LLM Comparator: Visual Analytics for Side-by-Side Evaluation
of Large Language Models

Minsuk Kahng
kahng@google.com
Google Research
Atlanta, GA, USA

James Wexler
jwexler@google.com
Google Research
Cambridge, MA, USA

1. Interactive Table

Ian Tenney
iftenney@google.com
Google Research
Seattle, WA, USA

Emily Reif
ereif@google.com
Google Research
Seattle, WA, USA

Michael Terry
michaelterry@google.com
Google Research
Cambridge, MA, USA

Mahima Pushkarna
mahimap@google.com
Google Research
Cambridge, MA, USA

Krystal Kallarackal
kallarackal@google.com
Google Research
Cambridge, MA, USA

Lucas Dixon
ldixon@google.com
Google Research
Paris, France

2. Visualization Summary

Michael Xieyang Liu
Ixieyang@google.com
Google Research
Pittsburgh, PA, USA

Minsuk Chang
minsukchang@google.com
Google Research
Seattle, WA, USA

2.3 How different are Aland B?

47 displayed of 47 filtered (371 total)

Enter text for

Filters:

Response A
(oasst-pythia-12b)

Enter text for sei

Categories contain “Coding" @

Enter text for

32 write a python program
where the user inputs his
name and gets then an
output "Hello User” with
the username instead of
the Lisar
(Coding)

49 Pretend you are a swift
programmer, and you
have a simple funetion as
your Sources swift file:

fune firstFunction(try:
(Coding)

50 Puedes generar una
funcién en python3 que
salude al usuario dado
comao pardmetro,
indicando también la
fecha actyal?

(Coding)

68 Write python code that
analyzes a CSV file,
determines what type of
EDA (exploratory data
analysis) to perform on it,
and then creates a

| Coding } presentation

m Give me the most simple
express server in
typescript

Sure, here's an example of
Python program that takes
the user's name as an input
and outputs “Hello User* with
the username instead

" pythen

he simplest reason why you
might be receiving those
errors is

ecalse you are
trying to pass a function as an
argument to a method that
expects a type parameter.
This is not allowed in Swift, as

Claro, aqui tienes un ejemplo
de una fur

Python que
salude al u mo
parémetro y muestra la fecha
actual

def saludar(nombre, fecha):

Sure! Here's an example of
Python code that analyzes a
CSV file, determines what
type of EDA to perform on it
and creates a Powerpoint
presentation with key findings
and charts included

Here is a simple Express

server in TypeSeript
“typescript

import express from ‘express’;

const ano = exoress():

information to the user

username by itself with

provides more in-depth
explanations of the

demonstrates solutions
with code examples

provides more detailed

« provides a working code
exampls with proper
comments and a usage

directly addresses the
user's request by
providing a function that

provides a detailed and
structured approsch

implementation details
demonstrates a deeper
understanding of the

user's requirements and

implementation of a

Here is a sample programin [BEEEM s provides more
Bis better
=input{'Please enter [T by printing the
your name: "}
print(*Hello * + name + *, nice alabel
to meet youl') * captures the
print(*Username: * + name) recuirement of
The errors you are receiving 108 I8
indicate that the function Aisbetter
firstFunction requires a I errorsand
parameter, but none was
provided. The error message
is: "missing argument for .
parameter #1in call’. To and accurate
$i, se puede generar una -0.67
funcién en Python3 qu Bis better
salude al usuario como [
parametro, indicando también example
la fecha actual. La funcion .
podria tener la siguiente
forma:
The code would first need to 125 .
be written to read in the CSV EELEES
file and stre it in an array, I with specific
Then, it would need to use a
loop to iterate through the .
data and use statistical tests
to analyze the data. Based on
Here is the most simple 0.92 * provides a mare
express server in typescript: Ll g complete
import{ createServer }from [N

expr

col erver = createServer();

serverlisten(8080):

simple Express server in
TypeScript, including
importing the Express

Score Distribution

Win Rates by Prompt Categories o
PromptCategory ~ ©nt Win Rate (XTI [E wing]
Al 371 559% |
Extraction 67 440% |
Other 62 476% |
Reasoning 51 56.9% |
Coding 47 73.4% I
STEM 40 66.3% |
Writing 40 463% |
Humanities 1767 6% |

2.2 Why does model A perform better o
Rationale Clusters @ Fatio C Re gener

What are some clusters of the rationales used by the
rater when it thinks B is b

Cluster Label Awins B wins
provides more specific B
information
is more concise II .3
provides step-by-step B
instructions
is more relevant o |
covers more aspects | Q]
provides additional tips B: o
follows the instruction W o

accurately

Create a new cluster label

N-grams =

What are n-grams that appear relatively
more in A’s responses than B's?

