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Figure 1: LLM Comparator enables model developers and researchers to interactively analyze results from automatic side-by-
side evaluation of large language models (LLMs). To evaluate the quality of responses from an LLM (A), users can compare
them with those from a baseline LLM (B). The tool’s interactive table (1) enables users to inspect individual prompts and their
responses in details, and its visualization summary (2) supports analytical workflows that help understand when (2-1) and
why (2-2) a model performs better or worse and how (2-3) the two models’ responses are different.



ABSTRACT

Automatic side-by-side evaluation has emerged as a promising ap-
proach to evaluating the quality of responses from large language
models (LLMs). However, analyzing the results from this evalua-
tion approach raises scalability and interpretability challenges. In
this paper, we present LLM Comparator, a novel visual analytics
tool for interactively analyzing results from automatic side-by-side
evaluation. The tool supports interactive workflows for users to
understand when and why a model performs better or worse than
a baseline model, and how the responses from two models are qual-
itatively different. We iteratively designed and developed the tool
by closely working with researchers and engineers at Google. This
paper details the user challenges we identified, the design and de-
velopment of the tool, and an observational study with participants
who regularly evaluate their models.
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+ Human-centered computing — Visualization systems and
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1 INTRODUCTION

Large language models (LLMs) are constantly being trained and
tuned by researchers and engineers for performance improvements.
This involves adjusting model parameters, adding or removing
training data examples, and other changes to the training procedure.
A critical challenge here is evaluating whether an updated model
performs sufficiently well to supplant a baseline model.

However, the evaluation of LLMs poses unique challenges. Unlike
traditional machine learning models, which are evaluated against
ground-truth answers, it is impractical to establish ground truth
responses for LLMs due to the fact that they tend to generate long
freeform text. Therefore, a widely-used approach to evaluate LLMs
is to ask humans to rate the output from the model by comparing
with that from a baseline model. While effective, it does not scale to
many experiments, as it is expensive to obtain human ratings. To
mitigate these challenges, automatic side-by-side evaluation (a.k.a.,
AutoSxS, LLM-as-a-judge) has emerged as a promising approach
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to evaluating LLMs [7, 20]. This approach involves asking another
LLM to compare the quality of the outputs of two models. The
prompt typically asks the LLM to select which response is better
in terms of their quality. Additionally, the LLM might be asked to
justify its selection.

To deeply understand practitioners’ workflows that utilize au-
tomatic side-by-side evaluation, we have had conversations with
researchers and engineers in a variety of teams at Google. We
learned that while aggregated scores from these LLM-based au-
tomatic raters provide a quick initial assessment of model perfor-
mance as a single number, people often express strong needs for
further analysis of the rater results. In particular, they often face
challenges with interpretability and sensemaking. For example,
they want to understand why a particular model received a win
rate of 56%. Additionally, they need to deduce the types of scenarios
in which a model will perform well or poorly.

In this paper, we present LLM Comparator, a novel interactive
tool for researchers and engineers to analyze automatic side-by-
side evaluation results in a scalable manner. It provides interactive,
visual analytics workflows that enable users to obtain a visual sum-
mary of the results from the side-by-side ratings, while simultane-
ously delve into corresponding individual examples to explore the
qualitative behavioral differences between the two models. Specifi-
cally, the tool visualizes slice-level performances (when the model
performs better), rationale summaries (why it is better), and n-
grams and custom functions (how they are different).

LLM Comparator has been successfully integrated into evaluation
pipelines for large teams at Google. Since our initial announcement
to select teams, the tool has attracted over 400 users within its
first three months, facilitating the analysis of over 1,000 unique
automatic side-by-side experiments. Feedback from these users has
enabled us to iteratively improve the tool. Section 3 describes our
latest prototype, and Section 4 presents a qualitative user study
that evaluates it with six participants who regularly use automatic
raters for their model developments.

2 CURRENT WORKFLOWS & DESIGN GOALS

In this section, we discuss the current practice of LLM evaluations
and our design goals for building a new interactive tool for analyz-
ing the automatic side-by-side evaluations of LLMs. We base our
discussion on our informal conversations with over 20 people from
multiple teams at Google.

