts (column-major, row-major, strided, triangular, etc.).

One might imagine taking this analogy to the logical extreme and dispensing with the distinction

between functions and arrays entirely, at least for pure expressions when the evaluation order

matters less. We have not seen a system take that approach successfully, and in Dex, we instead

leave the choice of representation in the hands of the programmer.

3.4 Types of Array Indices
As we noted when we introduced the for expression, not all types can be used as indices. We call

every type that can be so used an index set. In this section we summarize the requirements for an

index set, and briefly discuss how we discharge them in Dex.

Firstly, each index set is required to have a finite number of members, as otherwise we couldn’t

represent the array in finite memory. Secondly, because index sets are used to define iteration

spaces in for expressions which can have side effects, we need to be able to enumerate the members

of each such type in a fixed total order to be able to assign consistent semantics to the for loops.
Hence, we additionally require each index set to specify a bijection to integers between 0 and

the size of the index set (exclusive). The effects induced by a for loop are then guaranteed to be

observed in the iteration order of the index set (even if the loop is chosen by the compiler to be

parallelized). Both of those requirements can be conveniently summarized in a Haskell-style type

class, here presented using Dex’s syntax for type classes (which we do not discuss further, due to

space concerns):

interface IndexSet a where
size : Int
ordinal : a -> Int -- returns integers between 0 and size - 1
fromOrdinal : Int -> a -- partial and only defined on valid ordinals

Even though technically the type of, e.g., 64-bit integers or IEEE floating-point values satisfies

those requirements, we do not consider them to be index sets, because it is unlikely that a user

would want to have an array with as many as 2
64
entries. Instead, the basic index set type provided

by Dex is Fin : Int -> Type. It is a builtin type constructor which guarantees that Fin n has
exactly n members. It is often convenient to think about it as a prefix of the natural numbers up

to n, although there are no literals of this type available by default. Valid instances can only be

obtained from for binders or fromOrdinal.
For example, a 5 × 4 matrix of floats in Dex can be typed as (Fin 5)=>(Fin 4)=>Float. But

Fin is a regular function that can accept arbitrary integer values, not just literals. In particular,

because the Dex type system implements a form of value-dependent types [Swamy et al. 2011], it

is possible to represent arrays of statically unknown size:

n = sum (for i:(Fin 100). ordinal i * ordinal i)
x : (Fin n)=>Float = for i. 1.0
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Values

𝑣𝑑 ::= 𝑥 variable

| 𝑙 literal

| view 𝑥 :𝜏𝑑 . 𝑏𝑑 table view

| (𝑣𝑑 , 𝑣𝑑 ) pair constructor

| Left 𝜏𝑑 𝑣𝑑 | Right 𝜏𝑑 𝑣𝑑 Either constructors

Types

𝜏𝑑 ::= Type | Unit | Int | Float base types

| Fin 𝑣𝑑 finite index set

| 𝜏𝑑 ⇒ 𝜏𝑑 table type

| 𝜏𝑑 × 𝜏𝑑 pair type

| Either 𝜏𝑑 𝜏𝑑 sum type

| Ref 𝑥 𝜏𝑑 reference type

Blocks

𝑏𝑑 ::= 𝑣𝑑 value

| let 𝑥 :𝜏𝑑 = 𝑒𝑑 in 𝑏𝑑 let expression

Expressions

𝑒𝑑 ::= 𝑥.𝑣𝑑 table indexing

| for 𝑥 :𝜏𝑑 . 𝑏𝑑 table builder

| fst 𝑥 | snd 𝑥 pair projections

| case 𝑥 of Left 𝑥 → 𝑏𝑑 case expression

Right 𝑥 → 𝑏𝑑

| 𝑥 ! 𝑣𝑑 reference slicing

| runState 𝑣𝑑 (\ℎ :Type 𝑥 :𝜏𝑑. 𝑏𝑑 ) State handler

| get 𝑣𝑑 | put 𝑣𝑑 𝑣𝑑 State operations

| runAccum (\ℎ :Type 𝑥 :𝜏𝑑. 𝑏𝑑 ) Accum handler

| 𝑣𝑑 += 𝑣𝑑 Accum update

| 𝑣𝑑 + 𝑣𝑑 | 𝑣𝑑 * 𝑣𝑑 arithmetic operations

Contexts

𝐸𝑑 ::= • hole

| let 𝑥 : 𝜏𝑑 = 𝑒𝑑 in 𝐸𝑑 let context

Fig. 4. Post-simplification Dex IR, a first-order subset of the core IR given in Figure 2.

Dex also allows the definition of richer index sets than Fin, which we found useful for expressing

a wide range of numerical algorithms. Space prevents us from covering the possibilities thoroughly

here, but we highlight tuples as one particularly good example. A tuple of index sets is a valid

index set if and only if all its components are valid index sets. Tuples let us capture a type-safe

“flattening” and “unflattening” transformation as a form of currying for arrays:

x : n=>m=>Float = ...
y : (n & m)=>Float = for (i,j). x.i.j
x' : n=>m=>Float = for i j. y.(i,j)

Now, any index-polymorphic Dex library function of type, say, g: (a=>Float) -> (a=>Float) is
usable with data of type x as

g : (a=>Float) -> (a=>Float)
gx : n=>m=>Float =

y = g (for (i,j). x.i.j)
for i j. y.(i,j)

This captures one of the most common uses for the reshape operation common to bulk array

programming, while both preserving static information about array sizes, and not requiring the

type system to solve systems of Diophantine equations to check which reshapes are valid.

4 SIMPLIFICATION TO FIRST-ORDER PROGRAMS
Higher-order functions are a big part of what makes functional programming so much fun, but

it’s tricky to compile them to efficient machine code. Accelerators do not always support function

calls, or oftentimes have a high overhead penalty associated with them. In addition, AD becomes

especially tricky with higher-order functions [Manzyuk et al. 2019; Ritchie and Sussman 2021].

To avoid these problems we apply a full simplification pass in the Dex compiler prior to AD and

code generation. After this pass, the only functions left are monomorphic first-order top-level

functions that are immediately and fully applied at their use sites in a program, provided that this

program returns a non-function type. Similar normalization procedures are not uncommon in array

languages [Hovgaard et al. 2018; Najd et al. 2016], and are inspired by cut elimination in formal

logic.

