CodeQueries: A Dataset of Semantic Queries over Code

Surya Prakash Sahu* Madhurima Mandal Shikhar Bharadwaj*
Indian Institute of Science Indian Institute of Science Indian Institute of Science
India India

suryaprakash@iisc.ac.in

madhurimam@iisc.ac.in

shikharb@alum.iisc.ac.in

Aditya Kanade Petros Maniatis Shirish Shevade
Microsoft Research Google DeepMind Indian Institute of Science
India India
kanadeaditya@microsoft.com maniatis@google.com shirish@iisc.ac.in
ABSTRACT ACM Reference Format:

Developers often have questions about semantic aspects of code
they are working on, e.g., “Is there a class whose parent classes
declare a conflicting attribute?”. Answering them requires under-
standing code semantics such as attributes and inheritance relation
of classes. An answer to such a question should identify code spans
constituting the answer (e.g., the declaration of the subclass) as well
as supporting facts (e.g., the definitions of the conflicting attributes).
The existing work on question-answering over code has considered
yes/no questions or method-level context. We contribute a labeled
dataset, called CodeQueries, of semantic queries over Python code.
Compared to the existing datasets, in CodeQueries, the queries
are about code semantics, the context is file level and the answers
are code spans. We curate the dataset based on queries supported
by a widely-used static analysis tool, CodeQL, and include both
positive and negative examples, and queries requiring single-hop
and multi-hop reasoning.

To assess the value of our dataset, we evaluate baseline neural
approaches. We study a large language model (GPT3.5-Turbo) in
zero-shot and few-shot settings on a subset of CodeQueries. We
also evaluate a BERT style model (CuBERT) with fine-tuning. We
find that these models achieve limited success on CodeQueries.
CodeQueries is thus a challenging dataset to test the ability of
neural models, to understand code semantics, in the extractive
question-answering setting.

CCS CONCEPTS

« Software and its engineering — Software post-development
issues; « Computing methodologies — Artificial intelligence.

KEYWORDS

Code understanding, developer productivity, neural modeling, ex-
tractive question-answering

“Now at Observe.
fNow at Myntra.
#Now at Google Research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISEC 2024, February 22-24, 2024, Bangalore, India

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1767-3/24/02.

https://doi.org/10.1145/3641399.3641408

Surya Prakash Sahu, Madhurima Mandal, Shikhar Bharadwaj, Aditya Kanade,
Petros Maniatis, and Shirish Shevade. 2024. CodeQueries: A Dataset of
Semantic Queries over Code. In 17th Innovations in Software Engineering
Conference (ISEC 2024), February 22—24, 2024, Bangalore, India. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3641399.3641408

1 INTRODUCTION

Extractive question-answering in natural-language settings is a
venerable domain of NLP, requiring detailed reasoning about a sin-
gle reasoning step (“single hop” [39]) or multiple reasoning steps
(“multi-hop” [48]). In the context of programming languages, neural
question answering over code has not grown to similar complex-
ity: tasks are either binary yes/no questions [20] or range over a
localized context (e.g., a source-code method) [2, 26].

Recent results show promise towards neural program analy-
ses around complex concepts such as program invariants [43, 44],
inter-procedural properties [10], and even evidence of deeper se-
mantic meaning [22]. However, there do not exist semantically
rich question-answering datasets requiring reasoning over code,
especially for questions with large scope (entire files) and high
complexity (e.g., multi-hop reasoning). Also, given the criticality
of program analysis, it is pertinent to judge neural approaches not
only on the answer to a question, but also on the reasoning or
evidence for that answer.

In this work, we set out to build a labeled dataset, called Code-
Queries!, for extractive question-answering over code. The queries
are described in English and the context is provided by the contents
of a source-code file. If a file does not contain code spans matching
the queried pattern then the answer spans is an empty set. These are
negative examples. Positive examples provide answer spans in the file.
Some queries require reasoning about multiple facts. For them, the
supporting facts are also identified as code spans in the file. As an ex-
ample, consider a query about existence of “conflicting attributes in
base classes”. Figure 1 shows a positive example labeled with answer
and supporting-fact spans. The subclass ThreadedTCPServer inherits
from the two base classes ThreadingMixin and TCPServer, both of
which define the method acceptConnection. Since both superclasses
define the same method, there is a conflict in resolving the method
acceptConnection invoked on instances of ThreadedTCPServer. As
shown in the figure, the declaration of the subclass constitutes the
answer span and the declarations of the conflicting attribute in the
superclasses constitute supporting facts.

!https://huggingface.co/datasets/thepurpleowl/codequeries

https://doi.org/10.1145/3641399.3641408
https://doi.org/10.1145/3641399.3641408
https://huggingface.co/datasets/thepurpleowl/codequeries

ISEC 2024, February 22-24, 2024, Bangalore, India

1| class TCPServer:
def __init__(self, service, ...):

4 # Supporting Fact 1
def acceptConnection(self, conn):

7 def handleConnection(self, conn):

o| class ThreadingMixin:
10 # Supporting Fact 2
1 def acceptConnection(self, conn):

13| # Answer Span
11| class ThreadedTCPServer(ThreadingMixin, TCPServer):
15 pass

Figure 1: Example code labeled with the answer and
supporting-fact spans for the conflicting-attributes query.

There are two difficulties in constructing such a dataset: 1) iden-
tifying semantic queries that are representative of developers’ re-
quirements and 2) deriving labels. We overcome these difficulties by
basing our dataset creation on queries supported by a widely-used
static analysis tool, CodeQL? [1]. We identify 52 public CodeQL
queries that produce highest number of answers on files in a com-
mon corpus of Python code [41]. Each CodeQL query identifies a
semantic aspect of code related to correctness, reliability, maintain-
ability or security of code through program analysis. Among the
52 queries, 15 require multi-hop reasoning and 37 require single-hop
reasoning. For instance, the example in Figure 1 requires multi-hop
reasoning across three classes.

Each CodeQL query is evaluated by the CodeQL engine on a
relational representation of code (similar to how a database query is
evaluated by a database engine). We extract answer and supporting-
fact spans from the analysis results. Since there can be multiple
files in the corpus with code that matches a query, we can gather
multiple positive examples per query; e.g., several instances of con-
flicting attributes from different source-code files. We also include
code on which the queries do not return any answer spans (negative
examples) so that a model can learn to predict when the code does
not have the queried pattern (e.g., absence of a buggy code pattern).
These are analogous to the no-answer [9] or unanswerable scenar-
ios [38]. The English descriptions of the CodeQL queries, provided
in the CodeQL documentation, are used in the natural-language
queries in our dataset. For example, the “conflicting attributes in
base classes” query? is of the form “When a class subclasses mul-
tiple base classes, attribute lookup is performed from left to right
amongst the base classes. ... this means that if more than one base
class defines the same attribute ... may not be the desired behavior
... Thus, a neural model will be required to analyze code semantics
from the analysis intent described in natural language. Figure 2
shows the data preparation setup. CodeQueries contains 34,662
positive examples and 52,613 negative examples.