2.1 Current Practice of LLM Evaluations

We discovered that automatic side-by-side evaluation (i.e., Au-
toSxS [7], LLM-as-a-judge [20]) is one of the most prevalent eval-
uation practices. Once model developers train a new model, they
would like to quickly evaluate it by running AutoSxS libraries,
before conducting more costly and time-consuming human evalua-
tions. Specifically, the process consists of:

¢ Baseline models: A baseline model to compare is set as
a currently-deployed version of the model or one that has
been shown to perform well (e.g., PaLM 2 [3]).

e Prompt sets: People select one of the available prompts sets,
each typically ranging from hundreds to thousands. Each
prompt is commonly tagged with categories (e.g., coding).
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Figure 2: Users can inspect the individual ratings to see the detailed rationales used by the raters.

o Individual ratings: The AutoSxS libraries take an input
prompt, a response from the model to test, and a response
from the baseline. It returns a Likert-scale rating (e.g., “A
is much better,” “B is slightly better,” etc.) accompanied by
a brief rationale. The Likert-scale ratings are transformed
into numeric scores (e.g., “A is much better” equals 1.5, “A is
better” equals 1.0, “B is much better” equals -1.5). To coun-
teract the stochastic nature of the scores, the process is often
repeated multiple times, and the final score is calculated as
the average of these repetitions [12, 20].

o Aggregated metrics: The libraries calculate metrics from
the ratings across a set of prompts, with average scores and
win rates being the most prevalent. A win rate can be defined
as the proportion of scaled rating scores that are above or
below the threshold (A wins if score > 0.3; B wins if < -0.3;
tie otherwise).

2.2 User Challenges in Evaluation Analysis

We have identified common workflows of how model developers
and researchers analyze the results from these AutoSxS libraries:

o No specialized tools existed for the analysis of AutoSxS results.
Typically, results are loaded into spreadsheets—with one row
for each input prompt, and the columns are prompt, response
A, response B, and the score. Some practitioners load the data
into computational notebooks (e.g., Jupyter, Colab).

e Practitioners eyeball individual examples (i.e., prompts and
LLM responses) to interpret evaluation results and compare
differences between responses from two models qualitatively.
They either randomly select examples to examine or sort
them by scores using spreadsheets and examine those with
exceptionally high or low scores. It is often challenging to
read them, as spreadsheets are not designed for long texts.

o They have strong interests in computing metrics (e.g., average
scores, win rates) by slices (e.g., prompt categories) to identify
which slices underperform or outperform relative to others.
Then they often want to inspect examples in these slices, but
it requires switching between different tools.

e For further analysis, practitioners compute additional features
from response texts (e.g., number of tokens) and aggregate the

feature values across the examples by using computational
notebooks or other tools.

Importantly, both detailed examination of individual examples
and analysis of aggregated data are essential; however existing
tools fail to connect these two types of analyses.

2.3 Design Goals

Given the current practice of running LLM evaluations and ana-
lyzing their results outlined above, we distill the following design
goals for building tools for side-by-side evaluation analysis:

DGI1. Facilitate interactions between the aggregated information
and individual examples. This will enable users to identify
their slices of interests in diverse ways and examine specific
prompts and their response pairs in details.

DG2. Provide workflows to uncover answers to the following ana-
lytical questions:

2-1. When: In which situations does model A perform better
than model B?

2-2. Why: What are the common rationales used by the raters?
Why does it say one model is better than another?

2-3. How: How are the responses between two models differ-
ent? What qualitative patterns can be observed? Can these
patterns be used to inform data or model improvements?

DG3. Perform the analysis of evaluation results at scale for a large
number of prompts. This will allow users to more confidently
discern the performance differences between two models.

3 VISUALIZATION DESIGN & DEVELOPMENT

In this section, we introduce LLM Comparator, a interactive tool
for the side-by-side comparison of LLMs. Figure 1 shows our tool’s
interface for a scenario where a researcher who develops a new LLM
evaluates its performance by comparing it to a baseline model.! For
a given prompt set, they obtain side-by-side ratings using another
LLM? that compares the quality of response pairs. The tool consists
of two main panels: the (1) an interactive table for detailed individual

!'This figure uses data of prompts and responses from two selected models from LMSys
Chatbot Arena Conversation dataset [20].

2We used Google Cloud’s Generative Al APIs on Vertex Al available at https://cloud.
google.com/vertex-ai/docs/generative-ai/learn/overview.
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example inspection and (2) a visualization summary for overviews
and filtering options that support the users’ analytical workflows.

3.1 Interactive Table

Each row in the table represents a prompt, its corresponding re-
sponses from two models, the rater’s score, and a rationale summary.
Below we highlight a few unique features of the interactive table:

e Overlapping word highlights. To facilitate quick and easy
comparison of two response texts, it highlights overlapping
words between the two as (e.g., “def insertionSort”
in Figure 2).

e Rationale summary. The rationales are often too lengthy

to read in full, particularly with multiple raters involved (see

Figure 2, bottom). To address this challenge, we employ an-

other LLM to summarize them into a bulleted list (in Figure 2,

rightmost column). If one receives six ratings and the average

outcome favors A (with 4 for A being better and 2 for B), we

ask the LLM to summarize the four cases favoring A.