Figure 5 presents the details of this pass, with novel aspects tailored to Dex’s constructs (arrays

and effect handlers) and performance considerations. A point of departure from previous work

is that the pass allows returned values to be of function type, which occurs when a first-order
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𝑒 ⇝ 𝐸𝑑 , 𝑣

𝑣 ⇝ •, 𝑣
SVal

𝑒𝑑 : 𝜏𝑑 𝑥 fresh

𝑒𝑑 ⇝ let 𝑥 : 𝜏𝑑 = 𝑒𝑑 in •, 𝑥
SExpr

[𝑥 ↦→𝑣 ]𝑒 ⇝ 𝐸𝑑 , 𝑣′

(\𝑥 :𝜏 . 𝑒) 𝑣 ⇝ 𝐸𝑑 , 𝑣′
SApp

𝑒1 ⇝ 𝐸𝑑
1
, 𝑣1 [𝑥 ↦→𝑣1 ]𝑒2 ⇝ 𝐸𝑑

2
, 𝑣2

let 𝑥 : 𝜏 = 𝑒1 in 𝑒2 ⇝ 𝐸𝑑
1
◦ 𝐸𝑑

2
, 𝑣2

SLet

[𝑥 ↦→𝑣 ]𝑒 ⇝ 𝐸𝑑 , 𝑣′

(view 𝑥 :𝜏 . 𝑒) .𝑣 ⇝ 𝐸𝑑 , 𝑣′
SView

𝑒 ⇝ 𝐸𝑑 , 𝑣 binders(𝐸𝑑 ) ⊢ 𝑣 ⊲ 𝑥1..𝑛 𝑥 ∉ free(𝑥1, . . . , 𝑥𝑛) 𝑦 fresh

for 𝑥 :𝜏 . 𝑒 ⇝ (let 𝑦 = for 𝑥 :𝜏 . 𝐸𝑑 [ (𝑥1, . . . , 𝑥𝑛) ] in •), (view 𝑥 :𝜏 . let (𝑥1, . . . , 𝑥𝑛) = 𝑦.𝑥 in 𝑣)
SFor

𝑒 ⇝ 𝐸𝑑
1
, 𝑣1 Γ ⊢ L𝑥 [𝐸𝑑1 [𝑣1 ] ] ⇝ 𝑒′ 𝑒′ ⇝ 𝐸𝑑

2
, 𝑣2

linearize (\𝑥 :𝜏 . 𝑒) 𝑣 ⇝ [𝑥 ↦→𝑣 ] (𝐸𝑑
2
, 𝑣2)

SLinearize

𝑒 ⇝ 𝐸𝑑
1
, 𝑣1 T𝑥→𝑟 [𝐸𝑑1 [𝑣1 ], 𝑣𝑡 ] ⇝ 𝑒′ yieldAccum (\ℎ :Type 𝑟 :Ref ℎ 𝜏. 𝑒′) ⇝ 𝐸𝑑

2
, 𝑣2 𝑟, ℎ fresh

transpose (\𝑥 :𝜏 . 𝑒) 𝑣𝑡 ⇝ 𝐸𝑑
2
, 𝑣2

STranspose

𝑥 :𝜏 ⊢ 𝑣 ⊲ 𝑦

· ⊢ 𝑣 ⊲ ∅
Empty

𝑥 :𝜏𝑥 ⊢ 𝑣 ⊲ 𝑦 𝑥1 ∈ free(𝑣)
free(𝜏1) ∩ 𝑦 = ∅

(𝑥1:𝜏1), 𝑥 :𝜏 ⊢ 𝑣 ⊲ 𝑥1, 𝑦
Used

𝑥 :𝜏𝑥 ⊢ 𝑣 ⊲ 𝑦 𝑥1 ∉ free(𝑣)
(𝑥1:𝜏1), 𝑥 :𝜏 ⊢ 𝑣 ⊲ 𝑦

NotUsed

Fig. 5. Subset of simplification rules. See the extended version for the remaining rules. L and T are defined
in Figure 6 and Figure 7 respectively.

function uses higher-order constructs internally. We are also able to get much more mileage out of

this kind of simplification because Dex has no constructs for defining recursive functions.

The judgement form

𝑒 ⇝ 𝐸𝑑 , 𝑣

represents the conversion of an expression 𝑒 in Dex core IR to a simplification context 𝐸𝑑 that

contains all the computation that needs to be performed before 𝑒 reaches a value form. Here 𝑣 is an

(ordinary) value in Dex core IR. Figure 4 presents the subset of Dex’s core IR that can be reached

through these simplification contexts. The expressions 𝑒𝑑 that may appear in a simplification

context are very much like the expressions of Core but only contain values that come from a

syntactic subset of Dex values, which we denote with 𝑣𝑑 . The post-simplification IR in particular

does not include functions or function types.

Simplification is semantics-preserving and non-work-increasing, in the sense that if 𝑒 ⇝ 𝐸𝑑 , 𝑣

then completing 𝐸𝑑 [𝑣] produces a term operationally equivalent to 𝑒 which does not introduce any

more work. We inline let bindings (rule SLet) and beta reduce wherever possible (rules SApp and

SView). To avoid duplicating runtime work, we only substitute let- and lambda- bound variables

with values 𝑣 . We emit let bindings for expressions we want to evaluate at run-time (rule SExpr),

adding them to the context, 𝐸𝑑 .

The difficult part is simplification through control constructs like for. What happens if our

source program builds a table of functions, like the following?

for i.
y1 = f1 xs.i -- f1 is an expensive function
y2 = f2 y1 -- f2 is an expensive function
\z. y1 + y2 + z

Each function in the table is different, but they all share the same code: \z. y1 + y2 + z. The
only meaningful difference is the run-time value of the variables y1 and y2, accessed from the
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function’s lexical scope. These might be expensive to compute, so we don’t want to just inline the

table definition at its indexing sites. Instead, the simplified context captures the variables y1 and y2
(or rather their simplified counterparts) as a tuple, turning the table of functions into a table of data.

The value we produce is a view that indexes into the table of data to reconstitute each function:

-- Simplified context
let xs = for i.

y1 = f1 xs.i
y2 = f2 y1
(y1, y2)

in

-- Residual value reconstructing original type
view i.

(y1, y2) = xs.i
\z. y1 + y2 + z

This transformation is handled by the rule SFor. First we recursively simplify the body of the

expression 𝑒 into a context 𝐸𝑑 and a residual value 𝑣 . Next, the judgement binders(𝐸𝑑 ) ⊢ 𝑣 ⊲𝑥1..𝑛 to

a first approximation calculates the free variables of 𝑣 that are bound by 𝐸𝑑 . The context we return,

(let 𝑦 = for 𝑥 :𝜏 . 𝐸𝑑 [(𝑥1, . . . , 𝑥𝑛)] in •), effectively binds a table of tuples for the context-bound

variables. Finally the value we return can deconstruct, for every element in that table, a tuple of

these values and use them in 𝑣 .

Returning to the 𝑥 :𝜏 ⊢ 𝑣 ⊲ 𝑦 judgement, we observe that the judgement is conservative to ensure

that the variables collected (𝑦) have types that do not depend on other variables and hence can

be tupled together in a non-dependent pair. With more dependency the situation is more complex.

Consider the simplification of:

for x.
n = ...
xs = for i:(Fin n). ...
\w. sum xs

Although n does not appear in the closure as a free variable, its type mentions the variable that

does appear. As it stands Dex will not perform simplification of this program, and report an error.

The solution to this is to introduce dependent pairs when floating definitions out of bodies (rule

SFor, and rules SCase, SRunAccum, SRunState in the extended version ) and convert our list of

free variables into telescopes tracking their dependencies. We leave a full formal treatment of this

idea and the implementation as future work.

Finally, this pass also serves as a monomorphization pass. Polymorphic functions are just ordinary

functions that take a type as an argument. We inline and then beta-reduce these functions at their

use-sites, just as we do for higher-order functions.

5 AUTOMATIC DIFFERENTIATION
Dex is designed around efficient automatic differentiation (AD), which is a mainstay of machine

learning and increasingly important for broader numerical computing. We now explain how Dex

implements AD, and then consider several ways in which the goal of efficient and complete AD

interacted with the design of Dex in Section 5.3. For a more detailed introduction to automatic

differentiation we refer to the survey by Baydin et al. [2017].