To assess the value of our dataset, we consider various baseline
neural approaches, varying in architectural choices, evaluation

Zhttps://codeql.github.com/
3https://codeql.github.com/codeql-query-help/python/py-conflicting-attributes/

Sahu, et al.

Data

Preparation
answer spans,
supporting facts,
relevant code

No answer for File J, Query 52,
and no plausible negative

Query 52

Figure 2: Methodology for preparing the CodeQueries dataset.
All source-code files are analyzed against each of the 52 Cod-
eQL queries to gather multiple positive and negative exam-
ples for that query. We derive answer spans, supporting-fact
spans and code relevant for answering the query for each
example. The details are discussed in Section 3.

Positive Negative

methods and the presence of supporting facts. Specifically, we study
the ability of a large language model (GPT3.5-Turbo), that has seen
extensive natural language and code, to answer semantic queries
with various amounts of prompting on a subset of CodeQueries.
We also study a much smaller but more custom model, fine-tuned
from CuBERT [23].

We find that these models achieve limited success on Code-
Queries. With zero-shot prompting, GPT3.5-Turbo achieves exact
match with the ground-truth answer spans (within pass@10) on
20.84% of positive examples and detects that 26.77% negative exam-
ples do not contain answer spans. The model performance increases
to 32.66% and 70.08% respectively when prompted with few-shot
examples. The CuBERT model when fine-tuned with limited data
achieves exact match on only 3.74% positive examples. CodeQueries
is thus a challenging dataset that can be used for evaluating current
and future neural approaches, on their ability to understand code
semantics, in the extractive question-answering setting. It can fur-
ther help understand opportunities to improve model performance.
We have released our code, data and model checkpoints to facili-
tate future work on the proposed problem of answering semantic
queries over code at https://github.com/thepurpleowl/codequeries-
benchmark.

2 RELATED WORK

Natural-language questions and queries about code. CoSQA [20]
includes yes/no questions to determine whether a web search query
and a method match. Bansal et al. [2] and CodeQA [26] are two
recent works on question-answering over code. Both consider a
method as the code context, and programmatically extract question-
answer pairs specific to the method from the method body and com-
ments. Bansal et al. [2] generate questions about method signatures
(e.g., what are parameter types), (mis)matches between a function

https://codeql.github.com/
https://codeql.github.com/codeql-query-help/python/py-conflicting-attributes/
https://github.com/thepurpleowl/codequeries-benchmark
https://github.com/thepurpleowl/codequeries-benchmark

CodeQueries: A Dataset of Semantic Queries over Code

and a docstring, and function summaries. CodeQA is generated
from code comments using rule-based templates. The answers are
natural-language sentences extracted from code comments. The
context in our case is larger, file-level; queries are about seman-
tic aspects of code and may require long chains of reasoning; and
answers are spans over code. CS1QA [24] is a dataset of question-
answering in an introductory programming course and proposes
classification of the question into pre-defined types, identification
of relevant source-code lines and retrieval of related QAs. In an
orthogonal direction, natural language queries have been used for
code retrieval [6, 15, 16, 19, 21, 49].

Learning-based program analysis. Use of program analysis helps
improve software quality. However, implementing analysis algo-
rithms requires expertise and efforts. There is increasing interest
in using machine learning for program analysis. Recent work in
this direction includes learning program invariants [43, 44], rules
for static analysis [4], intra- and inter-procedural data flow anal-
ysis [10], specification inference [3, 8], reverse engineering [11],
and type inference [18, 28, 31, 35, 36, 46]. These techniques target
specific analysis problems, use specialized program representations
or customize learning methods. Our work targets semantic queries
over code and presents a uniform extractive question-answering
setup for them, wherein the developer intent is expressed in natural
language. Our queries cover diverse program analyses involving
forms of type checking, control-flow and data-flow analyses, and
many other checks (see the supplementary document?). Pashakhan-
loo et al. [33, 34] advocate the use of relational representations of
code, as used in CodeQL, in neural modeling and use them on
classification tasks. GitHub has recently launched an experimen-
tal service® that uses feature-based machine learning to classify
JavaScript and TypeScript code with regards to four common vul-
nerabilities.

Question-answering over text. Various datasets for extractive
question-answering over text requiring single-hop [39] and multi-
hop [48] reasoning have been proposed. Our dataset consists of
queries requiring single- and multi-hop reasoning over code. Along
the lines of prior work [9, 38], we include negative examples in
which the queries cannot be answered with the given context,
though the context contains plausible answers [48]. In order to en-
able explainability, we include supporting facts [48] in our dataset.
We experiment on file-level code which may contain parts that
are not relevant to the query. This is analogous to distractor para-
graphs [48] and requires the models to deal with spurious informa-
tion.

3 DATASET PREPARATION

In this section, we describe our methodology for dataset preparation.
An example in our dataset is a tuple (Q, C, A, SF) where Q is a query,
C is the contents of a Python file, A is the set of answer spans (i.e.,
code fragments of C that constitute the answer) and SF is the set
of supporting-fact spans.

Single-hop and multi-hop queries. We evaluated the queries (for-
malized in the CodeQL query language) from a standard suite of

4 https://github.com/thepurpleowl/codequeries-benchmark/blob/main/Codequeries_Statistics.pdf
5 https://github.blog/2022-02- 17-code- scanning- finds- vulnerabilities-using-machine-learning/

ISEC 2024, February 22-24, 2024, Bangalore, India

CodeQL [37] on the redistributable subset [23] of the ETH Py150
dataset of Python code [41] (the ETH Py150 Open dataset). These
queries are written by experts and identify coding issues pertaining
to correctness, reliability, maintainability or security of code. We
evaluated each query on individual Python files (Figure 2). To get a
reasonable number of positive examples for each query, we selected
queries with at least 50 answer spans in the training split of the
ETH Py150 Open dataset. We inspected the definition® of a query
to check whether answering it requires a single reasoning step or
multiple reasoning steps, and classified the query accordingly as a
single-hop or multi-hop query. Out of the 52 queries, 15 are multi-
hop and 37 are single-hop. We call these positive queries. Note that
the formal CodeQL queries are used only for preparing the dataset.
We use the English description of a query as the corresponding
natural-language query in our dataset.