Individual rating details. The average score is displayed on

the table row, with an option to view the details of individual

ratings if desired (i.e., by clicking “6 raters” link as shown in

Figure 2).
e Color coding scheme. We represent A with indigo and B
with . Also, to represent the rater’s decisions, we use

to indicate rows where the rater prefers A, where

the rater prefers B, and gray to denote ties.

3.2 Visualization Summary

The visualization summary panel features several components de-
signed to support the analytical workflows of users:

Score Distribution. Upon first encountering the summary met-
ric (e.g., average score = 0.46), users would often ask about its
distribution. To help answer this question, we display a simple
histogram for the distribution of scores (ranging from 1.5 to -1.5).

Win Rates by Prompt Category (when). To answer the com-
mon analysis question of in what scenarios model A outperforms
or underperforms compared to model B (DG2-1), we present a visu-
alization of performance across different prompt categories. This
facilitates users to identify categories with notably higher or lower
scores, informing which data examples to inspect further. In Figure
1 (2-1 on the right), a high-scoring category “Coding” is selected.

Rationale Clusters (why). To help users understand the ratio-
nales behind the rater’s decisions (DG2-2), we condense a large
array of rationales into several representative themes. While there
are various methods to produce these themes, for example, by run-
ning clustering on all rationale bullets and subsequently labeling the
clusters, we opted for a novel LLM-based approach that performs
better and runs faster based on our testing. Specifically, we first
ask a different LLM to generate a set of diverse and representative
cluster labels given a sample of the rationale bullets, inspired by
recent work [18, 21]. We then assign each rationale bullet to clusters
(represented by their labels) based on embedding similarity,® i.e., if
the cosine similarity between the bullet and the label exceeds an

3To assign rationale bullets into clusters shown in Figure 1, we used Google
Cloud’s text-embeddings APIs at https://cloud.google.com/vertex-ai/docs/generative-
ai/embeddings/get-text-embeddings.
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Figure 3: The rationale clusters view presents a list of ratio-
nales that are frequently used by the automatic rater. Users
can dynamically add ones to compare the occurrences of rel-
evant rationales between the two models.

empirically determined threshold, it is considered a match. Note
that each bullet can be assigned to multiple clusters.

As shown in Figure 3, for each cluster label, the tool counts the
number of instances where model A is determined to be better, and
vice versa. By sorting these counts, users will be able to identify
common rationales used by the rater. Moreover, it can also be
particularly useful to examine the ratio between the count for A and
B. For instance, if a certain rationale cluster (e.g., “is more concise”)
shows a significantly higher count for B, users can hypothesize that
B’s responses are generally more concise than A.

Users can interact with the clustering results by dynamically
adding or removing individual clusters, or regenerating the entire
cluster set for the filtered examples. In addition, when combined
with the prompt category filter, users can inspect the different
rationales used by the rater for different types of prompts.

N-grams and Custom Functions (how). To grasp the nuances
of the rationales, users must be able to examine individual instances.
For instance, if the automatic rater states that “B is more organized,”
a user might still wonder about what it means to be “organized”
While users can directly inspect individual response pairs from the
table, we provide two additional techniques:

e N-gram Analysis. The tool presents frequently occurring
n-grams (n=1 to 7) in responses from either A or B, compared
to its counterpart (e.g., “Here’s an example” appears 150 times
in A’s responses while appearing only 3 times in B’s).

o Custom Functions. Users can either define regular expres-
sions (e.g., newline character followed by dash or star indi-
cating bulleted items) or JavaScript function expressions (e.g.,
word count specified by “output.split(/\s+/).length”).
Upon specifying these expressions, they immediately apply
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Figure 4: Users can dynamically create functions that apply
to responses. A function specified as a regular expression
(i-e., "\n([*-1)\s") checks if each response contains bulleted
lists, and their results are displayed as purple chips.

to each individual response and return either boolean or nu-
meric values. For boolean values (e.g., whether it contains
bulleted items), the tool visualizes the results as percentage
bar charts; for numeric values (e.g., word count), it displays
histograms. They can be displayed on top of the responses
when selected (as shown in Figure 4).

