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Abstract

Reach and frequency (R&F) is a core lever in the execution of ad campaigns, but it is not
widely captured in the marketing mix models (MMMs) being fitted today due to the un-
availability of accurate R&F metrics for some traditional media channels. Current practice
usually uses impressions aggregated at regional level as inputs for MMMs, which does not
take into account the fact that individuals can be exposed to an advertisement multiple
times, and that the impact of an advertisement on an individual can change based on the
number of times they are exposed. To address this limitation, we propose a R&F MMM
which is an extension to Geo-level Bayesian Hierarchical Media Mix Modeling (GBHMMM)
and is applicable when R&F data is available for at least one media channel. By incorpo-
rating R&F into MMM models, the new methodology is shown to produce more accurate
estimates of the impact of marketing on business outcomes, and helps users optimize their
campaign execution based on optimal frequency recommendations.

1 Introduction

Media mix model (MMM) is a statistical technique that helps businesses understand the
impact of their marketing mix on sales. To fit MMMs, businesses need to collect aggregate
historical time series data on their marketing efforts and sales. This includes data on
media channel exposures, other marketing activities, control variables such as weather and
seasonality, and sales data. Once the data is collected, statistical models can be used to
estimate the return on advertising spend (ROAS) of each marketing channel and to optimize
the advertising budget allocations.

MMNMs typically assume that there is a time delay between exposure to an ad and a consumer
taking action, and that there is ad saturation and diminishing returns at high levels of spend.
These effects are nontrivial to estimate by maximizing the log likelihood or equivalently
minimizing the residual sum of squares. Jin, Wang, Sun, Chan and Koehler (Jin et al.
[2017]) propose a Bayesian media mix model (BMMM) with carryover and shape effects
for a single brand aggregated at the national level. The BMMM applies the Bayesian
framework and Markov Chain Monte Carlo (MCMC) to estimate model parameters and
sample posterior distributions, which incorporates known knowledge into model as prior



information. However, The BMMM utilizes data aggregated at a national level, which often
suffers from small sample size and insufficient variation in the media spend. To address
these issues, Geo-level Bayesian Hierarchical Media Mix Modeling (GBHMMM) (Sun et al.
[2017]) is developed, which uses regional level data and pools information across regions
to increase the effective sample size. It is also demonstrated that GBHMMM generally
provides estimates with tighter credible intervals compared to a model with national level
data alone.

In MMMs, advertising spend or number of impressions are generally used as media expo-
sure variables. Impressions can be decomposed into reach and frequency (R&F). Reach
is the number of unique people who are exposed to an advertisement at least once, while
frequency is the average number of times a person is exposed to an advertisement. Reach
and frequency are important factors in the execution of ad campaigns, particularly digital
ad campaigns. However, traditional MMMs lack methods tailored to digital media’s com-
plexity such as accommodating ad reach and frequency. Additionally, Reach and frequency
are more informative than impressions alone. For example, 100 impressions could represent
one person seeing the same ad 100 times, or 100 people seeing the ad once each. These two
scenarios could lead to very different outcomes, which cannot be captured by MMM if it
only takes impressions as input.

Moreover, setting the right frequency for a media channel is crucial for advertisers, as it can
have a significant impact on the effectiveness of their media campaigns. However, traditional
MMM does not provide a clear answer to the question of what the right frequency is for
a particular media channel. There is a copious literature on ad-response to timing and
frequency. For example, Sahni [2015] combines field experiments and econometric modeling
to measure the causal effect of temporal spacing between ad exposures in an actual market
setting, and demonstrates the importance of the number of times s a banner ad is displayed
on consumers’ choices made during a session. Krugman [1972] argues that three exposures
are typically enough to move a consumer from curiosity, to recognition, to decision. He
also notes that additional exposures beyond three may not have a significant impact on the
consumer’s decision-making process. Burton et al. [2017] indicates that consumers exposed
to an advertisement 10 or more times had greater purchase intentions than consumers with
less exposure.