N-gram 00
function that 5]
Heres anexample A
an example of a 5]

of s -
create a a1
using the I
-
with the 2
obyect e
const e
called B
Custom Functions o
Number of
words
AB
Contains
L)I-.I”-t‘tEd z c
lists % 5
Starts with
"Sure” 12
L

Add New Function &

Figure 1: LLM Comparator enables model developers and researchers to interactively analyze results from automatic side-by-
side evaluation of large language models (LLMs). To evaluate the quality of responses from an LLM (A), users can compare
them with those from a baseline LLM (B). The tool’s interactive table (1) enables users to inspect individual prompts and their
responses in details, and its visualization summary (2) supports analytical workflows that help understand when (2-1) and
why (2-2) a model performs better or worse and how (2-3) the two models’ responses are different.

ABSTRACT

Automatic side-by-side evaluation has emerged as a promising ap-
proach to evaluating the quality of responses from large language
models (LLMs). However, analyzing the results from this evalua-
tion approach raises scalability and interpretability challenges. In
this paper, we present LLM Comparator, a novel visual analytics
tool for interactively analyzing results from automatic side-by-side
evaluation. The tool supports interactive workflows for users to
understand when and why a model performs better or worse than
a baseline model, and how the responses from two models are qual-
itatively different. We iteratively designed and developed the tool
by closely working with researchers and engineers at Google. This
paper details the user challenges we identified, the design and de-
velopment of the tool, and an observational study with participants
who regularly evaluate their models.

CCS CONCEPTS

+ Human-centered computing — Visualization systems and
tools; Interactive systems and tools.

KEYWORDS

Visual analytics, generative Al large language models, machine
learning evaluation, side-by-side evaluation

ACM Reference Format:

Minsuk Kahng, Ian Tenney, Mahima Pushkarna, Michael Xieyang Liu, James
Wexler, Emily Reif, Krystal Kallarackal, Minsuk Chang, Michael Terry,
and Lucas Dixon. 2024. LLM Comparator: Visual Analytics for Side-by-
Side Evaluation of Large Language Models. In Extended Abstracts of the
CHI Conference on Human Factors in Computing Systems (CHI EA "24), May
11-16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3613905.3650755

1 INTRODUCTION

Large language models (LLMs) are constantly being trained and
tuned by researchers and engineers for performance improvements.
This involves adjusting model parameters, adding or removing
training data examples, and other changes to the training procedure.
A critical challenge here is evaluating whether an updated model
performs sufficiently well to supplant a baseline model.

However, the evaluation of LLMs poses unique challenges. Unlike
traditional machine learning models, which are evaluated against
ground-truth answers, it is impractical to establish ground truth
responses for LLMs due to the fact that they tend to generate long
freeform text. Therefore, a widely-used approach to evaluate LLMs
is to ask humans to rate the output from the model by comparing
with that from a baseline model. While effective, it does not scale to
many experiments, as it is expensive to obtain human ratings. To
mitigate these challenges, automatic side-by-side evaluation (a.k.a.,
AutoSxS, LLM-as-a-judge) has emerged as a promising approach

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI EA 24, May 11-16, 2024, Honolulu, HI, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0331-7/24/05

https://doi.org/10.1145/3613905.3650755

to evaluating LLMs [7, 20]. This approach involves asking another
LLM to compare the quality of the outputs of two models. The
prompt typically asks the LLM to select which response is better
in terms of their quality. Additionally, the LLM might be asked to
justify its selection.

To deeply understand practitioners’ workflows that utilize au-
tomatic side-by-side evaluation, we have had conversations with
researchers and engineers in a variety of teams at Google. We
learned that while aggregated scores from these LLM-based au-
tomatic raters provide a quick initial assessment of model perfor-
mance as a single number, people often express strong needs for
further analysis of the rater results. In particular, they often face
challenges with interpretability and sensemaking. For example,
they want to understand why a particular model received a win
rate of 56%. Additionally, they need to deduce the types of scenarios
in which a model will perform well or poorly.

In this paper, we present LLM Comparator, a novel interactive
tool for researchers and engineers to analyze automatic side-by-
side evaluation results in a scalable manner. It provides interactive,
visual analytics workflows that enable users to obtain a visual sum-
mary of the results from the side-by-side ratings, while simultane-
ously delve into corresponding individual examples to explore the
qualitative behavioral differences between the two models. Specifi-
cally, the tool visualizes slice-level performances (when the model
performs better), rationale summaries (why it is better), and n-
grams and custom functions (how they are different).

LLM Comparator has been successfully integrated into evaluation
pipelines for large teams at Google. Since our initial announcement
to select teams, the tool has attracted over 400 users within its
first three months, facilitating the analysis of over 1,000 unique
automatic side-by-side experiments. Feedback from these users has
enabled us to iteratively improve the tool. Section 3 describes our
latest prototype, and Section 4 presents a qualitative user study
that evaluates it with six participants who regularly use automatic
raters for their model developments.