Positive and negative examples. By evaluating a positive query,
we identify files containing code spans that satisfy the query defini-
tion. These are positive examples for the query. Naively, any code
on which a query does not return an answer could be viewed as a
negative example; for instance, in the case of conflicting attributes
(Figure 1), it would be trivial to answer that there are no conflicting
attributes if the code does not contain classes. In natural-language
question answering, Yang et al. [48] recommend that unanswerable
contexts should contain plausible, but not actual, answers; otherwise,
it is simple to distinguish between answerable and unanswerable
contexts [47]. Therefore, we manually derive the CodeQL queries
required to obtain negative examples with plausible answers. We en-
sure that a negative query identifies code similar to the original (posi-
tive) query but which does not satisfy the key properties required for
producing an answer to the original query. For example, the negated
version of the conflicting-attributes query finds code containing
a class with multiple inheritance (similar to Figure 1) such that
the base classes do not have conflicting attributes. Suppose hasMul-
tipleInheritance(c,pl,p2) and haveConflict(p1,p2) respectively
identify a subclass c with two parent classes p1 and p2, and check if
they have conflicting attributes. The positive query will have has-
MultipleInheritance(c,pl,p2) and haveConflict(p1,p2), whereas
the negative query will have hasMultipleInheritance(c,p1,p2) and
not haveConflict(p1,p2). Using results of the negative queries, we
derive negative examples. While the positive queries are already
available publicly, we are releasing the negative queries.

Answer and supporting-fact spans. We identify the answer and
supporting-fact spans from the results produced by the CodeQL
engine for each of the positive queries. These spans are of a variety
of syntactic patterns, making it non-trivial for a model to identify
the right candidates for answering the queries. In all, there are
42 different syntactic patterns of spans such as class declarations,
with statements, and list comprehensions. We give the statistics
of syntactic patterns of spans in the supplementary document?.
Note that negative examples do not have answer or supporting-fact
spans.

Dataset statistics. Table 1 gives the dataset statistics according
to the splits of the ETH Py150 Open dataset. We place an example

6 https://codeql.github.com/codeql-query-help/python/

https://github.com/thepurpleowl/codequeries-benchmark/blob/main/Codequeries_Statistics.pdf
https://github.blog/2022-02-17-code-scanning-finds-vulnerabilities-using-machine-learning/
https://codeql.github.com/codeql-query-help/python/

ISEC 2024, February 22-24, 2024, Bangalore, India

Table 1: Dataset statistics.

Train | Validation Test
Min 34 2 14
Positive Max 11,490 1,249 6,439
Total | 20,783 2,319 | 11,560
Min 29 1 17
Negative Max 17,592 1,893 9,892
Total | 31,676 3,464 | 17,473

derived from a Python file in the same split as the file. The Min/-
Max entries give the number of minimum/maximum examples over
individual queries, whereas Total is the sum of examples across
all queries. We observed that the query to identify “unused im-
ports” produced maximum examples. We report additional dataset
statistics in the supplementary document’.

Relevant code blocks. A CodeQL query produces answers based
only on specific parts of code within a file, e.g., a set of classes within
the file or a set of methods within a class in the file. We inspect the
query definitions® and automate extraction of the query-relevant
parts from a file. Given the query results, we programmatically
obtain the code blocks needed for arriving at the same results for
the query. We call them relevant code blocks. A code block is either
a method, all class-level statements (such as attribute definitions)
within a class or module-level statements that do not belong to any
class or method. In Section 4.2, we describe how this information is
used to help the CuBERT model scale to large files by filtering out
irrelevant code blocks using a classifier. Note that we implement
the static analysis to identify relevant blocks only for purposes of
generating labeled training data. However, in practice, developers
can provide such data manually without having to implement such
analysis.

4 EXPERIMENT DESIGN

CodeQueries is intended as a dataset to analyze semantic under-
standing of neural models through extractive question-answering
over code. In this work, we evaluate a large language model (LLM)
with prompting and a contextual embedding model with fine-tuning,
to assess the difficulty level of our dataset. A full-scale benchmark-
ing of the existing models is not an objective of this work.

4.1 Prompting a Large Language Model

Large language models [7, 14, 25, 29, 30, 45] have shown impressive
ability on coding tasks and are capable of zero-shot and few-shot
inference [5]. We use the GPT3.5-Turbo model [30] from OpenAl in
different settings described below. The complete prompt templates
are provided in the supplementary material.

Zero-shot prompting. In this setting, we provide the name of the
CodeQL query and its English description, both taken from the
CodeQL documentation, and instruct to output answer spans for
given code. We require the model to output “N/A” if it judges that
the code does not have an answer. The contents of a file are provided

"https:/ github.com/thepurpleowl/codequeries-benchmark/blob/main/Codequeries_Statistics.pdf

Sahu, et al.

You are an expert software developer. Please help identify the results of
evaluating the CodeQL query titled "{{ query_name }}" on a code snippet. The
results should be given as code spans or fragments (if any) from the code
snippet. The description of the CodeQL query "{{ query_name }}" is - {{
description }}

If there are spans that match the query description, print them out one per line.
If no spans matching the query description are present, say N/A.

Code snippet
* “python
{{ input_code }}

Code span(s)
**“python

Figure 3: Zero-shot prompt template.

You are an expert software developer. Please help identify the results of
evaluating the CodeQL query titled "{{ query_name }}" on a code snippet. The
results should be given as code spans or fragments (if any) from the code
snippet. The description of the CodeQL query "{{ query_name }}" is - {{
description }}

If there are spans that match the query description, print them out one per line.
If no spans matching the query description are present, say N/A.

The following are some examples of code snippets with and without spans matching
the query description.

Example code snippet with span(s) matching the query description

*“python

{{ positive_context }}

Code span(s)

* “python

{% for span in positive_spans %}
{{span}}

{% endfor %}

Example code snippet with no span(s) matching the query description
T Tpython
{{ negative_context }}

Code span(s)
T “python
N/A

Code snippet
* “python
{{ input_code }}

Code span(s)
* “python

Figure 4: Few-shot prompt template with BM25 retrieval.

as the code to be analyzed. The prompt template is presented in
Figure 3.

Few-shot prompting with BM25 retrieval. We provide the same
instructions to the model as in the zero-shot prompting, but in
addition, include a positive and a negative labeled example in the
prompt. For a query Q, we retrieve labeled examples for Q from
the training split that are similar to the code to be analyzed, using
the BM25 method [42]. In addition to term frequency and inverse
document frequency, BM25 considers the ratio between term oc-
currences and the overall document length, enabling the retrieval
of code examples where the snippets from the input code are more
prominent. The prompt template is presented in Figure 4. Similar
to the zero-shot setting, we require the model to output the answer
spans or “N/A”. To ensure that we do not overflow the prompt,

https://github.com/thepurpleowl/codequeries-benchmark/blob/main/Codequeries_Statistics.pdf

CodeQueries: A Dataset of Semantic Queries over Code

You are an expert software developer. Please help identify the results of
evaluating the CodeQL query titled "{{ query_name }}" on a code snippet. The
results should be given as code spans or fragments (if any) from the code
snippet. The description of the CodeQL query "{{ query_name }}" is - {{
description }}

The results should consist of two parts: answer spans and supporting fact spans.
If there are spans that match the query description, print them out as answer
spans. Supporting fact spans are spans that provide additional evidence about
the correctness of the answer spans. Always print one span per line. If no such
spans exist, print N/A.