In this paper we propose a R&F MMM that takes into account both reach and frequency
data. R&F MMM is an extension to GBHMMM (Sun et al. [2017]) and is applicable when
R&F data is available for at least one media channel. R&F MMM provides a data-driven
way to investigate the optimal frequency that maximizes the return on ad spend. The
benefits of the R&F MMM over GBHMMM are twofold: First, it helps users optimize their
campaign execution based on the optimal frequency recommendations. Second, the new
methodology can produce more accurate estimates of the impact of marketing on business
outcomes, which we demonstrate through a simulation study.

The remainder of this paper is organized as follows. In Section 2, we briefly review the
GBHMMM. In Section 3, we introduce the R&F MMM. Section 3.1 describes the model
specification of the R&F MMM. Section 3.2 compares the GBHMMM and the R&F MMM.
Section 3.3 discusses the two attribution metrics, ROAS and mROAS, in detail. Section 3.4
introduces optimal frequency, one of the main usages of the R&F MMM. In Section 4, we
evaluate the R&F MMM through simulation studies. We conclude this paper with a brief
discussion in Section 5.



2 GBHMMM

We begin by outlining the Geo-level Bayesian Hierarchical Media Mix Modeling, building
upon the model form introduced by Sun et al. [2017],

M C
Yeg =Ty + > BmgAdstock(Hill*(x} g Ky Sm)y Qs L) + Y YegZteg + g (1)
m=1 c=1

For geo g at time ¢, we observe the geo-level response variable y; 4, media variables ¢ m, g
for the media channel m = 1, ..., M and control variables z; . 4,c = 1,...,C. The time-series
of media variable is denoted by z},, , = {Zsmg,s < t}. The response variable is usually
a KPI (e.g. revenue, online inquiries, etc.). The media variables could be advertising
spend or number of impressions delivered. The control variables could include product
price, promotions, and macroeconomic factors, such as unemployment rate, gasoline price,
etc. The sales and media variables can be scaled by the geo population or target market
size. Any control variable that roughly scales with population or market size can also be
adjusted to a “per capita” scale. The model parameters follow a Bayesian hierarchical
structure where each geo is a sample from the overall population and is allowed to deviate
from the population level.

Brm.g id normal(Bm,n2,),m =1,.... M,
iid 9
Ye,g ~ normal(ve,&2),c=1,...,C,

Tq Yy normal(t, K?), €4 i normal(0, 0?),

where 7, 3, and . are the fixed coefficients or hyperparameters, representing the common
mechanism of media impact at the total population level. The geo-level variation is con-
trolled by the standard deviations &, n,, and &.. Priors are needed for the hyperparameters
T, Bm, Ve and standard deviations K, 7, &.

The shape and carryover effect of advertising is modeled through the Hill function and
the geometric Adstock function respectively. The Hill function and the geometric Adstock
function are defined as

1
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Adstock(zg, ..., ;o L) = ZL "
1=0

, (3)



where « € (0,1) is the retention rate of the ad effect of the media. The integer L is the max-
imum duration of carry effect. To simplify the notation, we denote Hill*(m;m’g, K, Sm) =
{Hill(zs,m,g; Km,Sm),s < t} as the vectorized hill function (3). Hill function is applied
before the Adstock transformation to capture the diminishing return of media spend with
parameters K > 0 and S > 0. K is also refered to as ECj5g, the half saturation point as
Hill(K; K,S) = 1/2 for any value of K and S. The Hill function goes to 1 as the media
spend goes to infinity.

3 R&F MMM

R&F MMM models the response variable directly as a two-dimensional function of R&F
instead of a one-dimensional function of impressions. In other words, we are shifting from
modeling a response curve (impressions vs response) to a response surface (R&F vs re-
sponse). This approach is appealing in theory, because it would directly answer many of the
fundamental questions advertisers have: if I increase my reach or frequency, how will my
sales change? What is the optimal frequency for maximizing my return on ads spend?