2 CURRENT WORKFLOWS & DESIGN GOALS

In this section, we discuss the current practice of LLM evaluations
and our design goals for building a new interactive tool for analyz-
ing the automatic side-by-side evaluations of LLMs. We base our
discussion on our informal conversations with over 20 people from
multiple teams at Google.

2.1 Current Practice of LLM Evaluations

We discovered that automatic side-by-side evaluation (i.e., Au-
toSxS [7], LLM-as-a-judge [20]) is one of the most prevalent eval-
uation practices. Once model developers train a new model, they
would like to quickly evaluate it by running AutoSxS libraries,
before conducting more costly and time-consuming human evalua-
tions. Specifically, the process consists of:

¢ Baseline models: A baseline model to compare is set as
a currently-deployed version of the model or one that has
been shown to perform well (e.g., PaLM 2 [3]).

e Prompt sets: People select one of the available prompts sets,
each typically ranging from hundreds to thousands. Each
prompt is commonly tagged with categories (e.g., coding).

https://doi.org/10.1145/3613905.3650755
https://doi.org/10.1145/3613905.3650755
https://doi.org/10.1145/3613905.3650755

LLM Comparator: Visual Analytics for Side-by-Side Evaluation of Large Language Models

Response A
(oasst-pythia-12b)

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

360 Write me a python code of insertion H a Python implementation of the insertion sort def insertionSort . xplanations of how
sort algorithm algorithm: = lenlarr)
plements the logic of the
def insertionSort{array). for iin range(1, n): ertion sort
0 e(l, len(array)): min_index =i « includes more detailed comments

key = arrayli] for jin range(0, i): @ explaining the purpose and

j=i-1 if arr[min_index] > arr[j): functioning of the algorithm
Individual Rater Scores X

Index Score Rating lipped? Rationale (Careful for flipped cases!)

o] 05 Ais slightly better N Both responses provide the Python code of the insertior se A provides more explanations of how the
code works, making it easier to understand for someone ew to the insertion sort algorithm. Response B is concise
and has provided an example of how to use the code along v |t| the output.

1 .5 Ais much better N Response B duplicates the entire input ar hich is not the correct behavior of the insertion sort. Response A correctly
implements the logic of the insertion s iich is to divide the array into sorted and unsorted parts and gradually merge
them until the array is completely sorte

2 -05 Bis slightly better N Both responses provide Python code for the insertion sort algorithm. The code in Response A is slightly more concise and
includes a description of the algorithm. However, Response B provides a more detailed explanation of the algorithm, including

Figure 2: Users can inspect the individual ratings to see the detailed rationales used by the raters.

o Individual ratings: The AutoSxS libraries take an input
prompt, a response from the model to test, and a response
from the baseline. It returns a Likert-scale rating (e.g., “A
is much better,” “B is slightly better,” etc.) accompanied by
a brief rationale. The Likert-scale ratings are transformed
into numeric scores (e.g., “A is much better” equals 1.5, “A is
better” equals 1.0, “B is much better” equals -1.5). To coun-
teract the stochastic nature of the scores, the process is often
repeated multiple times, and the final score is calculated as
the average of these repetitions [12, 20].

o Aggregated metrics: The libraries calculate metrics from
the ratings across a set of prompts, with average scores and
win rates being the most prevalent. A win rate can be defined
as the proportion of scaled rating scores that are above or
below the threshold (A wins if score > 0.3; B wins if < -0.3;
tie otherwise).

2.2 User Challenges in Evaluation Analysis

We have identified common workflows of how model developers
and researchers analyze the results from these AutoSxS libraries:

o No specialized tools existed for the analysis of AutoSxS results.
Typically, results are loaded into spreadsheets—with one row
for each input prompt, and the columns are prompt, response
A, response B, and the score. Some practitioners load the data
into computational notebooks (e.g., Jupyter, Colab).

e Practitioners eyeball individual examples (i.e., prompts and
LLM responses) to interpret evaluation results and compare
differences between responses from two models qualitatively.
They either randomly select examples to examine or sort
them by scores using spreadsheets and examine those with
exceptionally high or low scores. It is often challenging to
read them, as spreadsheets are not designed for long texts.

o They have strong interests in computing metrics (e.g., average
scores, win rates) by slices (e.g., prompt categories) to identify
which slices underperform or outperform relative to others.
Then they often want to inspect examples in these slices, but
it requires switching between different tools.

e For further analysis, practitioners compute additional features
from response texts (e.g., number of tokens) and aggregate the

feature values across the examples by using computational
notebooks or other tools.

Importantly, both detailed examination of individual examples
and analysis of aggregated data are essential; however existing
tools fail to connect these two types of analyses.