5.1 Linearization
The semantics of automatic differentiation of programming language functions are defined in

terms of differentiation of mathematical functions. Mathematically, for a sufficiently nice function

𝑓 : R𝑛 → R𝑚 , its derivative 𝜕𝑓 evaluated at a point 𝑥 ∈ R𝑛 is the linear map 𝜕𝑓 (𝑥) : R𝑛 → R𝑚 ,
uniquely defined by

𝑓 (𝑥 + 𝑣) = 𝑓 (𝑥) + 𝜕𝑓 (𝑥) (𝑣) + 𝑜 (∥𝑣 ∥), ∀𝑣 ∈ R𝑛 .
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Equivalently, 𝜕𝑓 (𝑥) can be seen as a linear function that best approximates the changes in the

value of 𝑓 for small perturbations of the input point 𝑥 . That is, 𝜕𝑓 (𝑥) (𝑣) approximates the quantity

𝑓 (𝑥 + 𝑣) − 𝑓 (𝑥), with the error of this approximation growing together with the norm of 𝑣 (i.e. with

larger perturbation). In particular, the definition of 𝜕𝑓 (𝑥) only depends on the behavior of 𝑓 on an

infinitesimally small neighborhood around 𝑥 .

We call 𝑥 and 𝑓 the primal input and computation, respectively, and 𝑣 the tangent; the computa-

tions on 𝑣 that occur inside 𝜕𝑓 (𝑥) are similarly called tangent computations. It can be convenient to

identify 𝜕𝑓 (𝑥) with anR𝑚×𝑛
matrix of partial derivatives called the Jacobian, but representing 𝜕𝑓 (𝑥)

as a function lets us capture the sparsity that arises from the data flow graph of the implementation

of 𝑓 .

To model this mathematical definition computationally, Dex provides a built-in function

linearize : [VectorSpace a, VectorSpace b] (a -> b) -> a -> (b & (a -o b))

Given a function of type a -> b representing a mathematical function 𝑓 , and an input of type

a representing a point 𝑥 in 𝑓 ’s domain, linearize produces an output of type b representing

𝑓 (𝑥), and a structurally linear function of type a -o b representing 𝜕𝑓 (𝑥).7 We do not formalize

the concept of structural linearity here,
8
but the intuition is that the implementation of 𝜕𝑓 (𝑥)

should never compute any intermediates that are non-linear in the input to 𝜕𝑓 (𝑥). As an example,

a program such as g = \x:Float. (x * x) / x is linear mathematically (as it can be simplified

to the identity function assuming infinite precision) but not structurally, because it computes the

non-linear term x * x as an intermediate value.

Beyond the mathematical specification, linearize in Dex is a well-behaved computational

object:

• The computational cost of linearizing a function 𝑓 at a point 𝑥 , and of applying the linearized

function 𝜕𝑓 (𝑥), is bounded by a small constant multiple of the cost of applying 𝑓 to 𝑥 .

• The linearized function 𝜕𝑓 (𝑥) is structurally similar to 𝑓 : it relies on the same effects, and

therefore exposes the same degree of parallelism.

• Every Dex function of suitable type can be linearized,
9
including functions produced by or

using linearization, allowing the computation of higher-order derivatives.

Linearization is an instance of forward-mode AD [Griewank and Walther 2008], as in e.g. Elliott

[2018]. In Dex, we realize it in the form of a compile-time source transformation, with a subset of

interesting rules outlined in Figure 6.

There are two types of rules we consider. First,

DΔ [𝑏𝑑 ] ⇝ 𝐸, 𝑒𝑝 , 𝑒𝑡

is the main elaboration used in the process of linearization. Given a mapping Δ from primal

program variables to their respective types and tangents, it translates a (simplified) expression or

block 𝑏𝑑 into three (core IR) elements: (1) a context 𝐸, (2) a primal expression 𝑒𝑝 , and (3) a tangent

expression 𝑒𝑡 . The invariant forDΔ is that 𝐸 [𝑒𝑝 ] is equivalent to 𝑏𝑑 , and 𝐸 [𝑒𝑡 ] computes the tangent

corresponding to 𝑏𝑑 assuming the free variables of 𝑏𝑑 are given the tangent values in Δ.

7
This type signature puns the type of the tangent space for a with a itself. That’s reasonable when a is a fixed-shape

structure of real numbers like n=>Float. We do permit 𝑓 to use things like integers internally, for which we have to define

an implementation-internal type function Tan[ ·], below.
8
And Dex currently does not enforce it—the linear arrow -o is provided purely as documentation and is treated equivalently

to ->. Verifying structural linearity as a typing judgement would be an interesting future extension.

9
Notably, the VectorSpace constraint restricts 𝑓 ’s type to first-order. AD of higher-order functions is subtle, [Manzyuk et al.

2019; Ritchie and Sussman 2021], so Dex eschews it. But note that 𝑓 is free to use higher-order functions internally—the

restriction is only that 𝑓 cannot be higher-order itself.
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Tan[𝜏 ]
Tan[Float] = Float Tan[Int] = Unit Tan[𝜏1 ⇒ 𝜏2 ] = (𝜏1 ⇒ Tan[𝜏2 ])
Tan[ (𝜏1 × 𝜏2) ] = (Tan[𝜏1 ] × Tan[𝜏2 ]) Tan[Either 𝜏1 𝜏2 ] = Unsupported!

Zero[𝜏 ]
Zero[Float] = 0.0 Zero[Unit] = () Zero[𝜏1 ⇒ 𝜏2 ] = view _ :𝜏1 . Zero[𝜏2 ] Zero[ (𝜏1 × 𝜏2) ] = (Zero[𝜏1 ], Zero[𝜏2 ])

Δ [𝑣 ] Δ ::= 𝑥1 → 𝑣1, . . . , 𝑥𝑛 → 𝑣𝑛 ; Γ

(. . . , 𝑥 → 𝑣, . . . ; Γ) [𝑥 ] = 𝑣 (. . . ; 𝑥 : 𝜏) [𝑥 ] = Zero[Tan[𝜏 ] ] Δ [𝑙 ] = Zero[Tan[𝜏 ] ] (when 𝑙 :𝜏)

Γ𝑑 ⊢ L𝑥1,...,𝑥𝑛 [𝑏𝑑 ] ⇝ 𝑒

D
𝑥1→𝑡1,...,𝑥𝑛→𝑡𝑛 ;Γ𝑑

[𝑏𝑑 ] ⇝ 𝐸, 𝑒𝑝 , 𝑒𝑡 𝑡1 . . . , 𝑡𝑛 fresh

Γ𝑑 ⊢ L𝑥1,...,𝑥𝑛 [𝑏
𝑑 ] ⇝ 𝐸 [ (𝑒𝑝 , \𝑡1 . . . 𝑡𝑛 . 𝑒𝑡 ) ]

LinReify

DΔ [𝑏𝑑 ] ⇝ 𝐸, 𝑒𝑝 , 𝑒𝑡

DΔ [𝑣 ] ⇝ •, 𝑣, Δ [𝑣 ] LinBlockResult

DΔ [𝑒𝑑 ] ⇝ 𝐸1, 𝑒𝑝1 , 𝑒𝑡1 D𝑥→𝑡, Δ [𝑏𝑑 ] ⇝ 𝐸2, 𝑒𝑝2 , 𝑒𝑡2 𝑡 fresh

DΔ [let 𝑥 :𝜏 = 𝑒𝑑 in 𝑏𝑑 ] ⇝ (𝐸1 ◦ (let 𝑥 :𝜏 = 𝑒𝑝1 in •) ◦ 𝐸2), 𝑒𝑝2 , (let 𝑡 :Tan[𝜏 ] = 𝑒𝑡1 in 𝑒𝑡2 )
LinLet