3.3 Implementation

LLM Comparator is implemented as a web-based application. Its pre-
processing module loads a data file that stores the results from the
AutoSxS libraries containing a list of prompts with response pairs
and the ratings with rationales. Then it calls an LLM to summarize
rationales into bullet points, generate cluster labels, and compute
embeddings to be used for cluster assignments. The server, written
in Python, loads this preprocessed data file and then transmits it to
the client in JSON format. Once data is loaded into the client, all
computations, such as filtering, sorting, and cluster assignments,
are performed dynamically on web browser. The client-side code
is written in TypeScript using the Lit framework.* When a user
requests to regenerate rationale clusters, the server invokes calls to
an LLM using a RPC call.

3.4 System Deployment

LLM Comparator has been developed based on iterative feedback
from many engineers, researchers, and data scientists at Google.
Since our initial announcement to select internal LLM development
teams, the tool has attracted over 400 users, facilitating the anal-
ysis of over 1,000 distinct side-by-side evaluation experiments. In
addition, it has been deployed on evaluation pipelines for large
teams who develop LLMs for their products. The final-stage of
the pipelines performs preprocessing for LLM Comparator. When
the pipeline is complete, users see a direct link to our tool on the
platform interface.

While the earlier versions of the tool featured the interactive
table and a subset of the visualization summary components de-
scribed in this section, the latest prototype updated based on the

“https://lit.dev
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user feedback offers the full functionalities described in this section,
including the rationale clusters and N-grams analysis. In the next
section, we present our evaluation of this latest prototype.

4 OBSERVATIONAL STUDY

We conducted an observational study to investigate how users
would use LLM Comparator presented in Section 3.

4.1 Study Setup

Participants. We recruited six participants (P1-6) from our com-
pany, consisting of software engineers, researchers, and data scien-
tists who are directly involved with teams dedicated to developing
LLM-based products. All participants had experience conducting
automatic side-by-side evaluations within the past month. Addi-
tionally, some had previous experience with earlier iterations of
our tool, e.g., versions without the rationale clusters feature.

Study Protocol. Each study session was conducted remotely
over video conferencing and took around 45 minutes. After par-
ticipants sign the consent form, we first conducted a 10-minute
interview focused on the participant’s role in model evaluation.
This was followed by a 5 to 10-minute tutorial on the tool’s features.
Participants were then asked to use the tool while think aloud to
analyze a recent side-by-side evaluation run they had performed on
internal evaluation platforms. The session concluded with a short
reflective interview, and the participants were compensated with
$25 USD. We analyzed the results through thematic analysis.

4.2 Key Usage Patterns

Our study revealed the following interesting usage patterns.’

4.2.1 Example-first deep dive. P1 and P2 invested significant
time in reading prompts and responses to gain insights from the
results, especially when they first launched the tool. Driven by
the overall metric favoring Model B (baseline model), P2 wanted
to inspect low-scoring examples for Model A (their model). They
sorted the examples by the rater score and scanned the rows one
by one. They meticulously read prompts to find one they can fa-
miliarize with, and then read and compared response pairs. P2 said
this process is crucial because the automatic rater is not always
right, so they need to make sure if the rater is working correctly. P1
used an interesting alternative strategy. They concealed the score
column and predicted the automatic rater’s scores, mimicking the
process for human raters.

After spending time analyzing examples, participants began for-
mulating hypotheses about behavioral differences between the two
models. P2 noticed a case where Model A’s response succinctly only
include the code for a prompt about coding, while B additionally
provided detailed explanations. This difference caught P2’s atten-
tion, because it might be caused by a specific change they have
made to their model. To further find similar cases, they filtered ex-
amples by prompt category (i.e., coding) and quickly found several
other examples that exhibit similar patterns. Moreover, the ratio-
nale clusters view reveals one named “Provide clear explanations”
with much higher counts for B, further confirming their hypothesis.
5To honor participants’ requests for confidentiality, we have redacted certain details

about the models, data, and prompt categories. Despite this, the general patterns of
use remain accurately represented.
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4.2.2 Prior experience-based testing. P3, P4, and P5 leveraged
their prior knowledge to identify undesirable model behaviors. P3
sought to find responses containing phrases like “I'm sorry” or
“unfortunately” which often signal a model’s refusal to answer the
tasks specified in prompts. They need to discern whether these are
genuinely unanswerable prompts for LLMs or areas for potential
improvement to deliver accurate responses. Similarly, P5 noted the
desire to detect cases where LLMs generate unnecessary phrases
(e.g., starting sentences with “here is”, overusing bold text) to in-
ternally optimize their objectives, which is a known behavior of
LLMs [2].