2.3 Design Goals

Given the current practice of running LLM evaluations and ana-
lyzing their results outlined above, we distill the following design
goals for building tools for side-by-side evaluation analysis:

DGI1. Facilitate interactions between the aggregated information
and individual examples. This will enable users to identify
their slices of interests in diverse ways and examine specific
prompts and their response pairs in details.

DG2. Provide workflows to uncover answers to the following ana-
lytical questions:

2-1. When: In which situations does model A perform better
than model B?

2-2. Why: What are the common rationales used by the raters?
Why does it say one model is better than another?

2-3. How: How are the responses between two models differ-
ent? What qualitative patterns can be observed? Can these
patterns be used to inform data or model improvements?

DG3. Perform the analysis of evaluation results at scale for a large
number of prompts. This will allow users to more confidently
discern the performance differences between two models.

3 VISUALIZATION DESIGN & DEVELOPMENT

In this section, we introduce LLM Comparator, a interactive tool
for the side-by-side comparison of LLMs. Figure 1 shows our tool’s
interface for a scenario where a researcher who develops a new LLM
evaluates its performance by comparing it to a baseline model.! For
a given prompt set, they obtain side-by-side ratings using another
LLM? that compares the quality of response pairs. The tool consists
of two main panels: the (1) an interactive table for detailed individual

!'This figure uses data of prompts and responses from two selected models from LMSys
Chatbot Arena Conversation dataset [20].

2We used Google Cloud’s Generative Al APIs on Vertex Al available at https://cloud.
google.com/vertex-ai/docs/generative-ai/learn/overview.

https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

example inspection and (2) a visualization summary for overviews
and filtering options that support the users’ analytical workflows.

3.1 Interactive Table

Each row in the table represents a prompt, its corresponding re-
sponses from two models, the rater’s score, and a rationale summary.
Below we highlight a few unique features of the interactive table:

e Overlapping word highlights. To facilitate quick and easy
comparison of two response texts, it highlights overlapping
words between the two as (e.g., “def insertionSort”
in Figure 2).

e Rationale summary. The rationales are often too lengthy

to read in full, particularly with multiple raters involved (see

Figure 2, bottom). To address this challenge, we employ an-

other LLM to summarize them into a bulleted list (in Figure 2,

rightmost column). If one receives six ratings and the average

outcome favors A (with 4 for A being better and 2 for B), we

ask the LLM to summarize the four cases favoring A.

Individual rating details. The average score is displayed on

the table row, with an option to view the details of individual

ratings if desired (i.e., by clicking “6 raters” link as shown in

Figure 2).
e Color coding scheme. We represent A with indigo and B
with . Also, to represent the rater’s decisions, we use

to indicate rows where the rater prefers A, where

the rater prefers B, and gray to denote ties.

3.2 Visualization Summary

The visualization summary panel features several components de-
signed to support the analytical workflows of users:

Score Distribution. Upon first encountering the summary met-
ric (e.g., average score = 0.46), users would often ask about its
distribution. To help answer this question, we display a simple
histogram for the distribution of scores (ranging from 1.5 to -1.5).

Win Rates by Prompt Category (when). To answer the com-
mon analysis question of in what scenarios model A outperforms
or underperforms compared to model B (DG2-1), we present a visu-
alization of performance across different prompt categories. This
facilitates users to identify categories with notably higher or lower
scores, informing which data examples to inspect further. In Figure
1 (2-1 on the right), a high-scoring category “Coding” is selected.

Rationale Clusters (why). To help users understand the ratio-
nales behind the rater’s decisions (DG2-2), we condense a large
array of rationales into several representative themes. While there
are various methods to produce these themes, for example, by run-
ning clustering on all rationale bullets and subsequently labeling the
clusters, we opted for a novel LLM-based approach that performs
better and runs faster based on our testing. Specifically, we first
ask a different LLM to generate a set of diverse and representative
cluster labels given a sample of the rationale bullets, inspired by
recent work [18, 21]. We then assign each rationale bullet to clusters
(represented by their labels) based on embedding similarity,® i.e., if
the cosine similarity between the bullet and the label exceeds an

3To assign rationale bullets into clusters shown in Figure 1, we used Google
Cloud’s text-embeddings APIs at https://cloud.google.com/vertex-ai/docs/generative-
ai/embeddings/get-text-embeddings.

Kahng, et al.

e Ratio & Re-ge

What are some clusters of the rationales used by
the rater when it thinks B is better?

Rationale Clusters

Cluster Label Awins B wins

is more concise 143

follows the instruction 94 233
accurately

is more detailed 178

provides additional 124

information

is well-written 78 86
is organized with bulleted 125 |23
points

is more engaging 62 N

provides external links 26 10

|C|‘eate a new cluster label || Add |

Figure 3: The rationale clusters view presents a list of ratio-
nales that are frequently used by the automatic rater. Users
can dynamically add ones to compare the occurrences of rel-
evant rationales between the two models.

empirically determined threshold, it is considered a match. Note
that each bullet can be assigned to multiple clusters.