DΔ [𝑒𝑑 ] ⇝ 𝐸, 𝑒𝑝 , 𝑒𝑡

DΔ [𝑣1 + 𝑣2 ] ⇝ •, 𝑣1 + 𝑣2, Δ [𝑣1 ] + Δ [𝑣2 ] LinAdd
DΔ [𝑣1 * 𝑣2 ] ⇝ •, 𝑣1 * 𝑣2, ( (𝑣1 * Δ [𝑣2 ]) + (Δ [𝑣1 ] * 𝑣2)) LinMul

𝑖 :𝜏, Γ ⊢ L𝑥1,...,𝑥𝑛 [𝑏
𝑑 ] ⇝ 𝑒 𝑗 fresh

D𝑥1→𝑡1,...,𝑥𝑛→𝑡𝑛 ,Γ [for 𝑖 :𝜏 . 𝑏𝑑 ] ⇝
(let 𝑥 = for 𝑖 :𝜏 . 𝑒 in •), (view 𝑗 :𝜏 . fst 𝑥.𝑗), (for 𝑗 :𝜏 . (snd 𝑥.𝑗 𝑡1 . . . 𝑡𝑛))

LinFor

DΔ [𝑣1 ! 𝑣2 ] ⇝ •, 𝑣1 ! 𝑣2, Δ [𝑣1 ] ! 𝑣2 LinSlice

DΔ [get 𝑣1 𝑣2 ] ⇝ •, get 𝑣1 𝑣2, get Δ [𝑣1 ] Δ [𝑣2 ] LinGet
DΔ [put 𝑣1 𝑣2 ] ⇝ •, put 𝑣1 𝑣2, put Δ [𝑣1 ] Δ [𝑣2 ] LinPut

Δ = 𝑥1 → 𝑡1, . . . 𝑥𝑛 → 𝑡𝑛, Γ ℎ :Type, 𝑥 :Ref ℎ 𝜏𝑑 , Γ ⊢ Lℎ, 𝑥, 𝑥1,...,𝑥𝑛 [𝑏
𝑑 ] ⇝ 𝑒′

DΔ [runState 𝑣𝑑 (\ℎ :Type 𝑥 :Ref ℎ 𝜏𝑑. 𝑏𝑑 ) ] ⇝
(let ( (𝑥ans, 𝑥lin), 𝑥𝑠 ) = runState 𝑣𝑑 (\ℎ :Type 𝑥 :𝜏𝑑. 𝑒′) in •),

(𝑥ans, 𝑥𝑠 ),
runState Δ [𝑣𝑑 ] (\ℎ′ :Type 𝑥′ :Ref ℎ′ Tan[𝜏 ]. (𝑥lin ℎ′ 𝑥′ 𝑡1 . . . 𝑡𝑛))

LinRunState

Fig. 6. Representative rules for linearization. The linearization environment Δ carries tangent values, and
also carries the primal type environment to be able to construct zero tangents when needed.

Second,

Γ ⊢ L𝑥1,...,𝑥𝑛 [𝑏𝑑 ] ⇝ 𝑒

encodes an elaboration rule that linearizes a simplified block or expression 𝑏𝑑 with respect to some

of its free variables 𝑥1, . . . , 𝑥𝑛 , and reifies the result as a primal value and tangent function. The

result 𝑒 is of pair type. The first component of 𝑒 is equivalent to 𝑏𝑑 ; and the second component

of 𝑒 evaluates to a function that accepts tangent values for the 𝑥𝑖 and returns the corresponding

tangent for 𝑏𝑑 .

Figure 6 also includes a few supporting operations. Zero[𝜏] constructs a zero value of the vector

space instance associated with 𝜏 . Note that having the array shape as part of the type is crucial
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for this to be well-defined. Tan[𝜏] maps the type 𝜏 to its tangent type (intuitively the type of

infinitesimal perturbations to 𝜏). Tangent types necessarily have to be vector spaces, which is

why we leave Tan[Either 𝜏1 𝜏2] undefined (it is unclear which case should be used for zero). This

problem can be worked around by making the mapping to the tangent type depend on the value
instead of its type, in which case the type of the tangent would match the tangent type of the

constructor used in the primal value. We leave this extension for future work.

5.2 Transposition
In practice, AD is often used to compute the gradients of scalar-valued functions 𝑓 : R𝑛 → R.
This is useful for gradient-based optimization in machine learning, or for sensitivity analysis of

computational models to their parameters.

The linearize transform is semantically sufficient for this purpose, as given f: (Fin n)=>Float
-> Float, one could compute the gradient by applying snd (linearize f x) to 𝑛 different inputs,

each representing a standard basis vector of R𝑛 . But the cost to compute the gradient would then

be proportional to 𝑛 applications of f. For neural networks with 𝑛 ≃ 10
8
, that’s untenable!

The difficulty is that the result of linearization gives computational access to 𝜕𝑓 (𝑥) only through

application, which corresponds to multiplying by the Jacobian only on the left. Fortunately, struc-

tural linearity allows us to define another compile-time transformation that reverses the inputs

and outputs of structurally linear functions:

transpose : [VectorSpace a, VectorSpace b] (a -o b) -> (b -o a)

This operation is named transpose because it models transposition of a linear map.

Computationally, transpose obeys similar desiderata to linearize:

• The computational cost of applying transpose f is within a small constant multiple of the

cost of applying f.
• The transposed function uses the same effects as the original f, except that repeatedly reading
a value becomes associative accumulation with the (0, +) monoid, and vice versa.

10

• All structurally linear functions can be transposed, and the result is also structurally linear.

With transpose, we can compute gradients using

grad : [VectorSpace a] (a -> Float) -> a -> a
grad f x = (transpose (snd (linearize f x))) 1.0

This recovers the desired effect of computing the gradient of f in time proportional to the runtime of

f, and this is how Dex implements reverse-mode AD. See Frostig et al. [2021] for further discussion

of this approach. When transpose is used to compute gradients this way, the intermediate values

are conventionally called cotangents.
Transposition is another source transform we implement in the Dex compiler, with a selection

of rules displayed in Figure 7. The

TΩ [𝑒𝑑 , 𝑣] ⇝ 𝐸

elaboration transposes the simplified structurally linear expression 𝑒𝑑 by accumulating into the

references corresponding to its free linear variables, starting with the cotangent value 𝑣 , corre-

sponding to the result of 𝑒𝑑 . The environment Ω maps each variable to a reference storing its

(incrementally constructed) value in the transposed program.