3.1 Model Specification

For notation purposes, we describe weekly average frequency as fi ., , and weekly reach !
as Ty m,g- Both metrics are in-period, meaning that they are not affected by the previous or
following week. For example, if the same individual is exposed to the ad in two consecutive
weeks, they will be counted as one reach for each week. Let ry,, . = {rsmg,s < t} and
Ttmg = {fs,m,g»8 < t} denote the time-series of reach and frequency. We model the R&F
MMM using the following generic equation:

M c
Ytg = Ty + Z Bm,gAdstock(ry ., HlU*(ff1, oo Kmy Sm), Qm, L) + Z%,gzt,qg +erg, (4)

m=1 c=1

iid
Bm.g ~ normal (B, n%,),m = 1,..., M,
Ye,g b normal(ye, €2),¢ = 1, ..., C,

Tq N normal (7, K?), €4 s normal(0,0?).

R&F MMM modifies the GBHMMM by first applying the Hill function (2) to the weekly
average frequency f; . 4 to adjust for saturation and thresholding effects. Next, the adjusted
frequency is multiplied by reach to obtain an adjusted impression count, which is in turn
fed into the Adstock function (3) to capture lagged effects of media exposure over time.
The model specification forms the shape or curvature (an “S” curve) of sales response to
frequency, which reflects the fact that higher frequency can help reinforces brand recall,
leading to increased incremental sales, and that excessive frequency may result in ad fatigue
and diminishing returns. The shape effect is controlled by the parameters K,,, S, as seen
in Figure 1.

1The reach can be scaled by geo population or market size, depending on whether the response variable
is adjusted to a “per capita” scale.
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Figure 1: Shape effect of frequency

On the other hand, reach is assumed to have a linear relationship with sales response holding
frequency fixed. Reach is contingent on the definition of the target audience, which could
be a combination of different groups, each with its own responsiveness to advertising. When
using a linear relationship with sales response, we are implicitly assuming that reach across
different audiences increases or decreases proportionally. However, it is possible that as the
advertiser increases reach, reach on the most desirable audiences does not increase as much
as on the less “valuable” audiences, which will lead to diminishing returns. We restrict
the effect to be linear instead of using a non-linear transformation like hill function to
avoid model overparameterization and non-identifiability of SHill (Jin et al. [2017]). The
poor identifiability makes it challenging to estimate the parameters well with any statistical
method, and could lead to non-convergence in Bayesian framework. Therefore, we make a
trade-off between parsimony and complexity.

3.2 Comparing GBHMMM with R&F MMM

When only impression or cost data is available for each media channel, a Geo-level Bayesian
Hierarchical Media Mix Modeling (GBHMMM, Sun et al. [2017]) is typically fit. However,
GBHMMM does not account for the fact that individuals can be exposed to an advertisement
multiple times, and that the impact of an advertisement on an individual can change based
on the number of times they are exposed. To address this limitation, we propose a new
approach, R&F MMM, which can be used when R&F data is available for at least one
media channel. The side-by-side comparison between R&F MMM and GBHMMM is shown
below.



R&F MMM :

M C
Yt,g = Tg + Z ﬂm,gAdStOCk(T;m,gHi”*(ft*,m,g’ Ky, Sm)v Qm, L) + Z’YC,_Z]Z@C,!I + €95
m=1 c=1
GBHMMM :
M C
Ytg = Ty + Z 5m7gAdstock(Hill*(x;img, Ky Sm), @, L) + Z%,gzt,gg +erg
m=1 c=1

The R&F MMM and GBHMMM models have the same number of parameters, and they
both follow the same Bayesian hierarchical structure which pools information across geos
and incorporates prior knowledge. An overview of Bayesian hierarchical models can be
found in Gelman and Hill [2006] and Gelman and Pardoe [2006]. Furthermore, R&F MMM
is also applicable to data where some channels have only impression or cost data, while the
other channels have reach and frequency data. For the channels that only have impression
or cost data, R&F MMM yields the same formula as GBHMMM if we replace f; ., 4 with
%t m,g and replace 7, ¢ with 1. For the channels that have reach and frequency data, R&F
MMM in Equation (4) can be fitted and help users optimize their campaign execution based
on the optimal frequency recommendations.