As shown in Figure 3, for each cluster label, the tool counts the
number of instances where model A is determined to be better, and
vice versa. By sorting these counts, users will be able to identify
common rationales used by the rater. Moreover, it can also be
particularly useful to examine the ratio between the count for A and
B. For instance, if a certain rationale cluster (e.g., “is more concise”)
shows a significantly higher count for B, users can hypothesize that
B’s responses are generally more concise than A.

Users can interact with the clustering results by dynamically
adding or removing individual clusters, or regenerating the entire
cluster set for the filtered examples. In addition, when combined
with the prompt category filter, users can inspect the different
rationales used by the rater for different types of prompts.

N-grams and Custom Functions (how). To grasp the nuances
of the rationales, users must be able to examine individual instances.
For instance, if the automatic rater states that “B is more organized,”
a user might still wonder about what it means to be “organized”
While users can directly inspect individual response pairs from the
table, we provide two additional techniques:

e N-gram Analysis. The tool presents frequently occurring
n-grams (n=1 to 7) in responses from either A or B, compared
to its counterpart (e.g., “Here’s an example” appears 150 times
in A’s responses while appearing only 3 times in B’s).

o Custom Functions. Users can either define regular expres-
sions (e.g., newline character followed by dash or star indi-
cating bulleted items) or JavaScript function expressions (e.g.,
word count specified by “output.split(/\s+/).length”).
Upon specifying these expressions, they immediately apply

https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings

LLM Comparator: Visual Analytics for Side-by-Side Evaluation of Large Language Models

Filters: Contains_bulleted _lists(A) = true @

Response A
(oasst-pythia-12b)

The three Newton laws of maotion are: Newton's three laws are: 1) Every object ina
state of uniform m | remain in that

- 1st Law: A body continues in a state of state of motion ur rnal force acts

uniform maotion unless acted on upon it; 2) uced when a

- 2nd | aw- 4 force acting an a body net farce acts unan an nhiect: and 3) For

(Contains bulleted lists: True |41 and L . opposite

Must-Tries:

ouper.

sunbathing N .
Shack in Seagrove.

ed lists: True) SOMe

- Funlore the Incal
(. Contains bulleted

Figure 4: Users can dynamically create functions that apply
to responses. A function specified as a regular expression
(i-e., "\n([*-1)\s") checks if each response contains bulleted
lists, and their results are displayed as purple chips.

to each individual response and return either boolean or nu-
meric values. For boolean values (e.g., whether it contains
bulleted items), the tool visualizes the results as percentage
bar charts; for numeric values (e.g., word count), it displays
histograms. They can be displayed on top of the responses
when selected (as shown in Figure 4).

3.3 Implementation

LLM Comparator is implemented as a web-based application. Its pre-
processing module loads a data file that stores the results from the
AutoSxS libraries containing a list of prompts with response pairs
and the ratings with rationales. Then it calls an LLM to summarize
rationales into bullet points, generate cluster labels, and compute
embeddings to be used for cluster assignments. The server, written
in Python, loads this preprocessed data file and then transmits it to
the client in JSON format. Once data is loaded into the client, all
computations, such as filtering, sorting, and cluster assignments,
are performed dynamically on web browser. The client-side code
is written in TypeScript using the Lit framework.* When a user
requests to regenerate rationale clusters, the server invokes calls to
an LLM using a RPC call.

3.4 System Deployment

LLM Comparator has been developed based on iterative feedback
from many engineers, researchers, and data scientists at Google.
Since our initial announcement to select internal LLM development
teams, the tool has attracted over 400 users, facilitating the anal-
ysis of over 1,000 distinct side-by-side evaluation experiments. In
addition, it has been deployed on evaluation pipelines for large
teams who develop LLMs for their products. The final-stage of
the pipelines performs preprocessing for LLM Comparator. When
the pipeline is complete, users see a direct link to our tool on the
platform interface.

While the earlier versions of the tool featured the interactive
table and a subset of the visualization summary components de-
scribed in this section, the latest prototype updated based on the

“https://lit.dev

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

user feedback offers the full functionalities described in this section,
including the rationale clusters and N-grams analysis. In the next
section, we present our evaluation of this latest prototype.

4 OBSERVATIONAL STUDY

We conducted an observational study to investigate how users
would use LLM Comparator presented in Section 3.

4.1 Study Setup

Participants. We recruited six participants (P1-6) from our com-
pany, consisting of software engineers, researchers, and data scien-
tists who are directly involved with teams dedicated to developing
LLM-based products. All participants had experience conducting
automatic side-by-side evaluations within the past month. Addi-
tionally, some had previous experience with earlier iterations of
our tool, e.g., versions without the rationale clusters feature.