The following are some examples of code snippets with spans matching the query
description, along with supporting facts if any.

{ex_a}
{ex_b}
Code snippet

T “python
{{ input_code }}

Answer span(s)
**python

Figure 5: Few-shot prompt template with supporting facts.

Example code snippet with answer
span(s) matching the query
description with supporting fact

span(s)
**python
{{ positive_context }}

Answer span(s)

T “python

{% for span in positive_spans %}
{{span}}

{% endfor %}

Supporting fact span(s)

**“python

{% for span in supporting_fact_spans
%}

Example code snippet with answer
span(s) matching the query
description but without supporting
fact span(s)

*Tpython

{{ positive_context }}

Answer span(s)

** “python

{% for span in positive_spans %}
{{span}}

{% endfor %}

Supporting fact span(s)

{{span}} **~python

{% endfor %} N/A

“TTEND “TTEND

Figure 6: “ex_a” sub- Figure 7: “ex_b” sub-

template in few-shot
prompt with supporting
facts.

template in few-shot
prompt without support-
ing facts.

we minimize the examples by keeping only code blocks that are
relevant to the query (see Section 3, relevant code blocks). This
optimization is used in the next setting as well.

Few-shot prompting with supporting facts. As discussed in Sec-
tion 3, we extract supporting facts from the CodeQL results. In this
setting, we evaluate the ability of the LLM to produce both answer
and supporting-fact spans. In CodeQueries, only positive exam-
ples have answer and supporting facts, and therefore this setting
is applicable only to the positive examples. The answers to some
queries can be determined through local reasoning and they do not
have additional supporting facts. Our prompt provides instructions
to produce answer and supporting facts, and an example with an-
swer and supporting-fact spans. For examples without supporting
facts, we mark supporting facts as “N/A”. The prompt template is
presented in Figure 5.

ISEC 2024, February 22-24, 2024, Bangalore, India

|
Query
Identifier @
Code L 3 @ 2
Block 1 Q <
I e
w 3]
NN By 1 ma©
a
= 1 naClEN
Code a @ g_E
|
Block K IIIIFAA? é%
N —()

Figure 8: The span prediction setup.

4.2 Fine-tuning a Contextual Embedding Model

Span prediction problem. We reformulate the extractive question-
answering problem as a problem of classifying code tokens. Let
{B, I, O} respectively indicate Begin, Inside and Outside labels [40].
An answer span is represented by a sequence of labels such that
the first token of the answer span is labeled by a B and all the other
tokens in the span are labeled by I's. We use an analogous encoding
for supporting-fact spans, but we use the F label instead of B to
distinguish facts from answers. Any token that does not belong to
a span is labeled by an O. We thus represent multiple answer or
supporting-fact spans by a single sequence over {B, I, O, F} labels.
We call this the span prediction problem. Note that this does not
allow overlap between spans, which we have empirically found not
to be a problem in our dataset.

Model selection. We can fine-tune BERT-style, encoder-based
contextual models [13, 17, 23] to solve the span prediction problem.
These models come with different input size restrictions. For Cu-
BERT and CodeBERT, checkpoints are available for input length
of 512. For CuBERT, a checkpoint for input length of 1024 is also
available. The CuBERT checkpoint with input length of 1024 is de-
noted as CuBERT-1K. The GraphCodeBERT model allocates input
length of 512 for code tokens and 128 for data-flow graph nodes.
We use all these available checkpoints for experimentation. As a
non-pre-trained baseline, we train a Transformer encoder with in-
put length of 1024 from scratch. We used the CuBERT vocabulary
for this Transformer encoder but trained the token embeddings in
an end-to-end manner. We use hyper-parameters and configura-
tions discussed in Training setup of this section. While it is possible
to evaluate other models, it is not the primary focus of this pa-
per. Hence, in our experiments, we use the best-performing (see
Section 5.2) CuBERT model.

Span prediction model. Figure 8 shows the span prediction setup.
The input to the model is the unique name of a query (marked as
query identifier in the figure) and the code. The whole sequence is
preceded with the [CLS] token, similar to BERT [12]. The symbols
Q; and C; denote subword tokens of the query identifier and code,
respectively. For simplicity, we do not explicitly show the special
delimiter tokens such as [CLS]. The input sequence is fed to the
encoder. The span prediction layer consists of a token classifier that
performs a four-way classification over the labels {B, I, O, F}. It is

ISEC 2024, February 22-24, 2024, Bangalore, India

Candidate
code blocks

Query
Identifier

| I_ :> Relevance
Code Block N classifier
Step 1

Sahu, et al.

Query

Identifier

Relevant
Code Block k

Span prediction
model

—Spans

Step 2

~

Figure 9: Two-step procedure to handle large-size code containing possibly irrelevant code blocks. In step 2, the span prediction

model follows the approach illustrated in Figure 8.

applied to the encoding of every code token in the last layer of the
encoder. For negative examples, all tokens are to be classified as O.

Two-step procedure of relevance classification and span prediction.
We found that not all code is relevant for answering a given query.
Additionally, in many cases, the entire file contents do not fit in
the input to the model. As discussed in Section 3, we identify the
relevant code blocks programmatically using the CodeQL results
during data preparation. We use this information to devise a two-
step procedure (see Figure 9) to deal with the problem of scaling to
large-size code:

Step 1: We first apply a relevance classifier to every block in the given
code and select code blocks that are likely to be relevant for
answering a given query.

Step 2: We then apply the span prediction model (Figure 8) to the set
of selected code blocks to predict answer and supporting-fact
spans.

Training: Let F be a file and R be the set of code blocks in F that
are relevant for a query Q. Other blocks in F are irrelevant. We train
a classifier that given Q and a code block b predicts whether b is
relevant or not. We fine-tune a CuBERT checkpoint as the relevance
classifier. Instead of training the span prediction model on the entire
contents of a file F, we train it on code blocks relevant for Q within
F. The code blocks identified as relevant during data preparation
are used for training. We fine-tune the models by minimizing the
cross-entropy loss.