Note that the rule LetOtherTranspose inverts the order of let-bindings in the block by se-

quencing 𝑒2 to happen before 𝑒1. Similarly, the rule ForTranspose reverses the iteration order by

10
The Dex effect system actually has a Reader effect to serve as the transpose of Accum, but a further compiler transform

could in principle eliminate Reader and replace it with variable access.
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TΩ [𝑣𝑑 , 𝑣 ] ⇝ 𝑒

T𝑥→𝑟, Ω [𝑥, 𝑡 ] ⇝ 𝑟 += 𝑡 VarTranspose TΩ [0.0, 𝑡 ] ⇝ • ZeroTranspose
TΩ [𝑣1, 𝑡1 ] ⇝ 𝑒1 TΩ [𝑣2, 𝑡2 ] ⇝ 𝑒2

TΩ [ (𝑣1, 𝑣2), 𝑡 ] ⇝ let 𝑡1 = fst 𝑡 in let 𝑡2 = snd 𝑡 in (𝑒1;𝑒2)
PairTranspose

TΩ [𝑒𝑑 , 𝑣 ] ⇝ 𝑒

TΩ [𝑣1, 𝑡 ] ⇝ 𝑒1 TΩ [𝑣2, 𝑡 ] ⇝ 𝑒2

TΩ [𝑣1 + 𝑣2, 𝑡 ] ⇝ 𝑒1;𝑒2
AddTranspose

TΩ [𝑣1, 𝑡 ′] ⇝ 𝑒 Ω ∩ free(𝑣2) = ∅
TΩ [𝑣1 * 𝑣2, 𝑡 ] ⇝ let 𝑡 ′ = 𝑡 * 𝑣2 in 𝑒

MulLeftTranspose

Ω ∩ free(𝑣1) = ∅ TΩ [𝑣2, 𝑡 ′] ⇝ 𝑒

TΩ [𝑣1 * 𝑣2, 𝑡 ] ⇝ let 𝑡 ′ = 𝑣1 * 𝑡 in 𝑒
MulRightTranspose

TΩ [𝑏𝑑 , 𝑡 ′] ⇝ 𝑒

TΩ [for 𝑖 :𝜏𝑑 . 𝑏𝑑 , 𝑡 ] ⇝ for 𝑖 :𝜏𝑑 . [𝑖 ↦→reverse 𝑖 ] (let 𝑡 ′ = 𝑡 .𝑖 in 𝑒)
ForTranspose

T𝑥→𝑣, Ω [get 𝑥, 𝑡 ] ⇝ let 𝑡 ′ = get 𝑣 in put 𝑣 (𝑡 + 𝑡 ′) GetTranspose

TΩ [𝑣𝑑 , 𝑡 ′] ⇝ 𝑒

T𝑥→𝑣′, Ω [put 𝑥 𝑣𝑑 , 𝑡 ] ⇝ let 𝑡 ′ = get 𝑣′ in (put 𝑣𝑑 Zero[𝜏 ]; 𝑒)
PutTranspose

Tℎ→ℎ′, 𝑥→𝑥′, Ω [𝑏𝑑 , 𝑡ans ] ⇝ 𝑒1 TΩ [𝑣, 𝑡 ′s ] ⇝ 𝑒2 𝑥′, ℎ′ fresh

TΩ [runState 𝑣 (\ℎ :Type 𝑥 :Ref ℎ 𝜏𝑑. 𝑏𝑑 ), 𝑡 ] ⇝
let (𝑡ans, 𝑡s) = 𝑡 in let ( (), 𝑡 ′s) = runState 𝑡s (\ℎ′ :Type 𝑥′ :Ref ℎ′ 𝜏𝑑. 𝑒1) in 𝑒2

RunStateTranspose

TΩ [𝑏𝑑 , 𝑣 ] ⇝ 𝑒

Ω ∩ free(𝑒𝑑 ) = ∅ TΩ [𝑏𝑑 , 𝑡 ] ⇝ 𝑒′

TΩ [let 𝑥 :𝜏𝑑 = 𝑒𝑑 in 𝑏𝑑 , 𝑡 ] ⇝ let 𝑥 :𝜏𝑑 = 𝑒𝑑 in 𝑒′
LetNonlinearTranspose

T𝑥→𝑟 ′,𝑦→𝑟, Ω [𝑏𝑑 , 𝑡 ] ⇝ 𝑒

T𝑦→𝑟, Ω [let 𝑥 :𝜏𝑑 = 𝑦.𝑣 in 𝑏𝑑 , 𝑡 ] ⇝ let 𝑟 ′ = 𝑟 !𝑣 in 𝑒
LetIndexingTranspose

T𝑥→𝑟 ′,𝑦→𝑟, Ω [𝑏𝑑 , 𝑡 ] ⇝ 𝑒

T𝑦→𝑟, Ω [let 𝑥 :𝜏𝑑 = 𝑦!𝑣 in 𝑏𝑑 , 𝑡 ] ⇝ let 𝑟 ′ = 𝑟 !𝑣 in 𝑒
LetSliceTranspose

Ω ∩ free(𝑒𝑑 ) ≠ ∅ T𝑥→𝑟, Ω [𝑏𝑑 , 𝑡 ] ⇝ 𝑒2 TΩ [𝑒𝑑 , 𝑡 ′] ⇝ 𝑒1

TΩ [let 𝑥 :𝜏𝑑 = 𝑒𝑑 in 𝑏𝑑 , 𝑡 ] ⇝ (let 𝑡 ′ = (runAccum \ℎ :Type 𝑟 :Ref ℎ 𝜏𝑑. 𝑒2) in 𝑒1)
LetOtherTranspose

Fig. 7. A selection of transposition rules for the post-simplification language.

substituting the index variable with its inverted counterpart. This only matters if the body uses the

state effect.

We close this section by acknowledging that this decomposition of reverse-mode AD into

forward-mode AD followed by transposition is unusual, and most AD systems just implement

reverse-mode monolithically, sometimes not exposing forward-mode to users at all. Unfortunately,

formalizing this approach or defending its virtues would take us too far afield, but we hope the

research community does that soon, at least more fully than Frostig et al. [2021] did.

5.3 Challenges Posed by Automatic Differentiation
We feel that Dex gained a great deal as a language from being co-designed with its automatic differ-

entiation system. AD is something like a very demanding user of the language—it is always trying
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to write programs the compiler developers did not anticipate, and always producing compelling

bug reports or feature requests when those programs do not work or are slower than they should

be. In this section, we discuss a few specific subtleties in the design of Dex’s AD, and the effects

AD has had on the rest of the language and compiler.

5.3.1 Cheap Gradient Principle. One of Dex’s core design goals is to uphold the "cheap gradient

principle" [Griewank and Walther 2008]: evaluating a function linearization or its transpose should

cost at most a small constant factor more than evaluating the function itself. A second goal is to

allow programmers to reason about performance, at least asymptotically, using a simple operational

semantics that doesn’t overly rely on compiler optimizations. Taken together, these goals imply

that we should aim to achieve desired efficiency by ensuring that linearization and transposition

both straightforwardly preserve work, up to a constant factor, according to the simple operational

semantics. We don’t offer a formal proof of the cheap gradients principle for our AD system,

unlike Bernstein et al. [2020], who use a formal operational semantics and a cost model, but we

qualitatively discuss some of the hard cases, especially in Section 5.3.4.

5.3.2 Capturing Scoped Intermediates. Non-linear primitive operations such as mul need to capture
the intermediate values computed inside the differentiated function. This is fine if the intermediate

is in scope for the remainder of the function; but whenever we linearize an expression that may

construct intermediates that go out of scope (such as for), we have to arrange for their values to

be captured.

This is why we define differentiation to return core IR rather than the post-simplification subset

of it. By emitting core IR, linearize and transpose can just capture whatever they need in a fresh

lambda expression, whose type then doesn’t need to reflect the type of the data it is carrying in

the closure. We then recover post-simplification IR by running simplification again on the output.