Study Protocol. Each study session was conducted remotely
over video conferencing and took around 45 minutes. After par-
ticipants sign the consent form, we first conducted a 10-minute
interview focused on the participant’s role in model evaluation.
This was followed by a 5 to 10-minute tutorial on the tool’s features.
Participants were then asked to use the tool while think aloud to
analyze a recent side-by-side evaluation run they had performed on
internal evaluation platforms. The session concluded with a short
reflective interview, and the participants were compensated with
$25 USD. We analyzed the results through thematic analysis.

4.2 Key Usage Patterns

Our study revealed the following interesting usage patterns.’

4.2.1 Example-first deep dive. P1 and P2 invested significant
time in reading prompts and responses to gain insights from the
results, especially when they first launched the tool. Driven by
the overall metric favoring Model B (baseline model), P2 wanted
to inspect low-scoring examples for Model A (their model). They
sorted the examples by the rater score and scanned the rows one
by one. They meticulously read prompts to find one they can fa-
miliarize with, and then read and compared response pairs. P2 said
this process is crucial because the automatic rater is not always
right, so they need to make sure if the rater is working correctly. P1
used an interesting alternative strategy. They concealed the score
column and predicted the automatic rater’s scores, mimicking the
process for human raters.

After spending time analyzing examples, participants began for-
mulating hypotheses about behavioral differences between the two
models. P2 noticed a case where Model A’s response succinctly only
include the code for a prompt about coding, while B additionally
provided detailed explanations. This difference caught P2’s atten-
tion, because it might be caused by a specific change they have
made to their model. To further find similar cases, they filtered ex-
amples by prompt category (i.e., coding) and quickly found several
other examples that exhibit similar patterns. Moreover, the ratio-
nale clusters view reveals one named “Provide clear explanations”
with much higher counts for B, further confirming their hypothesis.
5To honor participants’ requests for confidentiality, we have redacted certain details

about the models, data, and prompt categories. Despite this, the general patterns of
use remain accurately represented.

https://lit.dev

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

4.2.2 Prior experience-based testing. P3, P4, and P5 leveraged
their prior knowledge to identify undesirable model behaviors. P3
sought to find responses containing phrases like “I'm sorry” or
“unfortunately” which often signal a model’s refusal to answer the
tasks specified in prompts. They need to discern whether these are
genuinely unanswerable prompts for LLMs or areas for potential
improvement to deliver accurate responses. Similarly, P5 noted the
desire to detect cases where LLMs generate unnecessary phrases
(e.g., starting sentences with “here is”, overusing bold text) to in-
ternally optimize their objectives, which is a known behavior of
LLMs [2].

Participants reported maintaining a collection of such undesir-
able patterns for testing purposes (similar to performing testing
in software engineering [19]), and used the tool to determine if
these patterns were present in either side of the models. Specifi-
cally, they used the tool’s N-grams and custom function features
to make initial searches for these phrases. Subsequently, they used
visualizations to compare the occurrences of these phrases across
the two models. For example, after finding a noticeable difference
between counts, they meticulously examined the corresponding
individual responses and leveraged the rationale summaries and
clusters to check whether the automatic raters paid attention to
this information.

4.2.3 Rationale-centric top-down exploration. The rationale
clusters view enabled a diverse set of ways to analyze data that
were previously unavailable. P2 had used the earlier versions of the
tool before, and they used it primarily for inspecting individual ex-
amples. While the only way to understand the rater’s rationales was
selecting an example first and opening the detailed rating results
view, the updated version introduces rationale clusters, providing
new methods for in-depth data investigation to validate their hy-
potheses about the model’s behavior. In addition, P3, who had also
used the tool many times before, first searched for specific keywords
like “sorry” as described earlier. However, they later noticed one of
the rationale clusters “Avoids harmful content”, and by applying a
filter for this cluster, they were pleased to see several interesting
keywords from the N-grams components. These keywords include
those which they had to manually search for individually, including
“I'm sorry”

Participants also adopted a more exploratory approach actively
engaging with the visualizations to discover interesting patterns.
Coordinated views that are dynamically updated capture their at-
tention and spark curiosity. For instance, P6 noticed a category
with a significantly higher win rate from the chart. Applying a filter
for this category, they could naturally form new hypotheses from
one of the rationale clusters about conciseness. This led them to
use a custom function for word count and identified responses that
are very short and problematic.

4.3 Discussions and Future Opportunities

In addition to the above usage patterns, we uncovered opportunities
to further enhance users’ analysis workflows.

LLM-based custom metrics. While the N-grams and custom
functions are effective for analyzing qualitative differences, people
have additional needs to assess high-level attributes (e.g., safety,
verbosity). To address this limitation, we can employ yet another

Kahng, et al.

LLM, similar to prior work [11]. However, this approach brings
substantial complexity due to the extensive LLM calls, particularly
for the dynamic evaluation of large prompt sets. Exploring practical
solutions to mitigate this bottleneck would greatly enhance the
feasibility and scalability of LLM-based evaluations.