3.3 ROAS and mROAS

Before estimating the optimal frequency in the R&F MMM, we first define the attribution
metrics, in particular the Return on Ad Spend (ROAS) and the marginal ROAS (mROAS).
In this section, we illustrate the methods to estimate ROAS and mROAS for the R&F
MMM. The method for the GBHMMM can be found in Sun et al. [2017].

ROAS is the change in revenue per dollar spent on the media; it is usually estimated by
setting spend of the media to zero in the selected time period and comparing the predicted
revenue against that of the current media spend. For consistency, we use the same no-
tations as described in Sun et al. [2017]. Let the predicted sales at geo g and time ¢ be
Vig(Reg, Frog, Zt,g; ®4), where Ry g = {r},, ,1<m < M} and Fy g = {ff, .1 <m < M}
are the time series of reach and frequency at geo g up to time ¢, Z; ; = {24,¢,4,1 <c < C}
is the control variables at geo g and time ¢, and ®, = {7y, Bm,g, Km, Sm, m, L, Ve, 9,1 <
m < M,1 < ¢ < C}is the model parameters of geo g. To estimate the predicted sales when
changing the spend of media m in the selected time period, we denote Ry and F/';™ as
the time series of reach and frequency at geo g up to time ¢, with the m-th medla reach and
frequency multiplied by a constant a durmg the period [Ty, Tl] for example, Rt 'y represents

the observed reach time series and R t,g represents the reach time series with m-th media
channel turned off during [T, T1]. Let the media spend for the mth media channel at time
t and geo g be Cy,g. The ROAS at geo g for media m is defined as

ZTo<t<T1+L(Yt g(R%;na Ftlgm7 Ztyg; (I)g) - th,g(RS;nw Ftlgmv Zt,g% (I)g))

ROAS,, , =

)

ZTogthl Ct,m,g



Although the media variables are only changed during the period [Ty, T1], the impact on sales
is calculated in the range [To,T1 + L] to account for the carry over effect. By substituting
Y; , with equation (4)2, the ROAS can be re-written as

ZTo<t<T1 Bm gTt,m ngll(ft m,gs Ko, Sm )

ZTogthl Ctim.g

ROAS,, , = (6)

Note that the numerator does not include the model parameters {7, m, L, Ve,q}, as they
are canceled out during the derivation. As the model in (4) is additive in media effect,
ROAS,, 4 does not depend on other media channels except the m-th channel or on control
variables.

mROAS for the m-th medium is the additional revenue generated by one-unit increase in
spend, usually from the current spent level. When estimating mROAS for R&F MMM, a
small increase in spend must somehow be translated to a small increase in Reach and/or
Frequency, which could be done in multiple ways. mROAS by reach perturbed at a 1%
multiplicative increment on both reach and media spend at geo g, while holding frequency
fixed, is defined as

ZT0<t<T1+L (}/txg(Rl o Ftlgm’ o ) Y;f g(Rtl o Ftlgmv ¢ ))

(M
0.01 x ZToftSTl Ct,m,g

mROASE M ($,) =

mROAS by frequency perturbed at a 1% multiplicative increment on both average frequency
and media spend at geo g, while holding reach fixed, is defined as

% 1,m 1.01,m % 1,m 1,m
ZngtSTlJrL(Y;,g(Rt g 7F (I) ) th’g(Rt Nk 7Ft g 741) )) (8)
0.01 x ZToStSTl Cim,g

mROASETS1(d,) =

where Rl OLm and F1 OLm are the R&F time series with the m-th media R&F at geo g
multlphed by 1 01 durmg the period [Tp,T1]. The national ROAS and mROAS for the
media m given its spend during the period [Ty, T;] are simply a weighted average of geo-
level values,