Training setup: The pre-trained CuBERT encoder model check-
points are available for input length of 512 and 1024. We use the
1024-length checkpoint for span prediction and the 512-length
checkpoint for relevance classification. For span prediction, the to-
ken encodings from the final hidden layer of an encoder are passed
through a dropout layer with a dropout probability of 0.1 followed
by a classification layer. We initially experimented with up to 10
epochs and learning rates in the order of e-5 and e-6 for these mod-
els. We observed that the models reached minimum validation loss
with the following configurations and used them. Fine-tuning is
performed for 5 epochs for the 512-length models and for 3 epochs
for the 1024-length models, with a learning rate of 3e-5. Based
on the memory constraints, we used batch sizes of 4 and 16 for
sequence lengths 1024 and 512 respectively. All the models are
trained by minimizing the cross-entropy loss using the AdamW
optimizer [27] and linear scheduling without any warmup. The
best checkpoint is decided based on least validation loss. We used
the same hyper-parameters for fine-tuning the CuBERT 1024 span

prediction model with a limited number of files (Section 5.2). For
the relevance classification model, we fine-tuned the pre-trained
CuBERT model with input length limit of 512. The pooled output
is passed through a dropout layer with dropout probability of 0.1
and a 2-layer classifier with a hidden dimension of 2048. We fine-
tuned it for 5 epochs with a learning rate of 3e-6 and used weighted
crossentropy (with weights 1/2 for irrelevant/relevant class) as the
loss function. The best checkpoint is decided based on the least
validation loss. We used the same hyper-parameters except for
the learning rate (2e-6) for fine-tuning the CuBERT 512 relevance
classification model with a limited number of files (Section 5.2).

Compute: All experiments are performed on a 64 bit Debian
system with an NVIDIA Tesla A100 GPU having 40GB GPU memory
and 85GB RAM.

Inference: At inference time, given a query Q and a file compris-
ing code blocks {by,...,bn}, we generate a set of n examples by
concatenating Q and the contents of each of b;. The relevance classi-
fier is applied on each of these examples and all blocks classified as
relevant are selected. The selected blocks and the query are passed
to the span prediction model as shown in Figure 9.

4.3 Evaluation Metrics

We measure the performance of the model in terms of exact match.
An exact match occurs when the set of predicted answer spans is
same as the set of ground-truth answer spans. When supporting
facts are predicted, the exact match also requires that the set of
predicted supporting-fact spans is same as the set of ground-truth
supporting-fact spans. For a relevance classification model, we
measure the usual classification metrics: accuracy, precision, and
recall.

5 EXPERIMENTAL RESULTS

5.1 Evaluation of the LLM with Zero-shot and
Few-shot Prompting

Sampled test data. Due to a limited inference budget, we evaluate
the LLM (GPT3.5-Turbo) on a sample of the test split. Consider-
ing the available prompt size of 4096 tokens in the used LLM, we
sampled files that can fit into the input along with the examples
of few-shot prompts, i.e., files having less than 2000 tokens are
considered. For each of the 52 queries, we select a maximum of 20
test files with 10 each from positive and negative examples. We
refer to this as the sampled test data.

CodeQueries: A Dataset of Semantic Queries over Code

ISEC 2024, February 22-24, 2024, Bangalore, India

Table 2: Percentage exact match achieved by GPT3.5-Turbo on the sampled test data.

(a) Zero-shot prompting and few-shot prompting with BM25 retrieval for

answer span prediction.

. Few-shot promptin,
Zero-shot prompting with BMZE retrri)eva%
Pass@k | Positive | Negative | Positive | Negative
9.82 12.83 16.45 44.25
2 13.06 17.42 21.14 55.53
5 17.47 22.85 27.69 65.43
10 20.84 26.77 32.66 70.08

Results on the sampled test data. We experiment on the sampled
test data with various prompts and obtain 10 generations at tem-
perature of 0.8 per inference. We use the pass@k measure [7] for k
draws from n generations, for k € {1,2,5,10} and n = 10.

Table 2a shows the results of zero-shot prompting and few-shot
prompting with BM25 retrieval for answer span prediction. In zero-
shot prompting, the LLM gets only 9.82% and 12.83% exact match
on positive and negative examples respectively with pass@1. For
k = 10, these increase to 20.84% and 26.77% respectively. The few-
shot prompting shows improvement over zero-shot prompting at all
values of k. The improvement on negative examples is particularly
significant. We believe that this is because both a positive and a
negative example are provided in the prompt. The negative example
has a plausible but incorrect candidate answer (see Section 3). The
difference in the two examples helps the LLM detect the negative
examples more accurately.

Table 2b shows the results of few-shot prompting with sup-
porting facts on answer and supporting-fact span prediction. As
discussed in Section 4.1, this setting is applicable only to positive
examples. We see that the LLM achieves exact match of 21.88%-
39.08% for different values of k. Note that for the experiment in
Table 2a, the model is required to distinguish between positive
and negative examples, which is not the case in this setting. The
additional annotation of supporting facts in the examples in the
prompt seems to help the model in predicting both answers and
supporting facts.

Observations. With zero-shot prompting, the LLM was able to
identify correct spans in positive examples for simple queries, e.g.,
80% exact match for the query “Flask app is run in debug mode”,
but achieved no exact match on complex queries like “Inconsistent

(b) Few-shot prompting with supporting facts for answer
and supporting-fact span prediction.

Few-shot prompting
with supporting facts
Pass@k Positive
1 21.88
2 28.06
5 34.94
10 39.08

equality and hashing”. It faces similar problems with the nega-
tive examples. Some of these failure cases are fixed with few-shot
prompting where explicit spans of positive/negative examples in
the prompt provide additional information about the intent and
differences between positive/negative examples. For many queries
including “Inconsistent equality and hashing”, few-shot prompts
having examples with supporting facts are able to generate correct
answer spans along with the correct supporting facts. As general
observations, for both single-hop and multi-hop queries, we see
shorter and more accurate code generation with few-shot prompts
compared to zero-shot prompts.

5.2 Evaluation of the Fine-tuned Contextual
Embedding Models

Model selection. In Table 4, we see all the models have excel-
lent exact-match accuracy for the negative examples; meaning that
they are successful in identifying unanswerable contexts. On the
positive examples, the finetuned models achieve accuracy in the
range of 59.77-72.51%. Better performance of GraphCodeBERT sug-
gests additional information provided with data-flow nodes tokens
helps. Predicting spans for positive examples requires accurately
identifying both the beginning token and all the other tokens that
form the span, whereas for a negative example it suffices to predict
that no token belongs to a span. We believe that the relative gap
in the performance of the models between positive and negative
examples stems from this difference. We also provide query-wise
performance of best preforming CuBERT-1K model in the supple-
mentary document.