This architecture does mean that simplification and differentiation have to form a loop in the

compiler, rather than being sequential passes, but we feel that the simplification of linearization

and transposition thus won is worth it.

5.3.3 Differentiation of State-Mutating Code. Reverse-mode automatic differentiation is notoriously

difficult in the presence of mutation in the program being differentiated. The issue is again storage

of intermediate primal values: what if one of these primals is mutated by a later operation in the

program?

In Dex, this problem disappears, because the type system distinguishes between the (mutable)

reference being read and/or updated, and the (immutable) value one obtains from it with get.
The value is saved by linearize as needed, by the same mechanism as all other values. The data

in the reference itself does not need to be stored, because get is linear: knowing the cotangent of
the value emitted is enough to compute the update that must be made to the mutable buffer, and

no additional information about the primal data therein is needed. Conversely, the transpose of

put just reads the currently accumulated cotangent of the reference.

Even in pure code, it remains important that only non-linear operations store their inputs. Many

Dex loops operate on just one or a few index values of the state array per iteration, so making a

complete copy of the state at each step could raise even the asymptotic complexity of the linearized

function. Array indexing, however, is linear, so all those copies can be avoided. Indeed, given an

expression such as for i. sin (get ref).i, only the argument of sin needs to be saved for

each iteration of the loop.

5.3.4 Transposing Array Indexing. The cotangent of array indexing is a recurring problem in the

design of automatic differentiation systems. The reverse-mode update due to reading x = array.i
is of course the sparse update array_cot!i += x_cot, but how should we represent this?
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In an imperative language, one is always free to just emit the mutating update, which has been the

de-facto standard implementation technique of AD systems over decades. This correctly conserves

work, but turns what used to be a parallelizable loop reading array into a sequential loop writing

to array_cot. Of course, the parallelism can be recovered by downstream compiler analyses in

simple cases, but complex cases are not difficult to come by.

On the other hand, in pure array languages (such as JAX [Bradbury et al. 2018] and other

Python-based array-libraries) the conventional pattern used to implement reverse-mode AD is

to just one-hot encode the indexing update, i.e., create an update array of almost all zeros. This

is simple to implement, and costs no parallelism, but of course creates an asymptotic increase in

memory usage and count of arithmetic operations. Given the importance of indexing in Dex, this is

not a viable option for us.

Another alternative in a pure system is to perform cotangent accumulation functionally by

accumulating the updates in sparse data structures that gather the index or indices where an update

is to occur along with the value(s) to be added there. This is also asymptotically work-preserving,

but imposes large constant or logarithmic factor overhead in performance, as well as a significant

constant factor in developer effort. It is also quite unfriendly to hardware acceleration due to

the inherent dynamism in the shape of the data structure and requirements on dynamic memory

allocation. We are thus not aware of any AD system that actually differentiates indexing this way.

Instead, we note that while general mutation is certainly sufficient to preserve work, it’s not

actually necessary—the only mutation that reverse-mode AD needs is to accumulate sums. More

importantly, because summation is associative (up to floating-point rounding), it can still be executed

in parallel. The desire to capture this was the original reason we introduced an effect system into

Dex, and in particular why we defined Accum. The Accum effect is expressive enough to capture

cotangent updates, but restrictive enough to be easy to parallelize (Section 6.1). Having introduced

Accum into the language, we promptly found other uses for it besides cotangent accumulation, for

instance the histogram example from Section 6.1.2.

6 PERFORMANCE AND PARALLELISM
In this section we describe the remainder of the Dex compiler. After simplification (Section 4) and

differentiation (Section 5):

(1) Dex optimizes the post-simplification and differentiated IR with standard techniques: inlining,

dead code elimination, common subexpression elimination, loop invariant code motion,

etc. We comment in Section 6.2 on why Dex does not need a suite of operation fusion

optimizations.

(2) Dex generates LLVM bytecode for final compilation for CPU or GPU. Code generation is

target-aware: Dex chooses different LLVM instructions depending on the hardware being

compiled for. The interesting part is mapping Dex structures to parallel execution strategies,

which we cover in Section 6.1.

Finally, in Section 6.3 we comment on a few places where Dex’s rich type systemmakes the compiler

simpler and more effective, and present some preliminary benchmark results in Section 6.4.

6.1 Automatic Parallelization
The surface language of Dex does not expose any way for the user to directly express an intent to

evaluate a number of expressions in parallel. Instead, all parallelism-related decisions are made

by the compiler. In this section, we describe Dex’s automatic parallelization algorithm (Section 6.1.1),

and then comment on how Dex’s Accum effect navigates a common work-parallelism tradeoff
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(Section 6.1.2) and allows the programmer to smoothly shift among different-seeming parallel

computation patterns (Section 6.1.3).

6.1.1 Parallelism Allocation. Many modern hardware accelerators are highly constrained, and can

only efficiently parallelize programs that transform batches of data in a uniform manner (much like

the SIMD units in CPUs). Dex makes parallelization decisions at the granularity of for expressions,
because they have exactly this characteristic: a sequence of instructions (the body expression) is

evaluated repeatedly over slightly different data (the loop indices and values derived from them).

Furthermore, accelerators generally do not support nested parallelism, meaning that the total

number of parallel invocations has to be decided at the top level and cannot be increased later. Due

to this, Dex flattens nested for expressions that can be run in parallel. We do not describe this

procedure formally, because it is largely analogous to the one proposed for Futhark by Henriksen

et al. [2017] (if only one replaces Futhark’s map with for, while treating the Accum effect similarly

to reduce and State to loop).

6.1.2 Work-Efficiency Guarantees. While we approach parallelism extraction highly analogously

to Futhark, it is a much less critical optimization for Dex than it is for array-combinator languages.

The reason is that there are programs that can be expressed in most array-combinator languages in

only two ways: one that is work-efficient but fully sequential, and another that is parallelizable but

is not work-efficient. One good example of such a program is histogram calculation:

histogram_seq = \points:(n=>k).
yieldState (for i:k. 0) \hist.
for i. hist!(points.i) += 1

histogram_par = \points:(n=>k).
sum (map one_hot points)

one_hot = \idx:k. for i. if i == idx then 1 else 0

The histogram_seq function has the right run-time complexity of 𝑂 (𝑛 + 𝑘) (where 𝑛 and 𝑘 are

the sizes of the index sets n and k), but uses a stateful loop and so it cannot be made parallel

without sophisticated analysis. On the other hand, histogram_par is a composition of the two

parallel operators map and sum, but a naive sequential execution would suffer the significantly worse
asymptotic complexity of 𝑂 (𝑛𝑘). Since the goal of array-combinator languages is to enable parallel

execution, the first approach is considered undesirable. Instead, array-combinator languages have
to perform an optimization step that turns the abundant parallelism present in histogram_par
into a partially sequential loop, that lets them eventually achieve the desired work efficiency

(see Henriksen et al. [2017] for details) or, as many do, accept the sequential performance penalty.

Meanwhile, in Dex, the same program can be expressed with an associative accumulator effect:

histogram_dex = \points:(n=>k).
yieldAccum \hist.
for i. hist!(points.i) += 1

If the for expression’s body was to be evaluated sequentially, it would have the right complexity

of 𝑂 (𝑛 + 𝑘). But, because the Accum effect exposes enough structure, the Dex compiler is able to

take this work-efficient implementation and evaluate the body in parallel too.