G G Ty .
ot Hill(Fovm o Koy Som
ROASmZZU/m,gROASm,g:ZZ B ,9Tt,m,g Zéft, 9 S )7 (9)
g=1 gflt—To B
mROASTIr%Leach _ Zwm ngOASReaCh, (10)
g=1
G
MROAS]™ = " wy, qmROAS) ¢ (11)
g=1

2For simplicity, we assume that the response variable in equation (4) is dollar sales, and that no transfor-
mation nor population scaling has been applied. If a transformation of sales is used as the response variable,
a corresponding inverse transformation should be applied to get the predicted sales.



Where wi g = (X5 <t<7, Ctim.g)/ (1< g<a 2omy<t<r, Ct;m,g) is the proportion of media
spend in geo g during the change period [Ty, T1], and Cr, = 371« <o 2o <4<, Ctm g 18 the
total media spend over all geos during the period [Ty, T1]. By plugging in each of the draws
from the joint posterior distribution of model parameters, we obtain posterior samples of
ROAS and mROAS. The calculation can be done for each geo as well as nationally.

3.4 Optimal Frequency

One of the main usages of R&F MMM is to find the optimal frequency for a channel in
the selected time period. Optimal frequency refers to the ideal average number of times an
advertisement should be shown to the target audience for each geo and time to achieve the
maximum ROAS. As it is impracticable for advertisers to execute different frequencies for
each geo and time, we imposed a restriction that the same average frequency is applied in
all geos and times, denoted by f,, as below

ft,m,g = met, m,g,

This restriction serves two purposes: first, to obtain a target frequency strategy that is more
practical to implement, and second, to make the optimization routine more tractable. It is
then intuitive to use the national ROAS (9) as the objective function, such that the optimal
frequency would maximize the national ROAS for the m-th media given its spend during
[To,T1]. The national ROAS equation (9) involves two set of variables, ¢ m. o and fim.g,
and each one can be expressed as a function of the other, as in

_ Ttm,g
Ttm,g = T,
;Mg

where x4 1, ¢ is the total number of impressions for m-th media at geo g and time ¢. Assume
that the total media spend, C,, and the number of impressions, x4, do not vary with
the average frequency, f;m,q, and that the same average frequency, f,,, is applied in all geos
and times, the national ROAS equation (9) then only involves one variable, f,,, for a given
set of parameter B, g, Ky, Sm

G Ty

ROAS,, = Z Z mt,m,gﬁm,ngll(fvamasm). (12)

== Crn fm

In the Bayesian framework, with multiple posterior samples of the parameters, there are two
approaches to obtain the optimal frequency. In the first approach, we make the objective
function to be the expected ROAS across all posterior samples of By, g, K, Sm, and the
optimal frequency that maximizes the expected ROAS is obtained by



<l

optimal — arg max ROAS?,
fm j=1
J G T j . ] ]
1 t,m,q 5, HU( s Ky S5n)
= argmax — : 13
fm ;g ; Confm "
J G T
1 tmgﬁm gHle(fmv SJ )
= argmax —
AaE I o
where 37, ., K},,S], are the jth sample of the parameters, ROAS], is the estimated na-

tional ROAS for the jth posterior sample, and there are J posterior samples in total. It
is noteworthy that equation (13) does not have an analytical solution and must be solved
numerically.