Evaluation setup. We fine-tune the relevance classification and
span prediction models from the pre-trained CuBERT checkpoints

Table 3: Percentage exact match achieved by the models fine-tuned from CuBERT.

(a) Answer and supporting-fact span prediction on the
complete test data.

Variants ‘ Positive ‘ Negative

Two-step(20, 20) 3.74 95.54
Two-step(all, 20) 7.81 97.87
Two-step(20, all) 33.41 96.23
Two-step(all, all) | 52.61 96.73

Prefix 36.60 93.80
Sliding window 51.91 85.75

(b) Results on the sampled test data from Section 5.1.

Answer span Answer & supporting-

prediction fact span prediction
Variants Positive ‘ Negative Positive
Two-step(20, 20) 9.42 92.13 8.42
Two-step(all, 20) 15.03 94.49 13.27
Two-step(20, all) 32.87 96.26 30.66
Two-step(all, all) 51.90 95.67 49.30

ISEC 2024, February 22-24, 2024, Bangalore, India

Table 4: Percentage exact match achieved by the considered
fine-tuned models.

Models Positive | Negative
Transformer 22.50 97.57
CuBERT 59.77 97.38
CodeBERT 62.67 95.96
GraphCodeBERT | 61.08 97.40
CuBERT-1K 72.51 96.79

for 512 and 1024 token lengths respectively. Each of them is trained
jointly on all 52 queries (see Training Setup in Section 4.2). We
train two variants of each of these models: 1) one on all files in
the training split and 2) another on 10 positive and 10 negative
files per query as a representative of the practical setting in which
only a few labeled examples are available. We denote the resultant
two-step procedure (classification followed by span prediction) by
two-step(x, y) indicating that the relevance classifier is trained with
x files and the span predictor is trained with y files from the training
data, for x, y € {20, all}.

Results on the complete test data. As these models are run locally,
we can evaluate them on the complete test data (unlike the LLM).
Table 3a gives results of the two-step procedure on the complete test
data. The two-step(all, all) setup which uses all the training data
for both the relevance classification and span prediction performs
the best, getting 52.61% and 96.73% exact match on positive and
negative examples. However, it relies on existence of a large set
of labeled examples for training, which may not be available in
practice. The most practical setting, two-step(20, 20), is able to get
exact match on only 3.74% positive examples. Among the {B, I, O, F}
labels, the label Outside is very frequent compared to the other
labels and hence, the token classifier is biased towards predicting
it and that explains why the exact match is high for the negative
examples in all settings.

The relevance classifier trained with 20 files achieves accuracy,
precision, and recall scores of 91.37, 79.72, and 89.61, respectively.
Training it with all files increases the scores to 96.38, 95.73, and
90.10 respectively. We evaluated two simple substitutes to relevance
classification in the two-step procedure. We considered a prefix
setup in which the maximum file prefix that can fit the input is
selected. Another setup is a sliding window setup in which a file is
split by the input size of the model into different chunks forming
independent examples and the results are aggregated across the
chunks. Table 3a shows the results obtained by the span prediction
model, trained on all data, in conjunction with prefix/sliding window.
We see that two-step(all, all) performs better than them.

Results on the sampled test data. Table 3b gives results of the
two-step procedure on the sampled test data from Section 5.1. We
see that two-step(20, 20) has comparable performance to the LLM
in pass@1 in zero-shot prompting on answer-span prediction over
positive examples (Table 2a). It underperforms the LLM for higher
values of k and in few-shot prompting, including for predicting
both answer and supporting-fact spans (Table 2b). Increasing the
training budget to all examples improves the performance of the
fine-tuned models. As discussed earlier, the high performance on

Sahu, et al.

negative examples is an artifact of the skew in the token labels
towards the Outside label.

Observations. For some queries like “Imprecise assert” a single
file may contain multiple candidate answer spans, e.g., multiple
assert statements. With limited training, the relevance classifier had
low recall, missing out on some of the relevant candidates. Training
with more data allows the relevance classifier to avoid considering
irrelevant code blocks as relevant, which can be observed in the
significant increase in precision score. For single-hop queries, most
of the code blocks in a file would be irrelevant. Training with more
data resulted in a significant boost (> 10%) in accuracy score for 15
single-hop queries. For some queries such as “Module is imported
with ‘import’ and ‘import from™, there is less ambiguity in relevant
versus irrelevant blocks and those queries did not benefit much
from larger training data.

The span prediction model trained on limited data achieves some
success only on a few queries where the answer spans follow spe-
cific syntactic patterns, e.g., “Deprecated slice method” whose an-
swer spans contain one of __getslice__, __setslice__ or __del-
slice__. On these queries, training on larger data does not improve
the model performance much. In general, the span prediction works
better on single-hop queries than multi-hop queries, even when
trained on all data.

6 DISCUSSION
6.1 Examples of Successful and Unsuccessful
Span Predictions

In this section, we present examples of both successful and unsuc-
cessful predictions of various two-step and LLM prompting setups.

import sys

s| # Supporting Fact
i| class _Registry(dict):

def __init__(self):
dict.__init__(self)

10 # Answer Span

1 def __hash__(self):

return hash(self.freeze(self))

14 def __getitem__(self, key):

sys.modules[__name__] = _Registry()

Figure 10: Positive example code labeled with the answer
and supporting-fact spans for the “Inconsistent equality and
hashing” query.

Figure 10® is a positive example of the multi-hop query “In-
consistent equality and hashing” where the __hash__ method is

8Part of CenterForOpenScience/scrapi/scrapi/registry.py file in the
ETH Py150 Open dataset

CodeQueries: A Dataset of Semantic Queries over Code

implemented, but __eq__ method is not implemented. Zero-shot
prompting fails to generate the answer spans, whereas few-shot
prompting with BM25 retrieval and few-shot prompting with sup-
porting facts generate the correct answer span. Among two-step
setups, only two-step setups with span prediction models trained
with all data, i.e., two-step(20, all) and two-step(all, all), were able
to predict the correct spans.

;| class _AnylLocation:

6| # Supporting Fact
class XPathQuery:
def __init__(self, queryStr):

1 # Answer Span
12 def __hash__(self):
13 return self.queryStr.__hash__()

15| __internedQueries = {}

Figure 11: Positive example code labeled with the answer
and supporting-fact spans for the “Inconsistent equality and
hashing” query.

| from helpers import unittest

from luigi.contrib.ssh import RemoteContext

;| class TestMockedRemoteContext(unittest.TestCase):
8 def test_subprocess_delegation(self):

10 # Answer Span 1

1 self.assertTrue("ssh" in self.last_test)

12 # Answer Span 2

13 self.assertTrue("-i" in self.last_test)

14 # Answer Span 3

15 self.assertTrue(".../key.pub" in self.last_test)
16 # Answer Span 4

17 self.assertTrue("...@...
18 # Answer Span 5

19 self.assertTrue("ls" in self.last_test)

" in self.last_test)

subprocess.Popen = orig_Popen

23 def test_check_output_fail_connect(self):

Figure 12: Positive example code labeled with the answer
spans for the “Imprecise assert” query.