In short, while we expect the eventual evaluation strategy employed by both approaches to

be largely equivalent, Dex has the benefit of being able to naturally express a parallel and work-

efficient program instead of relying on opaque compiler optimizations. While it might seem like

a minor point, we strongly believe that this is a big step forward in terms of usability. Compiler

optimizations are certainly useful, but they are largely outside of the control of the user and as

such they should not be the only way to achieve the right asymptotics.
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6.1.3 Reduction Patterns by Indexing. Every use of the accumulation effect corresponds to some

form of reduction, but it is useful to classify them by strategies that can carry out different reductions

in parallel. The simplest pattern is a complete reduction, where a large set of values is reduced to

just a single one (and we do not try to take advantage of any structure the result might have). Then,

a regular segmented reduction occurs when the reduced value is an array of equal-size segments,

each of which contributes one component of the result. In that case, each parallel thread can be

assigned a subset of segments to reduce and will not need to replicate the full accumulator, but only

the entries it computes. Multiple compilation strategies for this pattern have been implemented

in Futhark [Larsen and Henriksen 2017]. Finally, one gets an irregular segmented reduction or a

histogram when the different segments are of varying sizes that may be difficult to predict even at

run-time (for example, because the data of different segments is interleaved). Yet again, a special

routine for this case has been implemented recently in Futhark [Henriksen et al. 2020].

In an array-combinator language, these three types of reductions are naturally expressed as

distinct combinators. In Dex, however, they are just slightly different indexing patterns for the

accumulator reference:

• A complete reduction is when the accumulator is never indexed.

• A regular segmented reduction is when the accumulator is indexed by a subset of the loop

indices.

• An irregular segmented reduction is when the indices of the accumulator are derived form

arbitrary expressions (such as an array lookup).

Those differences are readily visible in the following example:

complete_reduction = \values:n=>Float.
yieldAccum \acc. for i. acc += values.i

segmented_reduction = \values:n=>m=>Float.
yieldAccum \acc. for i j. acc!i += values.i.j

histogram = \classes:n=>k.
yieldAccum \hist. for i. hist!(classes.i) += 1

While Dex does not take advantage of this observation and treats all reductions as though they

were complete, we can imagine recovering more sophisticated execution strategies with a more

carefully effect-aware loop parallelization transform.

6.2 Fusion Optimizations
One advantage of Dex’s program representation is that Dex does not need a large and complex

suite of fusion rules to achieve good performance.

Indeed, one of the drawbacks of the bulk array programming model is that each individual bulk

operation needs to encapsulate enough work to amortize away the overhead of dispatching a kernel

for it and allocating storage for its inputs and outputs. Expressiveness, however, calls for composing

programs out of many small operations, because they can be put together in many different ways.

Traditional array-combinator languages bridge this gap with fusion optimizations, each of which

combines a pattern of smaller operations into a larger one. The quintessential example is combining

a sequence of two map operations into one map of the composition of the two functions, thus eliding

the intermediate array.

Unfortunately, such fusion rules have to be specified for almost every pair of combinators, leading

to a drastic increase in the complexity of the system. To make matters even worse, fusion might

necessitate adding more combinators to capture computation patterns which the fusion rules can
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emit; and these new combinators then need more fusion rules of their own. For example, Futhark

uses an otherwise-redundant combinator named redomap [Henriksen et al. 2016] to represent a

computation that constructs an array while reducing a set of values.

In Dex, in contrast, all fusion rules can be seen as instances of inlining followed by reduction.

For example, consider this block, showing a reduction happening along a map, with its result being

consumed in another map:

y = for j.
acc += f j
g j

x = for i. h y.i

Assuming that this is the only use of the value y, each element of y is consumed exactly once. This

means that we can safely inline the for expression that constructs it, as long as we reduce the (for
j. ...).i form to avoid duplicating effects. This yields just a single loop that avoids materializing

the y array, but produces each of its elements on demand instead:

x = for i.
acc += f i
h (g i)

As it has been noted before, fusion optimizations in array languages are just instances of loop-

fusion [Matsuzaki and Emoto 2010]. Hence, replicating a high-quality set of fusion optimizations

in Dex is a matter of doing a good job of inlining for expressions. Fortunately, the literature on
inlining strategies is vast [Mitchell 2010; Peyton Jones and Marlow 2002]. This is also where the

effect system comes in handy, as it lets us easily decide which inlining decisions are legal (i.e., do

not duplicate nor reorder effects).

6.3 Type-Directed Compilation
Dex’s type information is also useful for making optimization decisions and emitting efficient code.

In addition to the usual benefits of type-directed compilation, explicit index set types ensure that

no out-of-bounds access could ever happen upon array indexing—a type-safe index value cannot,

by definition, be out of bounds. In general, a run-time bounds check is still necessary when the

index is constructed, e.g., by fromOrdinal. However, the vast majority of indices are constructed

by for expressions, and in that case the bounds checks can be trivially elided, since we know that

the ordinals a for iterates over are always in bounds.

Moreover, having the full (nested) array type available at lowering time, we are able to perform

an array-of-structures to structure-of-arrays layout conversion which usually achieves much better

performance on parallel architectures. After this conversion, we end up with a number of nested

array types that only contain primitive scalar types, which makes it possible for us to emit code

that computes the total number of array elements (or in many cases even derive it statically),

and allocate a single flat memory buffer that holds unboxed values. Ultimately, this means that

the rich array abstraction always gets translated into just a few pointers to unboxed data, along

with a few integers used to compute offsets into the flattened arrays. As a result, Dex programs

generally should not incur any significant overheads compared to the languages traditionally used

for low-level array computing such as Fortran, C, and C++.

As mentioned previously, having explicit effect types allows us to statically distinguish the loops

that are embarassingly parallel (no effects), parallelizable with some care (only a number of Accum
effects), or necessarily serial (when the loop body induces the State effect). The fine-grained effect

system presents us with both a simple compiler pipeline, and a straightforward mental framework

that allows our users to understand the parallelization opportunities their code exposes.
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6.4 Evaluation
As an early test of the effectiveness of our language and compilation strategy, we compare the run-

time of Dex programs against Futhark [Henriksen et al. 2017] on four programs from two benchmark

suites. We chose Futhark as a baseline because it is one of the closest languages to Dex in purpose

and structure, and because it has already been shown to have broadly competitive performance

with the low-level (usually C++/CUDA based) implementations by the original benchmark authors.

One important caveat: the benchmark programs we have selected are not necessarily representa-

tive of common array workloads. Specifically, given the relative unsophistication of our optimization

pipeline, we do not expect Dex to be competitive yet on workloads that depend critically on specific,

heavily hand-optimized compute-intensive kernels like matrix mutiplication. Instead, we selected

the benchmark problems to highlight tasks that stress compilation of more-general array programs,

where eliminating composition overheads is important.

6.4.1 Benchmark Results. We compare Dex to Futhark on four problems:

• Hotspot, a stencil computation that solves heat equations from Rodinia [Che et al. 2009];

• Pathfinder, a dynamic program, also from Rodinia;

• MRI-Q, a standard map-reduce operation from the Parboil suite [Stratton et al. 2012]; and

• Stencil, a 3-D stencil computation, also from Parboil.

Three of these benchmarks define multiple data sizes on which they can be evaluated, and we

include this breakdown as well.