In the second approach, we plug each posterior sample of 8, 4, K, Sy into the ROAS
equation (12) to solve the optimal frequency that maximizes the ROAS for each posterior
sample. For example, for the jth sample, the optimal frequency denoted by foptimali jg
calculated as

fglptimal,j — argfmax ROAS%I

¢ &b xt,m,gﬁgn,gHill(fvarjrmSgn)
Confm

(14)

= K3,(S3, - 1)V/5n.

which is the point of intersection between the tangent line through the origin and the hill
function as illustrated in Figure 2. By plugging in each of the draws from the joint posterior
distribution of model parameters, we obtain the posterior samples of the optimal frequency
{foptimalj 1 < j < J}. The reader can also use either the mean, or the median, or the
credible interval of the posterior distribution of optimal frequency as a summary result.
An auxiliary benefit of getting the posterior distribution of optimal frequency is that it
incorporates the uncertainty and informs the user how much he should trust the model in
guiding the optimal frequency.

The first approach provides a point estimate of the optimal frequency that maximizes the
expected ROAS across all posterior samples, while the second approach shows the posterior
distribution of the optimal frequency that maximizes the ROAS for each posterior sample.
Both approaches are illustrated on a simulated data set in Section 4.3. Although these two
approaches may theoretically produce significantly different results, our simulation studies
did not observe significant divergence between the results of these two approaches.

Optimal frequency is also a consideration in media mix optimization, which allocates a total
budget across all media to maximize total incremental sales. One key property of optimal
frequency is that it yields the highest media-level ROAS for a given media spend. In other
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Figure 2: Optimal Frequency

words, the optimal frequency yields the steepest response curves 3, which are then used by
media mix optimization to find the highest incremental sales across all media given a total
budget. Depending on whether the media mix optimization is to maximize the average of
total incremental sales across all posterior samples, or the total incremental sales for each
posterior sample, the optimal frequency under the first or the second approach would be
used to construct the response curves for the media.

4 Simulation

In this section, we illustrate some of the key benefits of R&F MMM through simulation
studies. The simulation is designed to mimic natural consumer-level behavior while also
providing ground truth for evaluating R&F MMM and GBHMMM estimation accuracy.
Rather than generating MMM aggregate-level data directly, the simulation generates data
at the user-level. The user-level data is then aggregated into weekly R&F and sales time
series data. We also demonstrate that the optimal frequency estimated from R&F MMM is
aligned with the ground truth of the simulation studies.

4.1 Data simulation

To systematically generate the aggregate time-series of reach, frequency, impression, and
sales, we begin the simulation at the user level. Specifically, we simulate the individual-level
reach events and the number of impressions if being reached, respectively.

Let 7 ¢.m denote the event that individual 7 is reached by the ad of media m at week ¢. It
is assumed to be a Bernoulli random variable with probability p; ,,. This means that each
individual has a probability of p; ,, of being reached by the ad of media m at week t. If
the individual is reached by the ad, the number of ad impressions of media m at week ¢,
denoted by ;¢ m|Ti,m = 1, is assumed to be a zero-truncated Poisson (ZTP) distribution
with parameter A ,, which represents the average rate or intensity of ad exposure of channel

3Response curves show the estimated relationship between media-level spend and media-level incremental
sales. The steeper the response curves, the higher the incremental sales given a media spend.
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m at week t if being reached by the ad. If the individual is not reached by the ad, the number
of ad impressions of media m at week ¢, denoted by x; ¢ m|ritm = 0, is zero. To account
for the fact that different media channels have different levels of audience exposure, A, is
assumed to be an Exponential distribution with rate A,,, and p; », is assumed to be a Beta
distribution with parameter A,, and B,,

Tit,m ™~ Bernou”i(pt,m)a DPtym ~ Beta(Amv Bm)»
(@itmTigm =1) ~ ZTP(Mim), Ae.m ~ Expenential(Ap,),

(Titm|Titm =0) = 0.

The shape and adstock effect of ad impressions is also captured at individual level. For the
number of impressions ; 1 ,, the immediate convertiness at week ¢, denoted by Conv(x; ¢ m, t),
is calculated using a hill function with parameters K,, and S,,. The lagged convertiness at
week t +n, denoted by Conv(z; ¢,m,t+n), is calculated by a geometric decay function with
a decay rate of a,,.