Pre-configured undesirable patterns. Participants expressed
a strong desire for the tool to be pre-configured with specific un-
wanted patterns, to avoid manually defining new functions or
searching for individual keywords. For example, P3 particularly
cared about identifying the issue of repeated sentences in LLM
outputs, highlighting the importance to be able to easily detect and
flag such occurrences.

Improving rationale clustering. The pipeline for clustering
rationales relies on LLM calls, which could be error-prone. Also, it
could be less than ideal to use embedding similarity for clustering
assignments, as embeddings reflect not only semantic but also syn-
tactic similarity. Alternative computational approaches and more
advanced interactions (in addition to what we implemented, e.g.,
adding new clusters) would boost the robustness and efficiency of
this pipeline.

5 RELATED WORK

Visual Analytics for Machine Learning Interpretability. In
the past decade, a variety of methodologies and tools for machine
learning analysis have been developed from the visualization com-
munity. These include early works that emphasized the importance
of visualizing individual data points [1] and supporting slice-level
analysis [10, 13], tools that utilized various interpretability meth-
ods to explain individual predictions [16], and methods and tech-
niques for model comparison [5, 9, 14, 17]. As LLMs have emerge,
tools targeting specific types of language models have been intro-
duced [6, 8, 14, 15].

Interactive Tools for LLM Evaluations. With ChatGPT’s rise
in 2023, interactive tools for LLM evaluations and comparisons have
begun to appear in late 2023. A recent preprint, ChainForge [4],
presented a flexible framework to perform comparisons with user-
specified functions. Another recent work, EvalLM [11], presented
a tool for interactively performing LLM-based evaluations by user-
defined criteria. Different from these concurrently developed ap-
proaches, our work focuses on the visual analysis and interpretation
of large-scale evaluations for industry practitioners.

6 CONCLUSION

We presented a new interactive tool for analyzing results from side-
by-side LLM evaluation methods. The tool aimed at enabling users
to analyze when and why a model performs better or worse than a
baseline model and how they behave differently. Our observational
study indicated that the tool enables participants to form hypothe-
ses about the automatic ratings, verify known model behaviors,
and analyze qualitative differences between model responses.

ACKNOWLEDGMENTS

We thank Sujeevan Rajayogam, Fernanda Viégas, Martin Watten-
berg, Timothy Chung, Ankur Taly, and our colleagues at Google’s
People + Al Research (PAIR) team for their support and feedback.
We thank LLM Comparator users for their feedback and suggestions.

LLM Comparator: Visual Analytics for Side-by-Side Evaluation of Large Language Models

REFERENCES

(1]

&

(3

=

[4

=

[10]

(1]

[12

[13

[14

[15

=
&

[17

[18

[19

[20]

Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. ModelTracker: Redesigning performance analysis
tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI). 337-346. https://doi.org/10.1145/
2702123.2702509

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. 2016. Concrete problems in Al safety. arXiv preprint arXiv:1606.06565
(2016). https://arxiv.org/abs/1606.06565

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. 2023. PaLM 2 technical report. arXiv preprint arXiv:2305.10403 (2023).
https://arxiv.org/abs/2305.10403

Tan Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and Elena
Glassman. 2023. ChainForge: A Visual Toolkit for Prompt Engineering and LLM
Hypothesis Testing. arXiv preprint arXiv:2309.09128 (2023). https://arxiv.org/
abs/2309.09128

Angie Boggust, Brandon Carter, and Arvind Satyanarayan. 2022. Embedding
Comparator: Visualizing differences in global structure and local neighborhoods
via small multiples. In 27th International Conference on Intelligent User Interfaces
(IUI). 746-766. https://doi.org/10.1145/3490099.3511122

Richard Brath, Daniel Keim, Johannes Knittel, Shimei Pan, Pia Sommerauer,
and Hendrik Strobelt. 2023. The Role of Interactive Visualization in Explaining
(Large) NLP Models: from Data to Inference. arXiv preprint arXiv:2301.04528
(2023). https://arxiv.org/abs/2301.04528

Google Cloud. 2024. Perform automatic side-by-side evaluation. https://cloud.
google.com/vertex-ai/docs/generative-ai/models/side-by-side-eval

Adam Coscia and Alex Endert. 2023. KnowledgeVIS: Interpreting Language Mod-
els by Comparing Fill-in-the-Blank Prompts. IEEE Transactions on Visualization
and Computer Graphics (2023).