ISEC 2024, February 22-24, 2024, Bangalore, India

Figure 11° is another positive example of the same query, for
which all prompting strategies and two-step setups except few-shot
prompting with supporting facts failed to predict the answer span.

1| from __future__ import unicode_literals

| class TypedChoiceFieldTest(SimpleTestCase):

6 &é% test_typedchoicefield_5(self):

8 ;éif.assertEqual(", f.clean('"))

10 def test_typedchoicefield_6(self):
;éif.assertIsNone(f.clean("))

:[def test_typedchoicefield_has_changed(self):
16 ééif.assertFalse(f.has_changed(None, D))

self.assertTrue(f.has_changed('', 'a"))

Figure 13: Negative example code for the “Imprecise assert”
query.

1| from __future__ import unicode_literals

i| class Indent(object):

o def __init__(self, type, size):

o| def __hash__(self):

10 return (self.type, self.size).__hash__()

def __eq__(self, other):
return hash(self) == hash(other)

class GherkinParser(object):

class GherkinFormatter(object):

Figure 14: Negative example code for the “Inconsistent equal-
ity and hashing” query.

Figure 1210 is a positive example of the single-hop query “Impre-
cise assert”. For this example, all prompting strategies, i.e., zero-shot
prompting, few-shot prompting with BM25 retrieval, and few-shot
prompting with supporting facts, were able to generate the correct

Part of kuri65536/python-for-android/python-
modules/twisted/twisted/words/xish/xpath.py file in the ETH Py150
Open dataset

Opart of spotify/luigi/test/test_ssh.py file in the ETH Py150 Open
dataset.

ISEC 2024, February 22-24, 2024, Bangalore, India

Sahu, et al.

Table 5: Comparison of exact match and BLEU metric scores on the sampled test data.

(a) Zero-shot prompting and few-shot prompting with BM25 retrieval

for answer span prediction.

. Few-shot promptin;
Zero-shot prompting with BMZIS) retr?eva%
Pass@k | Positive EM | Positive BLEU | Positive EM | Positive BLEU
1 9.82 18.75 16.45 20.22
2 13.06 23.74 21.14 25.92
5 17.47 29.88 27.69 33.68
10 20.84 34.45 32.66 39.22

(b) Few-shot prompting with supporting facts for answer
and supporting-fact span prediction.

Few-shot prompting
with supporting facts
Pass@k | Positive EM | Positive BLEU
1 21.88 37.71
2 28.06 46.20
5 34.94 54.59
10 39.08 59.33

(c) Results of fine-tuned model on the sampled test data from Section 5.1.

Answer span Answer & supporting-
prediction fact span prediction
Variants Positive EM ‘ Positive BLEU || Positive EM ‘ Positive BLEU
Two-step(20, 20) 9.42 12.75 8.42 14.73
Two-step(all, 20) 15.03 19.19 13.27 19.46
Two-step(20, all) 32.87 34.25 30.66 35.16
Two-step(all, all) 51.90 54.89 49.30 54.59

answer span. Among two-step setups, only two-step setups with
span prediction models trained with all data, i.e., two-step(20, all)
and two-step(all, all), were able to predict the correct spans.

Figure 13!! is a negative example of the single-hop query “Impre-
cise assert”. For this example, zero-shot prompting fails to generate
‘N/A’, whereas few-shot prompting with BM25 retrieval was able
to generate the ‘N/A’, denoting the absence of the desired span.
Among two-step setups, all setups except two-step(20, 20), were
able to predict the absence of spans.

Figure 1412 is a negative example of the multi-hop query “Incon-
sistent equality and hashing”. For this example, zero-shot prompting
and few-shot prompting with BM25 retrieval were not able to gen-
erate the required ‘N/A’. Among two-step setups, all setups except
two-step((20, 20), were able to predict the absence of any desired
answer spans.

6.2 Choice of evaluation metric.

The exact match (EM) metric is commonly used in prior work
on natural language extractive QA benchmarks like SQUAD and
HotpotQA. Being a strict metric, lower scores with exact match can
overshadow overall model performance. Metrics used for evaluating
a generated sentence with respect to a reference sentence, such as
BLEU [32], can act as a soft replacement for exact match metric.
In Table 5, we review the model performance with sampled test
data from Section 5.1 by reporting the BLEU scores along with
the corresponding exact match scores from Table 2a, Table 2b,
and Table 3b. Since there are no ground truth spans for negative
examples, BLEU can only be computed for positive examples. We
see that BLEU scores correspond well with EM.

Upartofdjango/django/tests/forms_tests/field_tests/test_typed-
choicefield.py file in the ETH Py150 Open dataset.

12part of waynemoore/sublime-gherkin-formatter/lib/gherkin.py file
in the ETH Py150 Open dataset.

7 CONCLUSIONS AND FUTURE WORK

We presented the CodeQueries dataset to test the ability of neural
models to understand code semantics on the proposed problem of
answering semantic queries over code. Our dataset consists of 52
queries spanning those many distinct program analysis tasks over
Python code. It requires a model to perform single- or multi-hop
reasoning, understand structure and semantics of code, distinguish
between positive and negative examples, and accurately identify
answer and supporting-fact spans. We are releasing our data prepa-
ration code that can be extended to support more queries and more
programming languages. Our evaluation shows that CodeQueries
is challenging for the best-in-class generative and embedding ap-
proaches under different prompting or fine-tuning settings. We
consider file-level context but there is scope to increase it to in-
clude entire code repositories. We are considering extensions to our
dataset to include more semantic queries and more programming
languages.

REFERENCES

[1] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schifer. 2016.
QL: Object-oriented Queries on Relational Data. In 30th European Conference
on Object-Oriented Programming. Schloss Dagstuhl - Leibniz-Zentrum fir Infor-
matik.

[2] Aakash Bansal, Zachary Eberhart, Lingfei Wu, and Collin McMillan. 2021. A Neu-
ral Question Answering System for Basic Questions about Subroutines. In 28th
IEEE International Conference on Software Analysis, Evolution and Reengineering.
IEEE.

[3] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2018. Active Learning
of Points-to Specifications. SIGPLAN Not. 53, 4 (2018).
[4] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2017. Learning a Static

Analyzer from Data. In Computer Aided Verification - 29th International Conference.
Springer.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

[6] José Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When deep learning met code search. In Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the

CodeQueries: A Dataset of Semantic Queries over Code

[7

[

8

=

=

[10]

[11]

[12]

[13]

[14]
[15]

[16

[17]

(18]

[19]

[20]

[21]

[22

[23]

[24]

[25

[26]

[27]

[28]

Foundations of Software Engineering.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
and others. 2021. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374 (2021).

Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin T. Vechev. 2019.
Scalable taint specification inference with big code. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM.

Christopher Clark and Matt Gardner. 2017. Simple and effective multi-paragraph
reading comprehension. arXiv preprint arXiv:1710.10723 (2017).

Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F. P.
O’Boyle, and Hugh Leather. 2021. ProGraML: A Graph-based Program Repre-
sentation for Data Flow Analysis and Compiler Optimizations. In Proceedings of
the 38th International Conference on Machine Learning (Proceedings of Machine
Learning Research). PMLR.

Yaniv David, Uri Alon, and Eran Yahav. 2020. Neural reverse engineering of
stripped binaries using augmented control flow graphs. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020), 1-28.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP. Association for Computational
Linguistics.

Google. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023).
Wenchao Gu, Zongjie Li, Cuiyun Gao, Chaozheng Wang, Hongyu Zhang, Zenglin
Xu, and Michael R Lyu. 2021. CRaDLe: Deep code retrieval based on semantic
dependency learning. Neural Networks 141 (2021), 385-394.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering, ICSE.
ACM.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018.
Deep Learning Type Inference. In ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. Association
for Computing Machinery.

Geert Heyman and Tom Van Cutsem. 2020. Neural Code Search Revisited:
Enhancing Code Snippet Retrieval through Natural Language Intent. CoRR
abs/2008.12193 (2020). arXiv:2008.12193

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming
Zhou, and Nan Duan. 2021. CoSQA: 20, 000+ Web Queries for Code Search and
Question Answering. In Proceedings of the 59th Annual Meeting of the Associ-
ation for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP. Association for Computational
Linguistics.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436

Charles Jin and Martin Rinard. 2023. Evidence of Meaning in Language Models
Trained on Programs. arXiv:2305.11169 [cs.LG]

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and Evaluating Contextual Embedding of Source Code. In Proceedings
of the 37th International Conference on Machine Learning. PMLR.

Changyoon Lee, Yeon Seonwoo, and Alice Oh. 2022. CS1QA: A Dataset for
Assisting Code-based Question Answering in an Introductory Programming
Course. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
2026-2040.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).
Chenxiao Liu and Xiaojun Wan. 2021. CodeQA: A Question Answering Dataset
for Source Code Comprehension. In Findings of the Association for Computational
Linguistics: EMNLP. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Fixing Weight Decay Regularization in
Adam. CoRR abs/1711.05101 (2017). arXiv:1711.05101

Amir M. Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. 2021.
Type4Py: Deep Similarity Learning-Based Type Inference for Python. CoRR
(2021). arXiv:2101.04470

[29

[30

[31

@
&,

[33

(34

[35

[36

[37

[38

[39

[41

[42

[43

(44

[46

[47]

[48

N
o)

ISEC 2024, February 22-24, 2024, Bangalore, India

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo
Zhou. 2023. CodeGen2: Lessons for Training LLMs on Programming and Natural
Languages. arXiv preprint arXiv:2305.02309 (2023).

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language
models to follow instructions with human feedback. arXiv:2203.02155 [cs.CL]
Irene Vlassi Pandi, Earl T. Barr, Andrew D. Gordon, and Charles Sutton. 2020.
OptTyper: Probabilistic Type Inference by Optimising Logical and Natural Con-
straints. CoRR abs/2004.00348 (2020). arXiv:2004.00348

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Philadelphia, Pennsylvania, USA, 311-318. https:
//doi.org/10.3115/1073083.1073135

Pardis Pashakhanloo, Aaditya Naik, Hanjun Dai, Petros Maniatis, and Mayur
Naik. 2022. Learning to Walk over Relational Graphs of Source Code. In Deep
Learning for Code Workshop.

Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang, Hanjun Dai, Petros Ma-
niatis, and Mayur Naik. 2021. CodeTrek: Flexible Modeling of Code using an
Extensible Relational Representation. In International Conference on Learning
Representations.

Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and
Michael Lyu. 2022. Static inference meets deep learning: a hybrid type infer-
ence approach for python. In Proceedings of the 44th International Conference on
Software Engineering. 2019-2030.

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
Writer: neural type prediction with search-based validation. In ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering.

Query Suite. 2022. https://github.com/github/codeql/blob/main/python/ql/src/
codeql-suites/python-lgtm.qls.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know What You Don’t Know:
Unanswerable Questions for SQuAD. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing. The
Association for Computational Linguistics.

Lance A. Ramshaw and Mitch Marcus. 1995. Text Chunking using
Transformation-Based Learning. In Third Workshop on Very Large Corpora.
Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic model for
code with decision trees. ACM SIGPLAN Notices 51, 10 (2016).

Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3,4 (2009), 333-389.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018.
Learning Loop Invariants for Program Verification. In Advances in Neural Infor-
mation Processing Systems.

Charles Sutton, David Bieber, Kensen Shi, Kexin Pei, and Pengcheng Yin. 2023.
Can Large Language Models Reason About Program Invariants?. In Proceedings
of the International Conference on Machine Learning.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Proba-
bilistic Type Inference using Graph Neural Networks. In International Conference
on Learning Representations. OpenReview.net.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe. 2017. Making Neural QA as
Simple as Possible but not Simpler. In Proceedings of the 21st Conference on Compu-
tational Natural Language Learning (CoNLL 2017). Association for Computational
Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. 2018. StaQC: A
Systematically Mined Question-Code Dataset from Stack Overflow. In Proceedings
of the 2018 World Wide Web Conference on World Wide Web - WWW '18. ACM
Press. https://doi.org/10.1145/3178876.3186081

https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/2305.11169
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2101.04470
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2004.00348
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://github.com/github/codeql/blob/main/python/ql/src/codeql-suites/python-lgtm.qls
https://github.com/github/codeql/blob/main/python/ql/src/codeql-suites/python-lgtm.qls
https://doi.org/10.1145/3178876.3186081

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset Preparation
	4 Experiment Design
	4.1 Prompting a Large Language Model
	4.2 Fine-tuning a Contextual Embedding Model
	4.3 Evaluation Metrics

	5 Experimental Results
	5.1 Evaluation of the LLM with Zero-shot and Few-shot Prompting
	5.2 Evaluation of the Fine-tuned Contextual Embedding Models

	6 Discussion
	6.1 Examples of Successful and Unsuccessful Span Predictions
	6.2 Choice of evaluation metric.

	7 Conclusions and Future Work
	References