1
B 1+ (xi,t,m/Km)iswl '

Conv(x; ¢ m,t +n) = ap,Conv(z; tm, t).

Conv(x; ¢.m, t)

The incremental sales for individual 7 at week 7', denoted by IncSales; r, is then calcu-
lated as a linear function of the accumulated convertiness for each media channel. Figure
3 illustrates the process of simulating ad impressions and incremental sales at individual
level.

M T
IncSales; r = Z Bm Z Conv(I; t.m,T).

m=1 t=1
A TV Impressions YouTube Impressions
Convertiness

IncSales = b, Convertiness + h?,pﬁ‘anvertiness

YouTube YouTube ™

]» Convertiness from YouTube ads

1
i
_
T
I
1
]
'
I

-’> Convertiness from TV ads
] .

Useri Week 1 Week 2 Week 3

Figure 3: Data Simulation at individual level

Geo-level time-series of media data is then obtained by aggregating individual-level values
across all users, with each user randomly assigned to one geo. Let R; ., , denote the aggre-
gated reach, F} ,, 4 the aggregated frequency, It 4 the total impression, CPM,, the cost

11



per impression, Cy 4 the total media spend, and ISy, 4 the total incremental sales. The
calculation is shown below.

Rtﬂ”h!] = E :ILwi,t,'m>O’
i€g
It,’m,g = E Tit,m»
i€g
Fiim,g = Rim,g/It,m.g;
Cem,g = Lt m,gCP My,

1S4 = Z IncSales; 4.

i€g

From this simulation scenario, we simulated two media channels and 10000 users who were
randomly assigned to three geos with the specifications listed in Table 1. The final data set
contains 4 years of weekly data, including sales, media variables and one control variable
(weather). The control variable (weather), denoted by W; 4, is generated as a Gaussian
process with mean W, to reflect the average temperature of each geo. The sales, denoted
by Si.g, is the sum of the weekly baseline sales, BS;, the incremental sales, 1.9 4, the effect
of control variable, 3,W; 4, and white noise that is assumed to be uncorrelated with the
other variables. Figure 4 shows the time series plots of the sales and the media variables for
one of the geos.

(a) Media specific parameters

H Media 1 Media 2 H

A ) 5 (b) Other variables
B, 4 6
A 4 25 H Geol Geo?2 Geo3 H
K., 2 2.5 Wy 10 20 15
S 2 2.5 BS, 4000 3000 2000
am 0.5 0.7
Bm 2 3

CPM,, 0.2 0.2

Table 1: Generating parameters

4.2 Comparison of R&F MMM and GBHMMM

The data simulated from user level provides a fair comparison between GBHMMM and R&F
MMM in terms of model performance. Although both GBHMMM and R&F MMM work
with aggregated data, which is less granular than user-level data and lacks the ability to
capture the nuances of individual user responses, the differences in data aggregation could
lead to different levels of information loss, which would impact model performance. In the
Bayesian framework, with multiple posterior samples of the parameters, model performance
is assessed by plugging in each of the draws from the joint posterior distribution of model

12
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Figure 4: Simulated data series for geo 1

parameters to obtain the posterior samples of predicted sales. Then, R-squared is calculated
based on the posterior mean of predicted sales and the actual sales.

Table 2 summarizes the R-squared values of R&F MMM and GBHMMM based on the
geo-level and national-level data, which is further split into training and testing sets for
a comprehensive comparison. R&F MMM captures the actual audience exposure to ad-
vertising by considering unique reach and average frequency, rather than simply counting
impressions. Impressions, on the other hand, count every instance an ad is served, including
potential duplication or multiple exposure of the same individual. R&F MMM offers a more
accurate representation of the actual audience reached by marketing efforts.