Michael Gleicher, Aditya Barve, Xinyi Yu, and Florian Heimerl. 2020. Boxer:
Interactive comparison of classifier results. In Computer Graphics Forum, Vol. 39.
Wiley Online Library, 181-193. https://arxiv.org/abs/2004.07964

Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and Duen Horng Chau. 2017.
ActiVis: Visual exploration of industry-scale deep neural network models. IEEE
Transactions on Visualization and Computer Graphics 24, 1 (2017), 88-97. https:
//doi.org/10.1109/TVCG.2017.2744718

Tae Soo Kim, Yoonjoo Lee, Jamin Shin, Young-Ho Kim, and Juho Kim. 2023.
EvalLM: Interactive Evaluation of Large Language Model Prompts on User-
Defined Criteria. arXiv preprint arXiv:2309.13633 (2023). https://arxiv.org/abs/
2309.13633

Tiangi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi,
Yao Zhao, Mohammad Saleh, Simon Baumgartner, Jialu Liu, et al. 2024. LiPO:
Listwise Preference Optimization through Learning-to-Rank. arXiv preprint
arXiv:2402.01878 (2024). https://arxiv.org/abs/2402.01878

Yao Ming, Huamin Qu, and Enrico Bertini. 2018. RuleMatrix: Visualizing and
understanding classifiers with rules. IEEE Transactions on Visualization and
Computer Graphics 25, 1 (2018), 342-352. https://doi.org/10.1109/TVCG.2018.
2864812

Hendrik Strobelt, Benjamin Hoover, Arvind Satyanarayan, and Sebastian
Gehrmann. 2021. LMdiff: A visual diff tool to compare language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP): System Demonstrations. https://arxiv.org/abs/2111.01582
Hendrik Strobelt, Albert Webson, Victor Sanh, Benjamin Hoover, Johanna Beyer,
Hanspeter Pfister, and Alexander M Rush. 2022. Interactive and visual prompt
engineering for ad-hoc task adaptation with large language models. IEEE
Transactions on Visualization and Computer Graphics 29, 1 (2022), 1146-1156.
https://arxiv.org/abs/2208.07852

Tan Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy Coenen,
Sebastian Gehrmann, Ellen Jiang, Mahima Pushkarna, Carey Radebaugh, Emily
Reif, and Ann Yuan. 2020. The language interpretability tool: Extensible, in-
teractive visualizations and analysis for NLP models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP): System
Demonstrations. https://arxiv.org/abs/2008.05122

Junpeng Wang, Liang Wang, Yan Zheng, Chin-Chia Michael Yeh, Shubham Jain,
and Wei Zhang. 2022. Learning-from-disagreement: A model comparison and
visual analytics framework. IEEE Transactions on Visualization and Computer
Graphics (2022). https://arxiv.org/abs/2201.07849

Zihan Wang, Jingbo Shang, and Ruiqi Zhong. 2023. Goal-Driven Explainable
Clustering via Language Descriptions. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing (EMNLP). 10626—-10649.
https://doi.org/10.18653/v1/2023.emnlp-main.657

Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering 48, 1
(2020), 1-36. https://arxiv.org/abs/1906.10742

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E.

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-Bench and
Chatbot Arena. In Neural Information Processing Systems (NeurIPS): Datasets and
Benchmarks Track. https://arxiv.org/abs/2306.05685

[21] Ruiqi Zhong, Charlie Snell, Dan Klein, and Jacob Steinhardt. 2022. Describing

differences between text distributions with natural language. In International
Conference on Machine Learning (ICML). PMLR, 27099-27116. https://proceedings.
mlr.press/v162/zhong22a.html

https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2309.09128
https://arxiv.org/abs/2309.09128
https://doi.org/10.1145/3490099.3511122
https://arxiv.org/abs/2301.04528
https://cloud.google.com/vertex-ai/docs/generative-ai/models/side-by-side-eval
https://cloud.google.com/vertex-ai/docs/generative-ai/models/side-by-side-eval
https://arxiv.org/abs/2004.07964
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://arxiv.org/abs/2309.13633
https://arxiv.org/abs/2309.13633
https://arxiv.org/abs/2402.01878
https://doi.org/10.1109/TVCG.2018.2864812
https://doi.org/10.1109/TVCG.2018.2864812
https://arxiv.org/abs/2111.01582
https://arxiv.org/abs/2208.07852
https://arxiv.org/abs/2008.05122
https://arxiv.org/abs/2201.07849
https://doi.org/10.18653/v1/2023.emnlp-main.657
https://arxiv.org/abs/1906.10742
https://arxiv.org/abs/2306.05685
https://proceedings.mlr.press/v162/zhong22a.html
https://proceedings.mlr.press/v162/zhong22a.html

	Abstract
	1 Introduction
	2 Current Workflows & Design Goals
	2.1 Current Practice of LLM Evaluations
	2.2 User Challenges in Evaluation Analysis
	2.3 Design Goals

	3 Visualization Design & Development
	3.1 Interactive Table
	3.2 Visualization Summary
	3.3 Implementation
	3.4 System Deployment

	4 Observational Study
	4.1 Study Setup
	4.2 Key Usage Patterns
	4.3 Discussions and Future Opportunities

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