Participants reported maintaining a collection of such undesir-
able patterns for testing purposes (similar to performing testing
in software engineering [19]), and used the tool to determine if
these patterns were present in either side of the models. Specifi-
cally, they used the tool’s N-grams and custom function features
to make initial searches for these phrases. Subsequently, they used
visualizations to compare the occurrences of these phrases across
the two models. For example, after finding a noticeable difference
between counts, they meticulously examined the corresponding
individual responses and leveraged the rationale summaries and
clusters to check whether the automatic raters paid attention to
this information.

4.2.3 Rationale-centric top-down exploration. The rationale
clusters view enabled a diverse set of ways to analyze data that
were previously unavailable. P2 had used the earlier versions of the
tool before, and they used it primarily for inspecting individual ex-
amples. While the only way to understand the rater’s rationales was
selecting an example first and opening the detailed rating results
view, the updated version introduces rationale clusters, providing
new methods for in-depth data investigation to validate their hy-
potheses about the model’s behavior. In addition, P3, who had also
used the tool many times before, first searched for specific keywords
like “sorry” as described earlier. However, they later noticed one of
the rationale clusters “Avoids harmful content”, and by applying a
filter for this cluster, they were pleased to see several interesting
keywords from the N-grams components. These keywords include
those which they had to manually search for individually, including
“I'm sorry”

Participants also adopted a more exploratory approach actively
engaging with the visualizations to discover interesting patterns.
Coordinated views that are dynamically updated capture their at-
tention and spark curiosity. For instance, P6 noticed a category
with a significantly higher win rate from the chart. Applying a filter
for this category, they could naturally form new hypotheses from
one of the rationale clusters about conciseness. This led them to
use a custom function for word count and identified responses that
are very short and problematic.

4.3 Discussions and Future Opportunities

In addition to the above usage patterns, we uncovered opportunities
to further enhance users’ analysis workflows.

LLM-based custom metrics. While the N-grams and custom
functions are effective for analyzing qualitative differences, people
have additional needs to assess high-level attributes (e.g., safety,
verbosity). To address this limitation, we can employ yet another
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LLM, similar to prior work [11]. However, this approach brings
substantial complexity due to the extensive LLM calls, particularly
for the dynamic evaluation of large prompt sets. Exploring practical
solutions to mitigate this bottleneck would greatly enhance the
feasibility and scalability of LLM-based evaluations.

Pre-configured undesirable patterns. Participants expressed
a strong desire for the tool to be pre-configured with specific un-
wanted patterns, to avoid manually defining new functions or
searching for individual keywords. For example, P3 particularly
cared about identifying the issue of repeated sentences in LLM
outputs, highlighting the importance to be able to easily detect and
flag such occurrences.

Improving rationale clustering. The pipeline for clustering
rationales relies on LLM calls, which could be error-prone. Also, it
could be less than ideal to use embedding similarity for clustering
assignments, as embeddings reflect not only semantic but also syn-
tactic similarity. Alternative computational approaches and more
advanced interactions (in addition to what we implemented, e.g.,
adding new clusters) would boost the robustness and efficiency of
this pipeline.

5 RELATED WORK

Visual Analytics for Machine Learning Interpretability. In
the past decade, a variety of methodologies and tools for machine
learning analysis have been developed from the visualization com-
munity. These include early works that emphasized the importance
of visualizing individual data points [1] and supporting slice-level
analysis [10, 13], tools that utilized various interpretability meth-
ods to explain individual predictions [16], and methods and tech-
niques for model comparison [5, 9, 14, 17]. As LLMs have emerge,
tools targeting specific types of language models have been intro-
duced [6, 8, 14, 15].

Interactive Tools for LLM Evaluations. With ChatGPT’s rise
in 2023, interactive tools for LLM evaluations and comparisons have
begun to appear in late 2023. A recent preprint, ChainForge [4],
presented a flexible framework to perform comparisons with user-
specified functions. Another recent work, EvalLM [11], presented
a tool for interactively performing LLM-based evaluations by user-
defined criteria. Different from these concurrently developed ap-
proaches, our work focuses on the visual analysis and interpretation
of large-scale evaluations for industry practitioners.

6 CONCLUSION

We presented a new interactive tool for analyzing results from side-
by-side LLM evaluation methods. The tool aimed at enabling users
to analyze when and why a model performs better or worse than a
baseline model and how they behave differently. Our observational
study indicated that the tool enables participants to form hypothe-
ses about the automatic ratings, verify known model behaviors,
and analyze qualitative differences between model responses.
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