(a) R&F MMM model fit

(b) GBHMMM model fit

” Sample R? (Geo) R? (National) ”

” Sample R? (Geo) R? (National) ”

Train  0.993028
Test 0.991758
Total  0.992819

0.998032
0.998267
0.994207

Train  0.980722 0.989061
Test 0.973629 0.992957
Total  0.979555 0.962520

Table 2: Model performance comparison
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4.3 Comparison of R&F MMM and ground truth

Another benefit of using simulated data is that it provides a benchmark, or ”ground truth,”
against which to validate R&F MMM. This is because simulated data is generated using a
known process, the results can be compared to the “ground truth” to see if there is bias
in the model estimates. In this case, the true ROAS was calculated by dividing the total
incremental sales by the total media spending. The true optimal frequency was revealed by
plotting the weekly frequency for each geo against the ROAS of the media spend for that
week and geo, including the lagged effect. This allowed us to see what is the optimal weekly
frequency that maximizes the ROAS.

As described in Section 3.3, we obtain the posterior samples of ROAS by plugging the
posterior samples of ® into (9). For comparison, we also obtain the posterior samples of
ROAS for GBHMMM. In figure 5, the blue curves are the posterior density of ROAS for
R&F MMM, the green curves are the posterior density of ROAS for GBHMMM, and the
red lines are the true ROAS of all time. ROAS is estimated reasonably well with the true
ROAS falling within the 90% credible interval. Moreover, R&F MMM shows a tighter credit
interval for the ROAS estimation than GBHMMM.

14 A

12 4

101

Density

—— True ROAS —— True ROAS
2 [ R&FMMM Posterior ROAS density 14 [ R&FMMM Posterior ROAS density
[ GBHMMM Posterior ROAS density [ GBHMMM Posterior ROAS density
ols . e . : | ol— . . . . . —]
0.8 1.0 12 14 1.6 18 2.0 175 2.00 2.25 2.50 275 3.00 3.25
(a) Media channel 1 (b) Media channel 2

Figure 5: Posterior ROAS vs ground truth

As discussed in section 3.4, there are two approaches to obtain the optimal frequency.
The first approach provides a point estimate of the optimal frequency that maximizes the
expected ROAS, while the second approach provides the posterior distribution of the optimal
frequency that maximizes the ROAS for each posterior sample. In figure 6, the green line
represents the point estimate of the optimal frequency based on the first approach, the
blue curves are the posterior distribution of the optimal frequency according to the second
approach, and the red dots are the weekly frequency for each geo against the true ROAS of
the media spend for that week and geo, including the lagged effect. The figure shows that
the optimal frequencies obtained from both approaches align with the weekly frequency that
provides the highest true ROAS.
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Figure 6: Posterior optimal frequency vs ground truth

5 Conclusion

Reach and frequency (R&F) is a core lever in the execution of ad campaigns. However,
it is not widely captured in the marketing mix models being fitted today. We propose
a R&F MMM which is an extension to GBHMMM (Sun et al. [2017]) and is applicable
when R&F data is available for at least one media channel. R&F MMM is to model the
response variable directly as a two-dimensional function of R&F instead of a one-dimensional
function of impressions or spends. The model specification forms the shape or curvature
(an “S” curve) of sales response to frequency, while assuming a linear relationship between
sales response and reach. R&F MMM also uses a Bayesian hierarchical model structure
incorporating regional variations to enhance media mix modeling.

By incorporating R&F into MMM models, the new methodology is shown to produce accu-
rate estimates of the impact of marketing on business outcomes, and helps users optimize
their campaign execution based on the optimal frequency recommendations. The simulation
study provides evidence that R&F MMM is a promising approach for estimating the optimal
frequency of advertising. The posterior samples of optimal frequency align with the ”true”
optimal frequency which provides the highest ROAS based on the simulation study. R&F
MMM and GBHMMM are compared in terms of model performance using data simulated
from user level. Although both models work with aggregated data, which is less granular
than user-level data, R&F MMM captures the actual audience exposure to advertising by
considering unique reach and average frequency. This results in a more accurate represen-
tation of the actual audience reached by marketing efforts, and specific insights for media

which R&F are relevant.
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