The results can be seen in Figure 8. To aid reproducibility, we have used an n1-standard-8
Google Cloud instance (30GB RAM, 8 vCPUs) with a single NVIDIA V100 GPU and an Intel Skylake

CPU. The relevant software versions are: CUDA 11.2, Dex from commit 069781e and Futhark 0.18.6.
The general trend is that Dex is somewhat faster than Futhark on serial CPU execution, and

somewhat slower on parallel GPU execution. The worst slowdowns in the parallel setting can be

observed on the smallest benchmarks, which are small enough so that the overheads associated with

calling the CUDA functions become noticeable. The difference usually becomes less pronounced as

the size of the data grows, which is the most important use case for parallel accelerators.

We emphasize that our goal is not to demonstrate that Dex delivers performance improvements

over existing systems. Rather, the goal at this stage is to check that Dex can more or less match
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Fig. 8. Comparison of Dex and Futhark execution times in serial and parallel settings. Note that all times are
normalized and relative to the run time of the respective Futhark programs. The Y axis of both figures grows
with execution time, so less is better. The Futhark programs were authored by the Futhark developers and
published on GitHub for evaluation against their respective benchmark suites; we recompiled and re-ran
them on the same hardware as our Dex programs for those benchmarks.
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the state of the art, while exploring a novel approach to expressing numerical computing workloads.

As Dex matures and we devote more effort to its optimization pipeline, we expect its absolute

performance to improve, though the same is of course true of comparable systems as well.

7 RELATEDWORK
While many ideas present in Dex have been explored separately, the language can be seen as a

synthesis of a wide range of long-standing research topics.

7.1 Array Languages
Dex follows a long line of array-oriented and data-parallel languages, dating back to APL [Iverson

1962] and NESL [Blelloch 1993], which has recently seen a surge in activity [Hu et al. 2019;

McDonell et al. 2013; Peyton Jones 2008; Ragan-Kelley et al. 2013; Shaikhha et al. 2019; Steele et al.

2011; Steuwer et al. 2017]. The most widely-used today are first-order nd-array languages in the

NumPy family [Abadi et al. 2016; Bradbury et al. 2018; Harris et al. 2020; Paszke et al. 2019], whose

advantages and disadvantages are discussed in Section 1. The Remora [Slepak et al. 2014] language,

formalizes the automatic lifting of primitive functions to operate on arguments of higher-rank,

and improves certain design aspects of this family of languages. Contrary to Remora, Dex makes

lifting explicit via the for construct. Another relevant body of related work is in programming

languages based on array combinators, treated in Section 2.4.1. Futhark is arguably the most similar

language to Dex [Henriksen et al. 2017]. Similarly to the typed index sets in Dex, it tracks and

propagates array shapes in its type system, making it possible to catch a whole class of (potential)

shape errors at compile time. In-scope variables of integer type can be implicitly lifted to bounds

for array dimensions, leading to a mechanism similar to the Fin index set constructor in Dex.

Futhark also supports stateful computations, although it does so via a uniqueness typing system

that guarantees safe in-place modification, instead of an effect system. Julia [Bezanson et al. 2017]

is another interesting point of comparison. It shares many of the same goals as Dex: it’s built

for numerical array-oriented computing, it emphasises loopy scalar code instead of bulk array

operations, and it’s developing first-class AD [Innes 2018]. But it occupies a very different point in

the design space. Julia is firmly imperative and dynamically typed, where Dex is functional and

static. Julia’s imperative semantics appear to pose the usual challenges for automatic parallelization

and parallelism-preserving AD, as discussed in Section 7.3.

7.2 Type Systems
The Dex type system is based on a number of previously published ideas. While it breaks the highly

conventional value-type boundary, it does so only by introducing a limited form of dependent

typing, based on value-dependent types [Swamy et al. 2011]. In particular, types cannot depend

on arbitrary expressions, but only on fully-evaluated values. Dex’s effect system is modeled on

the row-polymorphic effect system of Koka [Leijen 2014] and mostly implements a subset of it,

with the slight exception of extending it with the reference slicing operation. However, to the best

of our knowledge, the use of an associative state effect (Accum) in order to emit parallel code has

not been considered previously in any other effect system. Our type inference algorithm largely

follows the ideas of bidirectional type inference outlined by Peyton Jones et al. [2007], although in

Dex higher-rank types are generally replaced by functions with implicit arguments.

7.3 Automatic Differentiation
Automatic differentiation has a deep history [Baydin et al. 2017; Griewank and Walther 2008;

Pearlmutter and Siskind 2008]. Dex benefits from many influences, especially Elliott [2018] and

Bradbury et al. [2018]. For brevity, we focus the discussion on array- and parallelism-oriented AD
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systems. For a more complete treatment, see the survey Baydin et al. [2017] and the related works

of Shaikhha et al. [2019] and Bernstein et al. [2020].

Machine learning has made great use of automatic differentiation. Popular systems like Theano

[Bergstra et al. 2010], Autograd [Maclaurin et al. 2014], Chainer [Tokui et al. 2019], TensorFlow

[Abadi et al. 2016], DiffSharp [Baydin et al. 2017], PyTorch [Paszke et al. 2019], and JAX [Bradbury

et al. 2018] employ the bulk array programming model, relying on accelerator-friendly parallelism

within each bulk operation. This model is great for AD, since linearization and transposition mostly

preserve program structure and hence performance. But array indexing is a weak spot, especially

in the context of loops: transposing a loop of indexed reads falls outside the set of performant

programs, resulting in programs that use too much memory, execute too many operations, or exhibit

too little parallelism. There are mitigation techniques; for example, Autograd and TensorFlow add a

runtime sparse data representation, while JAX relies on downstream whole-program optimizations.

But these can be brittle, add overheads, or yield the wrong asymptotic complexity. For the most

part, these AD systems work well because users constrain themselves to using bulk operations

rather than more flexible loops and indexing.

Systems that support performant loops along with indexed reads and writes, like ADIFOR

[Bischof et al. 1992], Tapenade [Hascoet and Pascual 2013], Zygote.jl [Innes 2018], RelayIR [Roesch

et al. 2018], and DiffTaichi [Hu et al. 2020], are better equipped to provide AD with the right

asymptotic complexity. But indexed writes, introduced by transposition of indexed reads, typically

must be sequenced, giving up parallelism and accelerator-friendliness. The aim of Dex’s AD is to

support these performant loops with indexing, yet preserve parallelism through typed effects.

ATL [Bernstein et al. 2020] also tackles this issue head-on, achieving AD of loopy indexing code

while preserving both complexity and parallelism. The core approach is to encode sparsity with

APL’s Iverson bracket, then rely on compiler optimizations. The language is carefully designed

along with these optimizations so that the system is provably efficient, rather than handling

only important special cases [Hückelheim et al. 2019; Li et al. 2018]. This is powerful, but limits

expressiveness. Overall, guaranteed sparsity optimizations like ATL’s and explicit Accum effects
like Dex’s may prove complementary.

8 CONCLUSION
We presented a synthesis of ideas from functional programming intended to support stateful and

“pointful” numerical code in a richly-typed functional language. From the user’s point of view, we

expect that this approach can support a programming style roughly as expressive and flexible as

low-level imperative numerical code, while catching a wider range of bugs at compile time and being

more concise through high-level abstractions. From the compiler’s point of view, a fine-grained

typed effects system makes it possible to implement optimizations and program transformations

(such as automatic differentiation and structurally-linear transposition) in a way that robustly

preserves performance.
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